Задача как найти периметр параллелограмма

Что такое периметр параллелограмма

Периметр параллелограмма — это сумма длин всех его сторон.

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно равны и параллельны друг другу. Таким образом, его периметр — это удвоенная сумма двух его смежных ребер.

Свойства

  • противоположные стороны равны и параллельны;
  • противоположные углы попарно равны;
  • сумма соседних углов равна 180 градусов;
  • сумма всех углов равна 360 градусов;
  • диагонали фигуры делятся пополам в точке пересечения;
  • точка пересечения диагоналей — центр симметрии параллелограмма;

Свойства параллелограмма

Источник: egemaximum.ru
  • биссектриса образует равнобедренный треугольник.

Биссектриса

Источник: egemaximum.ru

Как найти периметр

Существует несколько основных способов, с помощью которых можно найти сумму длин всех сторон заданной фигуры. Все они зависят от изначально известных параметров.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

По сумме всех сторон

Периметр по сумме всех сторон

Источник: microexcel.ru

Так как периметр параллелограмма — это удвоенная сумма двух его смежных ребер, используем  формулу:

P=2(a+b),

где a и b — это две смежные стороны данного четырехугольника.

По стороне и двум диагоналям

По стороне и двум диагоналям

 

Если в задаче дана лишь одна сторона, но обе диагонали четырехугольника, мы можем найти вторую сторону. Для этого используем формулу:

(a=frac{sqrt{2d_1^2+2d_2^2-4b^2}}2,)

где (d_1) и (d_2) — это обе диагонали фигуры.

Получается, что расчет суммы длин всех сторон для параллелограмма будет выглядеть так:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b).)

По стороне, высоте и синусу угла

По стороне, высоте и углу

Источник: ru.onlinemschool.com

В случае, если нам известны лишь одно ребро, высота и один из углов, можем узнать длину второго ребра таким образом:

(a=frac{h_b}{sinalpha})

где (h_b) — высота, проведенная к известной стороне, а (sinalpha) — известный нам угол.

Таким образом, формула для нахождения периметра параллелограмма будет выглядеть так:

(P=2(frac{h_b}{sinalpha}+b))

Примеры решения задач

Попробуем применить полученные знания на практике и рассмотрим несколько задач на периметр параллелограмма.

Задача 1

Дан параллелограмм со сторонами 5 см и 9 см. Вычислить его периметр.

Решение:

Воспользуемся формулой P=2(a+b), так как нам известны обе стороны фигуры. Подставляем значения: P=2(5+9)=28 см.

Ответ: 28 см.

Задача 2

Известно, что одна из сторон параллелограмма равна 4 см, а две его диагонали равны 6 см и 8 см. Найти периметр фигуры.

Решение:

Для расчета суммы длин всех сторон используем формулу:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b))

Подставляем известные значения:

(P=2(frac{sqrt{2d_1^2+2d_2^2-4b^2}}2+b)=2(frac{sqrt{2times6^2+2times8^2-4times4^2}}2+4)=2(frac{sqrt{72+128-64}}2+4)=2(frac{2sqrt{34}}2+4)=2sqrt{34}+8) см.

Ответ:( 2sqrt{34}+8) см.

Задача 3

Сторона b параллелограмма равна 2 см, высота, проведенная к b 1 см, а угол α равен (fracpi6). Найти сумму длин всех сторон фигуры.

Решение:

Для расчета будем использовать уравнение:

(P=2(frac{h_b}{sinalpha}+b))

Подставим известные величины:

(P=2(frac1{sin{displaystylefracpi6}}+2)=2(frac1{displaystylefrac12}+2)=8;)см.

Ответ: 8 см.

В данной публикации мы рассмотрим, каким образом можно посчитать периметр параллелограмма и разберем примеры решения задач.

  • Формула вычисления периметра

  • Примеры задач

Формула вычисления периметра

Периметр (P) параллелограмма равняется сумме длин всех его сторон. А т.к. противоположные стороны данной фигуры равны, формулу можно представить в следующем виде:

P = 2 * (a + b) или P = 2a + 2b

Периметр параллелограмма

Примеры задач

Задание 1
Найдите периметр параллелограмма, если его стороны равны 6 и 8 см.

Решение:
Воспользуемся одной из двух формул выше, подставив в нее известные значения: P = 2 * 6 см + 2 * 8 см = 28 см.
Тот же самый результат получится, если применить вторую формулу: P = 2 * (6 см + 8 см) = 28 см.

Задание 2
Периметр параллелограмма равен 50 см. Найдите его вторую сторону, если известно, что первая равна 7 см.

Решение:
Нам известно, что периметр считается по формуле: P = 2a + 2b.
Допустим a – это известная сторона, и нам нужно найти b. Ее длина, умноженная на два, равна: 2b = P – 2a = 50 см – 2 * 7 см = 36 см.
Следовательно, длина неизвестной стороны составляет: b = 36 см / 2 = 18 см.

Определение параллелограмма

Параллелограмм — геометрическая фигура, четырехугольник, у которого противоположные стороны попарно параллельны.

Прямоугольник, квадрат и ромб являются частными случаями параллелограмма.

Онлайн-калькулятор периметра параллелограмма

Свойства параллелограмма

Перечислим некоторые свойства параллелограмма:

  1. Противоположные стороны параллелограмма попарно равны и параллельны.
  2. Противоположные углы параллелограмма равны.
  3. Диагонали параллелограмма точкой пересечения делятся пополам.

Формула периметра параллелограмма

Чтобы найти периметр параллелограмма, нужно сложить длины всех его сторон.

Периметр параллелограмма

P=a+b+a+b=2⋅a+2⋅b=2⋅(a+b)P=a+b+a+b=2cdot a+2cdot b=2cdot (a+b)

a,ba, b — длины двух смежных сторон параллелограмма.

Разберем задачу на нахождение периметра параллелограмма.

Задача

Сторона а параллелограмма равна 12 см, а сторона b — 7 см. Чему равен периметр параллелограмма?

Решение

a=12a=12
b=7b=7

Воспользуемся формулой нахождения периметра параллелограмма и подставим вместо aa и bb их численные значения:
P=2⋅(a+b)=2⋅(12+7)=2⋅19=38P=2cdot (a+b)=2cdot (12+7)=2cdot 19=38 см.

Ответ: 38 см.

Не знаете, где можно оформить контрольные работы на заказ? На бирже Студворк сотни авторов, которые готовы выполнить ваше задание!

Тест по теме «Периметр параллелограмма»

24
Июл 2013

Категория: 01 Геометрия

01. Параллелограмм

2013-07-24
2022-09-11

Задача 1. Сумма двух углов параллелограмма равна 62^{circ}. Найдите один из оставшихся углов. Ответ дайте в градусах.

Решение: + показать


Задача 2. Один угол параллелограмма больше другого на 70^{circ}. Найдите больший угол. Ответ дайте в градусах.

Решение:  + показать



Задача 3.  Найдите больший угол параллелограмма, если два его угла относятся как 7:11. Ответ дайте в градусах.

Решение:  + показать



Задача 4. Диагональ параллелограмма образует с двумя его сторонами углы 5^{circ} и 38^{circ}. Найдите больший угол параллелограмма. Ответ дайте в градусах.

Решение:  + показать



Задача 5.  Периметр параллелограмма равен 70. Меньшая сторона равна 16. Найдите большую сторону параллелограмма.

Решение: + показать



Задача 6.  Две стороны параллелограмма относятся как 9:11, а периметр его равен 40. Найдите большую сторону параллелограмма.

Решение: + показать



Задача 7. Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 9. Найдите его большую сторону.

Решение: + показать



Задача 8. Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне. Ответ дайте в градусах.

Решение: + показать



Задача 9. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3:4, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 55.

Решение: + показать


Задача 10. В параллелограмме ABCD высота, опущенная на сторону AB из точки D, равна 3, AD=4. Найдите синус угла B.

Решение: + показать



Задача 11. В параллелограмме ABCD sinC=frac{5}{7},;AD=7. Найдите высоту, опущенную на сторону AB.

Решение: + показать



Задача 12.  В параллелограмме ABCD AB=6,;AD=14,;sinA=frac{6}{7}. Найдите большую высоту параллелограмма.

Решение: + показать



Задача 13.  Площадь параллелограмма равна 12, две его стороны равны 4 и 8. Найдите большую высоту этого параллелограмма.

Решение: + показать



Задача 14. В параллелограмме ABCD  sinA=frac{sqrt{561}}{25}. Найдите  cosB.

Решение: + показать



Задача 15. Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Решение: + показать



Задача 16.  Площадь параллелограмма ABCD равна 36. Точка E — середина стороны CD. Найдите площадь трапеции ABED.

Решение: + показать



Задача 17.   Площадь параллелограмма ABCD равна 180. Найдите площадь параллелограмма A_1B_1C_1D_1, вершинами которого являются середины сторон данного параллелограмма.

Решение: + показать



Задача 18. Найдите диагональ AC  параллелограмма ABCD, если стороны квадратных клеток равны 1.

 fg

Решение: + показать



Задача 19. Диагонали четырехугольника равны 8 и 10. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Решение: + показать



тест

Вы можете пройти тест по теме «Параллелограмм. Вычисление углов и длин».

Автор: egeMax |

комментария 2

3. Геометрия на плоскости (планиметрия). Часть I


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Параллелограмм и его свойства

Сумма внутренних углов любого четырехугольника равна (360^circ).

Свойства параллелограмма:

(blacktriangleright) Противоположные стороны попарно равны;

(blacktriangleright) Диагонали точкой пересечения делятся пополам;

(blacktriangleright) Противоположные углы попарно равны, а сумма соседних равна (180^circ).

Признаки параллелограмма.
Если для выпуклого четырехугольника выполнено одно из следующих условий, то это – параллелограмм:

(blacktriangleright) если противоположные стороны попарно равны;

(blacktriangleright) если две стороны равны и параллельны;

(blacktriangleright) если диагонали точкой пересечения делятся пополам;

(blacktriangleright) если противоположные углы попарно равны.

Площадь параллелограмма

Площадь параллелограмма равна произведению высоты на основание, к которому проведена эта высота.


Задание
1

#1783

Уровень задания: Легче ЕГЭ

Периметр параллелограмма равен (100), его большая сторона равна (32). Найдите меньшую сторону параллелограмма.

Так как у параллелограмма противоположные стороны равны, то его периметр равен удвоенной сумме его непараллельных сторон, тогда сумма большей и меньшей сторон равна (100 : 2 = 50), значит, меньшая сторона параллелограмма равна (50 — 32 = 18).

Ответ: 18


Задание
2

#1784

Уровень задания: Равен ЕГЭ

Периметр параллелограмма равен (15). При этом одна сторона этого параллелограмма на (5) больше другой. Найдите меньшую сторону параллелограмма.

У параллелограмма противоположные стороны равны. Пусть (BC = AB +
5)
, тогда периметр параллелограмма (ABCD) равен (AB + BC + CD + AD =
AB + AB + 5 + AB + AB + 5 = 4cdot AB + 10 = 15)
, откуда находим (AB
= 1,25)
. Тогда меньшая сторона параллелограмма равна (1,25).

Ответ: 1,25


Задание
3

#273

Уровень задания: Равен ЕГЭ

В параллелограмме (ABCD): (BE) – высота, (BE = ED = 5). Площадь параллелограмма (ABCD) равна 35. Найдите длину (AE).

Площадь параллелограмма равна произведению основания на высоту, проведённую к этому основанию, тогда (35 = BE cdot AD = 5cdot(5 + AE)), откуда находим (AE = 2).

Ответ: 2


Задание
4

#1785

Уровень задания: Равен ЕГЭ

Из точки (C) параллелограмма (ABCD) опустили перпендикуляр на продолжение стороны (AD) за точку (D). Этот перпендикуляр пересёк прямую (AD) в точке (E), причём (CE = DE). Найдите (angle B) параллелограмма (ABCD). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда (angle EDC = angle DCE). Так как (angle DEC = 90^{circ}), а сумма углов треугольника равна (180^{circ}), то (angle EDC =
45^{circ})
, тогда (angle ADC = 180^{circ} — 45^{circ} =
135^{circ})
. Так как в параллелограмме противоположные углы равны, то (angle B = angle ADC = 135^{circ}).

Ответ: 135


Задание
5

#1686

Уровень задания: Равен ЕГЭ

Диагональ (BD) параллелограмма (ABCD) перпендикулярна стороне (DC) и равна (4). Найдите площадь параллелограмма (ABCD), если (AD=5).

По теореме Пифагора находим: (AB^2=AD^2 — BD^2 = 25 — 16 = 9) (Rightarrow) (AB = 3). (S_{ABCD} = 4cdot3 = 12).

Ответ: 12


Задание
6

#1685

Уровень задания: Равен ЕГЭ

В параллелограмме (ABCD): (P_{triangle AOB} = 8) , (P_{triangle AOD} = 9), а сумма смежных сторон равна (7). Найдите произведение этих сторон параллелограмма (ABCD).

(P_{triangle AOB} = AO + OB + AB), (P_{triangle AOD} = AO + OD + AD), (BO = OD) (Rightarrow) (P_{triangle AOD} — P_{triangle AOB} = AD — AB = 1), но (AD + AB = 7) (Rightarrow) (AD = 4), (AB = 3) (Rightarrow) (ADcdot AB = 12).

Ответ: 12


Задание
7

#3617

Уровень задания: Равен ЕГЭ

Стороны параллелограмма равны (9) и (15). Высота, опущенная на первую сторону, равна (10). Найдите высоту, опущенную на вторую сторону параллелограмма.

Площадь параллелограмма равна произведению высоты на сторону, к которой высота проведена. Следовательно, с одной стороны, площадь (S=9cdot 10), с другой стороны, (S=15cdot h), где (h) – высота, которую нужно найти.
Следовательно, [9cdot 10=15cdot hquadLeftrightarrowquad h=6]

Ответ: 6

Задачи из раздела «Геометрия на плоскости» являются обязательной частью аттестационного экзамена у выпускников средней школы. Теме «Параллелограмм и его свойства» в ЕГЭ традиционно отводится сразу несколько заданий. Они могут требовать от школьника как краткого, так и развернутого ответа с построением чертежа. Поэтому если одним из ваших слабых мест являются именно задачи на вычисление площадей параллелограмма или его сторон и углов, то вам непременно стоит повторить или вновь разобраться в материале.

Сделать это легко и эффективно вам поможет образовательный портал «Школково». Наши опытные специалисты подготовили необходимый теоретический материал, изложив его таким образом, чтобы школьники с любым уровнем подготовки смогли восполнить пробелы в знаниях и легко решить задачи ЕГЭ на вычисление площадей, сторон, углов или свойства биссектрисы параллелограмма. Найти базовую информацию вы можете в разделе «Теоретическая справка».

Чтобы успешно решить задачи ЕГЭ по теме «Параллелограмм и его свойства», предлагаем попрактиковаться в выполнении соответствующих упражнений. Большая подборка заданий представлена в блоке «Каталог». Специалисты портала «Школково» регулярно дополняют и обновляют данный раздел.

Последовательно выполнять упражнения учащиеся из Москвы и других городов могут в режиме онлайн. При необходимости любое задание можно сохранить в разделе «Избранное» и в дальнейшем вернуться к нему, чтобы обсудить с преподавателем.

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти максимальное значение вектора
  • Как можно найти свои сильные стороны
  • Как найти подписку иви по номеру карты
  • Как найти адрес по микрорайону
  • Как легко найти храм джунглей в террарии

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии