Транспонированная матрица алгебраических дополнений как найти

Это
просто. В матрице миноров нужно ПОМЕНЯТЬ
ЗНАКИ
 у
двух чисел:

Именно
у этих чисел, которые я обвел в кружок!

 –
матрица
алгебраических дополнений соответствующих
элементов матрицы .

И
всего-то лишь…

4) Находим транспонированную матрицу алгебраических дополнений .

Что
такое транспонирование матрицы, и с
чем это едят, смотрите в лекции Действия
с матрицами
.

 –
транспонированная
матрица алгебраических дополнений
соответствующих элементов матрицы .

5) Ответ.

Вспоминаем
нашу формулу 
Всё
найдено!

Таким
образом, обратная матрица:

Ответ
лучше оставить в таком виде. НЕ
НУЖНО
 делить
каждый элемент матрицы на 2, так как
получатся дробные числа. Более подробно
данный нюанс рассмотрен в той же
статьеДействия
с матрицами
.

Как
проверить решение?
Необходимо выполнить
матричное умножение  либо 

Проверка: 

Получена
так называемая единичная
матрица
 (с
единицами по главной диагонали и нулями
в остальных местах).

Таким
образом, обратная матрица найдена
правильно.

Переходим
к более распространенному на практике
случаю – матрице «три на три».

Пример:

Найти
обратную матрицу для матрицы 

Алгоритм
точно такой же, как и для случая «два
на два».

Обратную
матрицу найдем по формуле: ,
где  –
транспонированная матрица алгебраических
дополнений соответствующих элементов
матрицы .

1) Находим определитель матрицы.


Здесь
определитель раскрыт по
первой строке
.

Также
не забываем, что ,
а значит, всё нормально – обратная
матрица существует
.

2) Находим матрицу миноров

Матрица
миноров имеет размерность «три на
три» ,
и нам нужно найти девять чисел.

Я
подробно рассмотрю парочку миноров:

Рассмотрим
следующий элемент матрицы:

МЫСЛЕННО
вычеркиваем строку и столбец, в котором
находится данный элемент:

Оставшиеся
четыре числа записываем в определитель
«два на два»

Этот
определитель «два на два» и является
минором данного элемента
.
Его нужно вычислить:

Всё,
минор найден, записываем его в нашу
матрицу миноров:

Как
Вы, наверное, догадались, необходимо
вычислить девять определителей «два
на два». Процесс, конечно, муторный, но
случай не самый тяжелый, бывает хуже.

Ну
и для закрепления – нахождение еще
одного минора в картинках:

Остальные
миноры попробуйте вычислить самостоятельно.

Окончательный
результат:
 –
матрица миноров соответствующих
элементов матрицы .

То,
что все миноры получились отрицательными
– чистая случайность.

3) Находим матрицу алгебраических дополнений

В
матрице миноров необходимо СМЕНИТЬ
ЗНАКИ
 строго
у следующих элементов:

В
данном случае:
 –
матрица алгебраических дополнений
соответствующих элементов матрицы .

4) Находим транспонированную матрицу алгебраических дополнений .

 –
транспонированная
матрица алгебраических дополнений
соответствующих элементов матрицы .

5) Ответ:

Проверка: 

Таким
образом, обратная матрица найдена
правильно.

Как
оформить решение на чистовик? Примерный
образец чистового оформления задания
можно найти на странице Правило
Крамера. Метод обратной матрицы
 в
параграфе, где идет речь о матричном
методе решения системы линейных
уравнений. По существу, основная часть
упомянутой задачи – и есть нахождение
обратной матрицы.

Нахождение
обратной матрицы для матрицы «четыре
на четыре» не рассматриваем, так как
такое задание может дать только
преподаватель-садист (чтобы студент
вычислил 1 определитель «четыре на
четыре» и 16 определителей «три на три»).
В моей практике встретился только один
такой случай, и заказчик контрольной
работы заплатил за мои мучения довольно
дорого =).

В
ряде учебников, методических указаниях
можно встретить несколько другой подход
к нахождению обратной матрицы, но я Вам
рекомендую пользоваться именно
вышеизложенным алгоритмом решения.
Почему? Потому-что вероятность запутаться
в вычислениях и знаках – гораздо меньше.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса).
Рассмотрим как найти обратную матрицу с помощью алгебраических дополнений.

Обратной матрицей называется матрицы A-1 при умножении на исходную матрицу A получается единичная матрица E.

A·A-1 = A-1 · A = E

Алгоритм нахождения обратной матрицы с помощью алгебраических дополнений:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Найти матрицу миноров M.
  3. Из матрицы M найти матрицу алгебраических дополнений C*.
  4. Транспонировать матрицу (поменяем местами строки со столбцами) C*, получить матрицу C*T.
  5. По формуле найти обратную матрицу.
    Обратная матрица с помощью алгебраических дополнений

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Обратная матрица с помощью алгебраических дополнений

Найдем определитель (детерминант) матрицы, detA = 12 обратная матрица существует.

Найдем минор M11 и алгебраическое дополнение A11. В матрице А вычеркиваем строку 1 и столбец 1.

Обратная матрица с помощью алгебраических дополнений

Найдем минор M12 и алгебраическое дополнение A12. В матрице А вычеркиваем строку 1 и столбец 2.

Обратная матрица с помощью алгебраических дополнений

Остальные миноры и алгебраические дополнения находятся аналогично. В итоге получаем матрицу C*.

Обратная матрица с помощью алгебраических дополнений

Найдем транспонированную союзную матрицу алгебраических дополнений C*T.

Обратная матрица с помощью алгебраических дополнений

Найдем обратную матрицу. Ответ:

Обратная матрица с помощью алгебраических дополнений

Обратной матрицей является матрица A−1A^{-1}, при умножении на исходную матрицу AA мы получаем единичную матрицу EE.

A⋅A−1=A−1⋅A=EA · A^{-1} = A^{-1} · A = E

Онлайн-калькулятор

Алгоритм нахождения обратной матрицы с использованием алгебраических дополнений:

  1. Найти определитель (определитель) матрицы AA. Если определитель ≠0≠ 0, то обратная матрица существует. Если определитель =0= 0, то обратной матрицы не существует.

  2. Найти матрицу миноров ММ.

  3. Из матрицы MM найдите матрицу алгебраических дополнений C∗C ^*.

  4. Транспонировать матрицу (поменять местами столбцы) C∗C ^*, получить матрицу C∗TC ^{* T}.

  5. Найти обратную матрицу по формуле.

A−1=C∗TdetAA^{-1} = frac {C^{*T}}{detA}

Рассмотрим данный метод на конкретных примерах.

Пример 1

Дано:

A=(2543)A= begin{pmatrix} 2 & 5 \ 4 & 3 end{pmatrix}

Решение:

Найдём матрицу алгебраических дополнений.

Вычисляем минор M11M_{11} и алгебраическое дополнение A11A_{11}

M11=3M_{11} = 3

A11=(−1)0⋅3=3A_{11} = (-1)^{0} cdot 3 = 3

Вычисляем минор M12M_{12} и алгебраическое дополнение A12A_{12}

M12=4M_{12} = 4

A12=(−1)1⋅4=(−4)A_{12} = (-1)^{1} cdot 4 = left(-4right)

Вычисляем минор M21M_{21} и алгебраическое дополнение A21A_{21}

M21=5M_{21} = 5

A21=(−1)1⋅5=(−5)A_{21} = (-1)^{1} cdot 5 = left(-5right)

Вычисляем минор M22M_{22} и алгебраическое дополнение A22A_{22}

M22=2M_{22} = 2

A22=(−1)2⋅2=2A_{22} = (-1)^{2} cdot 2 = 2

(3−4−52)begin{pmatrix} 3 & -4 \ -5 & 2 end{pmatrix}

Найдём транспонированную матрицу относительно матрицы алгебраических дополнений:

(3−5−42)begin{pmatrix} 3 & -5 \ -4 & 2 end{pmatrix}

Разделим полученную матрицу на её детерминант:

−114×(3−5−42)=(−31451427−17)-{1 over 14} times begin{pmatrix} 3 & -5 \ -4 & 2 end{pmatrix} = begin{pmatrix} -{3 over 14} & {5 over 14} \ {2 over 7} & -{1 over 7} end{pmatrix}

Ответ:

A−1=(−31451427−17)A^{-1} = begin{pmatrix} -{3 over 14} & {5 over 14} \ {2 over 7} & -{1 over 7} end{pmatrix}

Рассмотрим следующий пример.

Пример 2

Дано:

A=(541421056781)A= begin{pmatrix} 5 & 4 & 1 & 4 \ 2 & 1 & 0 & 5 \ 6 & 7 & 8 & 1 end{pmatrix}

Решение:

Найдём матрицу алгебраических дополнений.

Вычисляем минор M11M_{11} и алгебраическое дополнение A11A_{11}

M11=8M_{11} = 8

A11=(−1)0⋅8=8A_{11} = (-1)^{0} cdot 8 = 8

Вычисляем минор M12M_{12} и алгебраическое дополнение A12A_{12}

M12=16M_{12} = 16

A12=(−1)1⋅16=(−16)A_{12} = (-1)^{1} cdot 16 = left(-16right)

Вычисляем минор M13M_{13} и алгебраическое дополнение A13A_{13}

M13=8M_{13} = 8

$A_{13} = (-1)^{2} cdot 8 = 8$

Вычисляем минор M21M_{21} и алгебраическое дополнение A21A_{21}

M21=25M_{21} = 25

A21=(−1)1⋅25=(−25)A_{21} = (-1)^{1} cdot 25 = left(-25right)

Вычисляем минор M22M_{22} и алгебраическое дополнение A22A_{22}

M22=34M_{22} = 34

A22=(−1)2⋅34=34A_{22} = (-1)^{2} cdot 34 = 34

Вычисляем минор M23M_{23} и алгебраическое дополнение A23A_{23}

M23=11M_{23} = 11

A23=(−1)3⋅11=(−11)A_{23} = (-1)^{3} cdot 11 = left(-11right)

Вычисляем минор M31M_{31} и алгебраическое дополнение A31A_{31}

M31=(−1)M_{31} = left(-1right)

A31=(−1)2⋅(−1)=(−1)A_{31} = (-1)^{2} cdot left(-1right) = left(-1right)

Вычисляем минор M32M_{32} и алгебраическое дополнение A32A_{32}

M32=(−2)M_{32} = left(-2right)

A32=(−1)3⋅(−2)=2A_{32} = (-1)^{3} cdot left(-2right) = 2

Вычисляем минор M33M_{33} и алгебраическое дополнение A33A_{33}

M33=(−3)M_{33} = left(-3right)

A33=(−1)4⋅(−3)=(−3)A_{33} = (-1)^{4} cdot left(-3right) = left(-3right)

(8−168−2534−11−12−3)begin{pmatrix} 8 & -16 & 8 \ -25 & 34 & -11 \ -1 & 2 & -3 end{pmatrix}

Найдём транспонированную матрицу относительно матрицы алгебраических дополнений:

(8−25−1−163428−11−3)begin{pmatrix} 8 & -25 & -1 \ -16 & 34 & 2 \ 8 & -11 & -3 end{pmatrix}

Разделим полученную матрицу на её детерминант:

−0.0625×(8−25−1−163428−11−3)=(−0.51.56250.06251−2.125−0.125−0.50.68750.1875)Ответ:A−1=(−0.51.56250.06251−2.125−0.125−0.50.68750.1875)-0.0625 times begin{pmatrix} 8 & -25 & -1 \ -16 & 34 & 2 \ 8 & -11 & -3 end{pmatrix} = begin{pmatrix} -0.5 & 1.5625 & 0.0625 \ 1 & -2.125 & -0.125 \ -0.5 & 0.6875 & 0.1875 end{pmatrix}
Ответ: A^{-1} = begin{pmatrix} -0.5 & 1.5625 & 0.0625 \ 1 & -2.125 & -0.125 \ -0.5 & 0.6875 & 0.1875 end{pmatrix}

Обратитесь за помощью с решением задач по математике к нашим экспертам!

Что такое обратная матрица

Что такое обратная матрица

Сложная тема из линейной алгебры.

Что такое обратная матрица

Сложная тема из линейной алгебры.

Недавно мы начали говорить о линейной алгебре и матрицах. Сначала всё было хорошо и легко: 

  • Познакомились с вектором
  • Поделали с ними операции
  • Научились определять их параллельность
  • Познакомились с матрицами

Но начав заниматься линейной алгеброй, бывает трудно остановиться. Сегодня мы познакомимся с обратной матрицей и научимся её вычислять. Это навык, который в будущем нам пригодится для решения матричных уравнений.

С точки зрения арифметики материал не сложный. Но он требует вдумчивого чтения для понимания правил. В итоге статья довольно большая, мозги кипят и танки наши быстры. 

Читать ли эту статью?

❌ Если вам нужны простые быстрые решения для жизни — нет, можно объявить, что у вас сегодня выходной. 

✅ Если вашему мозгу не хватает вызова и новых горизонтов — велком ту зе матрикс. 

Обратное — это как? 

В математике есть взаимно обратные числа. Они получаются так: вы берёте какое-то число, добавляете отрицательную степень и получаете обратное число: 

Что такое обратная матрица

Обратные числа при умножении друг на друга всегда дают единицу:

Что такое обратная матрица

Обратная матрица

В линейной алгебре есть обратные матрицы. По свойствам они напоминают обратные числа: если обычную матрицу умножить на обратную к ней, получится единичная матрица.

Что такое обратная матрица

Единичная матрица работает как единица с числами: если умножить любое число на единицу, получится исходное число; если умножить любую матрицу на единичную матрицу — получится исходная матрица:

Что такое обратная матрица

Единичная матрица состоит из единиц и нулей: на диагонали находятся единицы; остальные элементы — нули. Единичные матрицы не используются при расчёте обратных матриц, но без них не получится решать матричные уравнения.

Пример квадратной единичной матрицы размером 5×5

Пример квадратной единичной матрицы размером 5×5. Единичная матрица может быть любого размера — состоять из любого количества строк и столбцов

Как рассчитать обратную матрицу

Для расчёта обратной матрицы нужно выполнить три действия. Пока что не обращайте внимание на термины:

  1. Разделить единицу на матричный определитель. 
  2. Найти транспонированную матрицу алгебраических дополнений. 
  3. Перемножить полученные значения.

Далее мы по порядку во всём разберёмся.

Формула расчёта обратной матрицы

Формула расчёта обратной матрицы: |A| — матричный определитель; Aᵀᵢⱼ — матрица алгебраических дополнений

Определитель — это особое число, которое «определяет» свойства матрицы. 

Порядок вычисления определителя зависит от размера матрицы, которому он соответствует — чем больше матрица, тем сложнее считать определитель. Мы только знакомимся с матрицами, поэтому остановимся на определителях второго и третьего порядка — они подходят для квадратных матриц размером 2×2 и 3×3. 

Чтобы найти определитель второго порядка, нам достаточно умножить элементы главной диагонали и вычесть из значения произведение чисел второй диагонали.

Формула для расчёта определителя второго порядка

Формула для расчёта определителя второго порядка
Пример расчёта определителя второго порядка
Пример расчёта определителя второго порядка

Определитель третьего порядка находится путём умножения диагоналей на треугольники. Здесь много операций, поэтому формулу соберём по частям. 

Сначала работаем по главной диагонали: идём от верхнего левого элемента и движемся к правому нижнему элементу. Перемножаем элементы между собой.

Считаем определитель третьего порядка: 1-й этап — главная диагональ

Считаем определитель третьего порядка: 1-й этап — главная диагональ

Прибавляем к произведению элементов первой диагонали произведение первого треугольника. Основание первого треугольника находится параллельно главной диагонали и состоит из элементов А₂₁ и А₃₂. Вершина — элементА₁₃.

Считаем определитель третьего порядка: 2-й этап — первый треугольник

Считаем определитель третьего порядка: 2-й этап — первый треугольник

Прибавляем к полученному результату произведение второго треугольника, в котором основание состоит из элементов А₁₂ и А₂₃, а вершина — А₃₁.

Считаем определитель третьего порядка: 3-й этап — второй треугольник

Считаем определитель третьего порядка: 3-й этап — второй треугольник

Вычитаем из полученного значения произведение элементов второй диагонали. Вторая диагональ начинается в левом нижнем углу и идёт в правый верхний угол.

Считаем определитель третьего порядка: 4-й этап — вторая диагональ

Считаем определитель третьего порядка: 4-й этап — вторая диагональ

Вычитаем произведение элементов третьего треугольника, в котором основание — элементы А₁₂ и А₂₁, а вершина — А₃₃.

Считаем определитель третьего порядка: 5-й этап — третий треугольник

Считаем определитель третьего порядка: 5-й этап — третий треугольник

Последний шаг: вычитаем произведение четвёртого треугольника, с основанием из элементов А₂₃ и А₃₂ и вершиной А₁₁.

Считаем определитель третьего порядка: 6-й этап — четвёртый треугольник

Считаем определитель третьего порядка: 6-й этап — четвёртый треугольник
Общий вид формулы для расчёта определителя третьего порядка
Общий вид формулы для расчёта определителя третьего порядка
Пример расчёта определителя третьего порядка
Пример расчёта определителя третьего порядка

Транспонированная матрица алгебраических дополнений вычисляется в три шага: 

  1. Мы из исходной матрицы находим матрицу миноров. 
  2. Меняем в матрице миноров знак некоторых элементов и получаем матрицу алгебраических дополнений. 
  3. Находим транспонированную матрицу из матрицы алгебраических дополнений. 

Алгоритм вычислений матрицы миноров и матрицы алгебраических дополнений зависит от размера исходной матрицы — чем она больше, тем сложнее формула расчёта. Поэтому мы рассматриваем только матрицы второго и третьего порядка. 

Чтобы найти матрицу миноров второго порядка, нам нужно последовательно зачеркнуть три элемента исходной матрицы: 

  • Вычёркиваем первую строку и первый столбец исходной матрицы — получаем первый элемент первой строки матрицы миноров. 
  • Вычёркиваем первую строку и второй столбец — получаем второй элемент первой строки матрицы миноров. 
  • Вычёркиваем вторую строку и первый столбец — получаем первый элемент второй строки матрицы миноров. 
  • Вычёркиваем вторую строку и второй столбец — получаем второй элемент второй строки матрицы миноров. 

Когда матрица миноров составлена — меняем знаки элементов второй диагонали и получаем матрицу алгебраических дополнений. Теперь берём эту матрицу и проводим транспонирование — меняем расположение строк и столбцов. Готово.

Пример вычисления матрицы миноров из матрицы второго порядка

Пример вычисления матрицы миноров из матрицы второго порядка
Пример вычисления матрицы алгебраических дополнений (Aᵢⱼ ) из матрицы миноров второго порядка
Пример вычисления матрицы алгебраических дополнений (Aᵢⱼ ) из матрицы миноров второго порядка
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров второго порядка
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров второго порядка

Матрица миноров третьего порядка рассчитывается по следующему принципу: 

  1. Последовательно вычёркиваем строки и столбцы. 
  2. Получаем четыре элемента и считаем определитель. 
  3. Записываем результат в матрицу миноров третьего порядка. 

Чтобы не запоминать порядок вычёркивания элементов — попробуйте схему: 

  1. Определите элемент, который вы ищете для матрицы. Пусть это будет A₁₁.
  2. Найдите этот же элемент в исходной матрице и отметьте его точкой. 
  3. Проведите от этой точки две линии: вдоль строки и вдоль столбца. 

После вычёркивания останется квадратная двухразмерная матрица, определитель которой равен разности произведений двух диагоналей.

Пример вычисления первого элемента матрицы миноров из матрицы третьего порядка. Треугольник, или греческая дельта, — это обозначение определителя вне матрицы

Пример вычисления первого элемента матрицы миноров из матрицы третьего порядка. Треугольник, или греческая дельта, — это обозначение определителя вне матрицы

Матрицу миноров третьего порядка удобно находить на бумаге с помощью ручки, карандаша и ластика — записываете исходную матрицу, карандашом вычёркиваете линии, считаете определитель, вытираете линии и повторяете процедуру. Рекомендуем попробовать и сверить результат с нашими расчётами. 

1-я строка 1-й элемент:  

Δ = 5×1 — 8×6 = -43

1-я строка 2-й элемент: 

Δ = 4×1 — 7×6 = -38

1-я строка 3-й элемент: 

Δ = 4×8 — 7×5 = -3

2-я строка 1-й элемент: 

Δ = 2×1 — 8×3 = -22

2-я строка 2-й элемент: 

Δ = 1×1 — 7×3 = -20

2-я строка 3-й элемент: 

Δ = 1×8 — 7×2 = -6

3-я строка 1-й элемент: 

Δ = 2×6 — 5×3 = -3

3-я строка 2-й элемент: 

Δ = 1×6 — 4×3 = -6

3-я строка 3-й элемент: 

Δ = 1×5 — 4×2 = -3

Считаем матрицу алгебраических дополнений: берём матрицу миноров и меняем на противоположный знак в четырёх элементах — изменяем А₁₂, А₂₁, А₂₃ и А₃₂. Транспонируем полученную матрицу и можем переходить к последнему действию.

Получаем из матрицы третьего порядка матрицу миноров

Получаем из матрицы третьего порядка матрицу миноров
Меняем знаки в матрице миноров и получаем матрицу алгебраических дополнений (Aᵢⱼ)
Меняем знаки в матрице миноров и получаем матрицу алгебраических дополнений (Aᵢⱼ)
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров третьего порядка
Пример вычисления транспонированной матрицы алгебраических дополнений (Aᵀᵢⱼ), полученной из матрицы миноров третьего порядка

Мы нашли все компоненты для вычисления обратной матрицы. Осталось их подставить в формулу, перемножить и записать ответ:

Пример вычисления обратной матрицы второго порядка: мы внесли дробь в матрицу, но могли этого не делать — просто так захотелось

Пример вычисления обратной матрицы второго порядка: мы внесли дробь в матрицу, но могли этого не делать — просто так захотелось
Пример вычисления обратной матрицы третьего порядка
Пример вычисления обратной матрицы третьего порядка: мы оставили дробь за пределами матрицы и вынесли из матрицы минус. Матрица — это таблица с числами, поэтому не обращайте внимание, если числа получаются большими или неудобными

Господи, зачем всё это?

Мы понимаем, что это всё кажется совершенно оторванным от жизни. Какие-то миноры, детерминанты, о чём вообще речь? 

Смотрите: 

  • Вам не нужно уметь решать все эти уравнения самостоятельно. Для этого давно есть мощные алгоритмы. 
  • Достаточно понимать, из чего всё это складывается. Вот матрица. Вот некий алгоритм, который делает из этой матрицы какую-то другую матрицу. Это всё просто арифметика, числа туда, числа сюда. 
  • В конце этого пути мы покажем, как из этих кубиков собрано машинное обучение. И вы увидите, что машинное обучение — это просто много алгебры. Просто арифметика, числа туда, числа сюда.
  • И вы понимаете, что никакого искусственного интеллекта не существует. Это всё, от начала и до конца, работа с числами и расчёты по формулам. Просто когда это делается в больших масштабах, создаётся иллюзия осмысленной деятельности. Ключевое слово — иллюзия. 

Спокойствие, всё будет хорошо. 

Получите ИТ-профессию

В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.

Начать карьеру в ИТ

Получите ИТ-профессию
Получите ИТ-профессию
Получите ИТ-профессию
Получите ИТ-профессию

Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы.

Матрица $A^{-1}$ называется обратной по отношению к квадратной матрице $A$, если выполнено условие $A^{-1}cdot A=Acdot A^{-1}=E$, где $E$ – единичная матрица, порядок которой равен порядку матрицы $A$.

Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.

Обратная матрица $A^{-1}$ существует тогда и только тогда, когда матрица $A$ – невырожденная. Если обратная матрица $A^{-1}$ существует, то она единственная.

Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части.

Метод присоединённой (союзной) матрицы

Пусть задана матрица $A_{ntimes n}$. Для того, чтобы найти обратную матрицу $A^{-1}$, требуется осуществить три шага:

  1. Найти определитель матрицы $A$ и убедиться, что $Delta Aneq 0$, т.е. что матрица А – невырожденная.
  2. Составить алгебраические дополнения $A_{ij}$ каждого элемента матрицы $A$ и записать матрицу $A_{ntimes n}^{*}=left(A_{ij} right)$ из найденных алгебраических дополнений.
  3. Записать обратную матрицу с учетом формулы $A^{-1}=frac{1}{Delta A}cdot {A^{*}}^T$.

Матрицу ${A^{*}}^T$ часто именуют присоединённой (взаимной, союзной) к матрице $A$.

Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (пример №2), третьего (пример №3), четвертого (пример №4). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части.

Пример №1

Найти матрицу, обратную к матрице $A=left( begin{array} {cccc} 5 & -4 &1 & 0 \ 12 &-11 &4 & 0 \ -5 & 58 &4 & 0 \ 3 & -1 & -9 & 0 end{array} right)$.

Решение

Так как все элементы четвёртого столбца равны нулю, то $Delta A=0$ (т.е. матрица $A$ является вырожденной). Так как $Delta A=0$, то обратной матрицы к матрице $A$ не существует.

Ответ: матрицы $A^{-1}$ не существует.

Пример №2

Найти матрицу, обратную к матрице $A=left(begin{array} {cc} -5 & 7 \ 9 & 8 end{array}right)$. Выполнить проверку.

Решение

Используем метод присоединённой матрицы. Сначала найдем определитель заданной матрицы $A$:

$$
Delta A=left| begin{array} {cc} -5 & 7\ 9 & 8 end{array}right|=-5cdot 8-7cdot 9=-103.
$$

Так как $Delta A neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

begin{aligned}
& A_{11}=(-1)^2cdot 8=8; ; A_{12}=(-1)^3cdot 9=-9;\
& A_{21}=(-1)^3cdot 7=-7; ; A_{22}=(-1)^4cdot (-5)=-5.\
end{aligned}

Составляем матрицу из алгебраических дополнений: $A^{*}=left( begin{array} {cc} 8 & -9\ -7 & -5 end{array}right)$.

Транспонируем полученную матрицу: ${A^{*}}^T=left( begin{array} {cc} 8 & -7\ -9 & -5 end{array}right)$ (полученная матрица часто именуется присоединённой или союзной матрицей к матрице $A$).
Используя формулу $A^{-1}=frac{1}{Delta A}cdot {A^{*}}^T$, имеем:

$$
A^{-1}=frac{1}{-103}cdot left( begin{array} {cc} 8 & -7\ -9 & -5 end{array}right)

=left( begin{array} {cc} -8/103 & 7/103\ 9/103 & 5/103 end{array}right)
$$

Итак, обратная матрица найдена:

$$A^{-1}=left( begin{array} {cc} -8/103 & 7/103\ 9/103 & 5/103 end{array}right).$$

Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}cdot A=E$ или $Acdot A^{-1}=E$. Проверим выполнение равенства $A^{-1}cdot A=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $left( begin{array} {cc} -8/103 & 7/103\ 9/103 & 5/103 end{array}right)$, а в виде $-frac{1}{103}cdot left( begin{array} {cc} 8 & -7\ -9 & -5 end{array}right)$:

$$
A^{-1}cdot{A}
=-frac{1}{103}cdot left( begin{array} {cc} 8 & -7\ -9 & -5 end{array}right)cdotleft(begin{array} {cc} -5 & 7 \ 9 & 8 end{array}right)

=-frac{1}{103}cdotleft(begin{array} {cc} -103 & 0 \ 0 & -103 end{array}right)
=left(begin{array} {cc} 1 & 0 \ 0 & 1 end{array}right)
=E
$$

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ: $A^{-1}=left( begin{array} {cc} -8/103 & 7/103\ 9/103 & 5/103 end{array}right)$.

Пример №3

Найти обратную матрицу для матрицы $A=left( begin{array} {ccc} 1 & 7 & 3 \ -4 & 9 & 4 \ 0 & 3 & 2end{array} right)$. Выполнить проверку.

Решение

Начнём с вычисления определителя матрицы $A$. Итак, определитель матрицы $A$ таков:

$$
Delta A=left| begin{array} {ccc} 1 & 7 & 3 \ -4 & 9 & 4 \ 0 & 3 & 2end{array} right| = 18-36+56-12=26.
$$

Так как $Delta Aneq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

$$
begin{aligned}
& A_{11}=(-1)^{2}cdotleft|begin{array}{cc} 9 & 4\ 3 & 2end{array}right|=6;;
A_{12}=(-1)^{3}cdotleft|begin{array}{cc} -4 &4 \ 0 & 2end{array}right|=8;;
A_{13}=(-1)^{4}cdotleft|begin{array}{cc} -4 & 9\ 0 & 3end{array}right|=-12;\

& A_{21}=(-1)^{3}cdotleft|begin{array}{cc} 7 & 3\ 3 & 2end{array}right|=-5;;
A_{22}=(-1)^{4}cdotleft|begin{array}{cc} 1 & 3\ 0 & 2end{array}right|=2;;
A_{23}=(-1)^{5}cdotleft|begin{array}{cc} 1 & 7\ 0 & 3end{array}right|=-3;\

& A_{31}=(-1)^{4}cdotleft|begin{array}{cc} 7 & 3\ 9 & 4end{array}right|=1;;
A_{32}=(-1)^{5}cdotleft|begin{array}{cc} 1 & 3\ -4 & 4end{array}right|=-16;;
A_{33}=(-1)^{6}cdotleft|begin{array}{cc} 1 & 7\ -4 & 9end{array}right|=37.
end{aligned}
$$

Составляем матрицу из алгебраических дополнений и транспонируем её:

$$
A^*=left( begin{array} {ccc} 6 & 8 & -12 \ -5 & 2 & -3 \ 1 & -16 & 37end{array} right); ;
{A^*}^T=left( begin{array} {ccc} 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end{array} right).
$$

Используя формулу $A^{-1}=frac{1}{Delta A}cdot {A^{*}}^T$, получим:

$$
A^{-1}=frac{1}{26}cdot left( begin{array} {ccc} 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end{array} right)=
left( begin{array} {ccc} 3/13 & -5/26 & 1/26 \ 4/13 & 1/13 & -8/13 \ -6/13 & -3/26 & 37/26 end{array} right)
$$

Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}cdot A=E$ или $Acdot A^{-1}=E$. Проверим выполнение равенства $Acdot A^{-1}=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $left( begin{array} {ccc} 3/13 & -5/26 & 1/26 \ 4/13 & 1/13 & -8/13 \ -6/13 & -3/26 & 37/26 end{array} right)$, а в виде $frac{1}{26}cdot left( begin{array} {ccc} 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end{array} right)$:

$$
Acdot{A^{-1}}
=left( begin{array}{ccc}
1 & 7 & 3 \
-4 & 9 & 4\
0 & 3 & 2end{array} right)cdot
frac{1}{26}cdot left( begin{array} {ccc} 6 & -5 & 1 \ 8 & 2 & -16 \ -12 & -3 & 37end{array} right)

=frac{1}{26}cdotleft( begin{array} {ccc} 26 & 0 & 0 \ 0 & 26 & 0 \ 0 & 0 & 26end{array} right)

=left( begin{array} {ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1end{array} right)

=E
$$

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ: $A^{-1}=left( begin{array} {ccc} 3/13 & -5/26 & 1/26 \ 4/13 & 1/13 & -8/13 \ -6/13 & -3/26 & 37/26 end{array} right)$.

Пример №4

Найти матрицу, обратную матрице $A=left( begin{array} {cccc} 6 & -5 & 8 & 4\ 9 & 7 & 5 & 2 \ 7 & 5 & 3 & 7\ -4 & 8 & -8 & -3 end{array} right)$.

Решение

Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.

Чтобы найти обратную матрицу, для начала нужно вычислить определитель матрицы $A$. Лучше всего в данной ситуации это сделать с помощью разложения определителя по строке (столбцу). Выбираем любую строку или столбец и находим алгебраические дополнения каждого элемента избранной строки или столбца.

Например, для первой строки получим:

$$
A_{11}=left|begin{array}{ccc} 7 & 5 & 2\ 5 & 3 & 7\ 8 & -8 & -3 end{array}right|=556;;
A_{12}=-left|begin{array}{ccc} 9 & 5 & 2\ 7 & 3 & 7 \ -4 & -8 & -3 end{array}right|=-300;
$$

$$
A_{13}=left|begin{array}{ccc} 9 & 7 & 2\ 7 & 5 & 7\ -4 & 8 & -3 end{array}right|=-536;;
A_{14}=-left|begin{array}{ccc} 9 & 7 & 5\ 7 & 5 & 3\ -4 & 8 & -8 end{array}right|=-112.
$$

Определитель матрицы $A$ вычислим по следующей формуле:

$$
Delta{A}=a_{11}cdot A_{11}+a_{12}cdot A_{12}+a_{13}cdot A_{13}+a_{14}cdot A_{14}=6cdot 556+(-5)cdot(-300)+8cdot(-536)+4cdot(-112)=100.
$$

А далее продолжаем находить алгебраические дополнения:

$$
begin{aligned}
& A_{21}=-77;;A_{22}=50;;A_{23}=87;;A_{24}=4;\
& A_{31}=-93;;A_{32}=50;;A_{33}=83;;A_{34}=36;\
& A_{41}=473;;A_{42}=-250;;A_{43}=-463;;A_{44}=-96.
end{aligned}
$$

Матрица из алгебраических дополнений:

$$A^*=left(begin{array}{cccc} 556 & -300 & -536 & -112\ -77 & 50 & 87 & 4 \ -93 & 50 & 83 & 36\ 473 & -250 & -463 & -96end{array}right)$$

Присоединённая матрица:

$${A^*}^T=left(begin{array} {cccc} 556 & -77 & -93 & 473\ -300 & 50 & 50 & -250 \ -536 & 87 & 83 & -463\ -112 & 4 & 36 & -96end{array}right)$$

Обратная матрица:

$$
A^{-1}=frac{1}{100}cdot left( begin{array} {cccc} 556 & -77 & -93 & 473\ -300 & 50 & 50 & -250 \ -536 & 87 & 83 & -463\ -112 & 4 & 36 & -96 end{array} right)=
left( begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \ -3 & 1/2 & 1/2 & -5/2 \ -134/25 & 87/100 & 83/100 & -463/100 \ -28/25 & 1/25 & 9/25 & -24/25 end{array} right)
$$

Проверка, при желании, может быть произведена так же, как и в предыдущих примерах.

Ответ: $A^{-1}=left( begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \ -3 & 1/2 & 1/2 & -5/2 \ -134/25 & 87/100 & 83/100 & -463/100 \ -28/25 & 1/25 & 9/25 & -24/25 end{array} right)$.

Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти корень в слове поднялся
  • Как найти площадь шара если известен радиус
  • Как найти вписанный прямоугольник в эллипс
  • Как исправить гнутое место
  • Как найти неизвестное в уравнении подбором

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии