Площадь круга формула как найти объем

Перейти к содержанию

Калькуляторы объёма и площади круга, цилиндра, куба, шара (сферы), конуса

На чтение 1 мин Просмотров 30.2к.
Обновлено 10.01.2022

Содержание

  1. Калькулятор площади и периметра (длины окружности) круга
  2. Калькулятор расчета площади и объёма шара (сферы)
  3. Калькулятор расчета объёма цилиндра
  4. Калькулятор расчета объёма параллелепипеда
  5. Калькулятор куба-объём, площадь поверхности

ФигурыВ данном разделе вы найдете сборник калькуляторов на простые фигуры и рассчитать такие параметры как площадь, объем, периметр и прочие значения

Калькулятор площади и периметра (длины окружности) круга

круг


Калькулятор расчета площади и объёма шара (сферы)

Объем и площадь шара (сферы)


Калькулятор расчета объёма цилиндра

цилиндр


Калькулятор расчета объёма параллелепипеда
параллелепипед


Калькулятор куба-объём, площадь поверхности

Куб

Расчет объема круга

Круг — это геометрическое место точек на плоскости, расстояние от которых до его центра, не превышает заданного числа, называемого радиусом этого круга.

Формула расчета объема круга:

V — объем круга;
S — площадь круга;
h — толщина круга.

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета объема круга. С помощью этого онлайн калькулятора расчета объема круга вы сможете вычислить объем круга по площади и толщине.

Все формулы объемов геометрических тел

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V):

4. Как вычислить объем цилиндра ?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V):

5. Как найти объем конуса ?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Как рассчитать периметр круга или длину окружности

На данной странице калькулятор поможет рассчитать периметр круга или длину окружности онлайн. Для расчета задайте радиус или диаметр.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

источники:

http://www-formula.ru/2011-09-24-00-37-25

http://www.mozgan.ru/Geometry/PerimeterCircle

click fraud protection

Formula.co.id — В этой статье мы узнаем, как рассчитать объем круга. Раньше мы уже знали, что такое круг, потому что с начальной школы мы выучили то, что называется кругом, потому что поэтому без необходимости задерживаться Опять же, давайте вместе обсудим формулу объема круга, и позже она будет сопровождаться примерами вопросов об объеме круга в качестве учебного материала для студентов. читатель.

Оглавление :

Определение Круга

Само определение круга — это набор всех точек на плоскости, которые равноудалены от фиксированной точки на плоскости. Тогда неподвижная точка называется центром круга, а расстояние от точки на окружности до его центра называется радиусом окружности.

Чтобы было понятнее значение самого круга, здесь мы подробно объясним элементы круга, обратите внимание на изображение круга ниже:

круг

Элементы круга

Элементы круга

  1. Центр круга — это точка, расположенная в середине круга.
  2. радиус круга ( р ) — это линия от центра окружности до кривизны окружности.
  3. Диаметр ( d ) представляет собой прямую, соединяющую 2 точки на кривизне окружности, проходящей через центральную точку.
  4. Дуга окружности — это изогнутая линия, лежащая на кривой окружности, соединяющей любые 2 точки на кривой.
  5. Круговая хорда — это прямая линия в окружности, соединяющая 2 точки кривизны окружности.
  6. Уклон — это область в окружности, ограниченная дугой и хордой.
  7. Радиус — это область в круге, ограниченная двумя радиусами круга, и дугой, примыкающей к двум радиусам круга.
  8. Апофема — это линия, соединяющая центр круга с хордой круга. Линия перпендикулярна хорде окружности.

Продолжайте обсуждать свойства кругов.

Характеристики кругов

  1. У круга только одна сторона.
  2. Круг обладает бесконечной симметрией вращения.
  3. У круга бесконечная симметрия и оси.
  4. Но у круга нет вершин.

Формула объема круга

Для получения более подробной информации на сайте formula.co.id будут обсуждаться все формулы для круга, будь то формула площади, окружности и объема самого круга. Для получения более подробной информации о формуле, рассмотрите объяснение формулы ниже:

Формула объема круга:

V = х г2

Формула окружности круга:

К = 2 х х г

Формула площади круга:

L = х г2

Информация :

  • = 22/7 или 3,14
  • r = радиус (см)

Вам необходимо знать, что приведенная выше формула для площади и объема одинакова, но для определения объема число должно быть в одной и той же единице, а именно в кубических единицах или (см).3 ). Переходя к последнему обсуждению, formula.co.id предоставит вам пример вопроса с кругом, чтобы вы все лучше поняли формулу круга.

Пример круга

  1. Если круг имеет диаметр 80 см, какова площадь полукруга?

Отвечать:

Известен = d = 80 см

r = 80 см: 2 = 40 см

Спрошено = площадь полукруга?

Площадь полукруга = x r2

= 3,14 х 40 см х 40 см: 2

= 3,14 х 40 см х 40 см: 2

= 2512 см2

Итак, площадь полукруга составляет 2512 см.2

  1. Круг имеет радиус 14 см, какова длина окружности круга?

Отвечать:

Известен = r = 14 см

Спрошено = окружность круга?

Периметр = K = 2. π. р

= 2 х 22/7 х 14 см

= 88 см

Итак, окружность круга 88 см.

Таким образом, полный математический материал о круге, будь то понимание, элементы, свойства, примеры задач и формула для объема круга сфер, которые могут быть переданы, могут быть полезны …

Другие формулы:

  • Формула объема блока
  • Формула объема цилиндра

Как рассчитать площадь круга

На данной странице калькулятор поможет рассчитать площадь круга онлайн. Для расчета задайте радиус, диаметр или длину окружности.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

Через радиус


Площадь круга через радиус


Формула для нахождения площади круга через радиус:

π — константа равная (3.14); r — радиус круга.


Через диаметр


Площадь круга через диаметр


Формула для нахождения площади круга через диаметр:

π — константа равная (3.14); d — диаметр.


Через длину окружности


Площадь круга через длину окружности


Формула для нахождения площади круга через длину окружности:

π — константа равная (3.14); l — длина окружности.

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Формула (формулы) площади круга

Найти площадь круга можно разными способами, в зависимости от известных данных.

По радиусу

Если дан только радиус, то площадь составит произведение константы Пи на квадрат радиуса. Расчёт будет по формуле (где r – радиус, а π – константа, равная 3,1415…):

Формула площади круга по радиусу

Например, если радиус равен 2 метра, то площадь круг можно вычислить так S = 3,14 × 22 = 3,14 × 4 = 12,56 м2 (квадратных метров).

Через диаметр

Если известен диаметр, то площадь круга будет равняться одной четвёртой произведения Пи и квадрата диаметра. Формула площади круга будет такой (где d — диаметр, а π – константа, равная 3,1415…):

Формула площади круга по диаметру

К примеру, если диаметр круга (площадь поверхности пиццы) составляет 35 сантиметров, то площадь такого круга будет равна S = ¼ × 3,14 × 352 = ¼ × 3,14 × 1225 = 962 см2 (квадратных сантиметра).

Через длину окружности

Если мы знаем только длину окружности (периметр круга), то рассчитать площадь фигуры можно по формуле (где L — длина окружности, а π – константа, равная 3,1415…):

Формула площади круга по длине окружности

Например, если длинна окружности составляет 120 мм, тогда площадь круга будет равна S = 1202  / (4 × 3,14) = 14 400 / (4 × 3,14) = 1146,5 мм2 (квадратных миллиметров).

Какие термины используются для поиска площади круга?

Для вычисления площади круга, в формулах были использованы следующие термины, значение которых нужно знать, чтобы точно понимать принципы расчета.

Окружность, круг, радиус, диаметр

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии, не превышающем радиус.

Диаметр — отрезок, соединяющий две точки на окружности и проходящий через центр окружности. Диаметр равен двум радиусам.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней. 

Число π (пи) — математическая постоянная, равная отношению длины окружности к её диаметру. Пи равняется примерно 3,14.

Площадь круга и размеры пицц

Люди не всегда верно сопоставляют площадь круга и диаметры. К примеру, сможете ли вы ответить:

Площадь круга и размеры пицц

Что больше: 2 пиццы диаметром 25 см или 1 пицца диаметром 40 см?

Интуитивно кажется, что 2 пиццы, так как в сумме их радиусы дают 50 сантиметров, что больше, чем 40. Однако это неправильный вывод, так как сравнивать нужно не сумму диаметров, а сумму квадратов диаметров. То есть:

  • 252 + 252 = 625 + 625 = 1250
  • 402 = 1600

Так как ¼π является константой, то можно сравнивать только квадраты диаметров. Получается, что пицца 40 см больше, чем даже 2 пиццы размером 25 см. А вот если диаметр пиццы составляет 35 см, то 352 = 1225, и в этом случае 2 пиццы по 25 см будут иметь бОльшую площадь.

Площади усеченных частей круга

А также полезно знать следующие геометрические элементы, связанные с кругами и окружностями:

Хорда, сектор, сегмент и их площади

Хорда — отрезок, соединяющий любые две точки окружности.

Сектор — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сектор является частью круга, а его площадь относится к площади круга так же, как и длина окружности сектора к длине всей окружности. Поэтому площадь сектора равна площади круга, умноженной на отношение длинны окружности сектора к длине окружности всего круга.

Но площадь сектора можно вычислить и по более простой формуле. Она равна длине дуги сектора, умноженной на половину радиуса:

S = sr/2

где S — площадь сектора, r — радиус круга.

Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой.

Площадь сегмента можно найти по формулам:

S = r2sinα/ 2

где S — площадь сегмента, sinα — синус угла двух между радиусов до концов хорды, r — радиус круга.

Часто задаваемые вопросы о площади круга?

И конечно, стоит ответить на некоторые вопросы, которые возникают во время расчетов.

Входит ли окружность (периметр) в площадь круга?

Да, входит, ведь кругом являются все точки, удаленные от центра круга на расстояние, которое не превышает радиус.

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть разнообразные калькуляторы, в частности калькуляторы: длины окружности, диаметра и площади круга. Для последней калькулятор находится на данной странице.

Хватит ли только диаметра, только радиуса или только длинны окружности для расчета площади круга?

Да, хватит чего-то одного, так как все 3 сущности можно вывести одну из другой, например, диаметр равен двум радиусам, а длина окружности – это диаметр, умноженный на число Пи.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Кто впервые научился вычислять площадь круга?

Гиппократ Хиосский (не тот, в честь которого назвали клятву) первым сформулировал, что площадь круга пропорциональна квадрату его диаметра. Евдокс Книдский в IV веке до н. э. строго доказал это утверждение. А Архимед в III веке до н. э. нашёл число Пи и продемонстрировал, что оно чуть меньше, чем 3 и 1/7.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор площади шара (сферы). Рассчитайте онлайн площадь поверхности шарообразного объекта (сферы).
  • Площадь правильного шестиугольника: калькулятор. Рассчитайте площадь правильного (равностороннего) шестиугольника с помощью онлайн-калькулятора.
  • Калькулятор числа «e». Посмотрите онлайн нужное число знаков после запятой в числе «e» (Эйлера или Непера).
  • Площадь поверхности куба: калькулятор. Рассчитайте онлайн площадь поверхности куба по длине ребер, диагонали куба или диагоналям его сторон.
  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти ориентацию базиса
  • Как исправили кухню муравьевой после квартирного вопроса
  • Как найти сопротивление проволоки зная ее длину
  • Как вы нашли работу в канаде
  • Wmi что это за ошибка как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии