Как составить уравнение прямых параллелограмма

4.1.8. Примеры решения задач по теме «Уравнение прямой на плоскости»

Даны уравнения двух сторон параллелограмма: 2Х + У + 3 = 0 и 2Х – 5У + 9 = 0 и уравнение одной из его диагоналей: 2Х – у — 3 = 0. Найти координаты вершин этого параллелограмма.

Выясните, уравнения каких сторон даны в условии задачи: параллельных или

Смежных, и как расположена данная диагональ по отношению к данным сторонам.

Выясним, уравнения каких сторон даны в условии задачи: параллельных или

Следовательно, прямые пересекаются, то есть даны уравнения смежных сторон параллелограмма.

Условие параллельности прямых

.

Пусть даны уравнения сторон АВ и AD. Тогда координаты точки А будут решением системы уравнений:

Теперь определим, уравнение какой диагонали: АС или BD – нам известно. Если это диагональ АС, то на ней лежит точка А, следовательно, координаты этой точки должны удовлетворять уравнению диагонали. Проверим:

Значит, точка А не лежит на данной прямой, то есть дано уравнение диагонали BD.

Тогда вершина В лежит на прямых АВ и BD, значит, ее координаты найдем из системы:

Система уравнений для определения координат точки D составлена из уравнений прямых AD И BD:

Остается найти координаты точки С. Составим уравнения прямых ВС и DC.

Поскольку ВС параллельна AD, их угловые коэффициенты равны. Найдем угловой коэффициент прямой AD:

Тогда ВС можно задать уравнением

Найдем координаты точки С, решив систему из двух полученных уравнений:

Найти точку, симметричную точке А(2; 1) относительно прямой, проходящей через точки В(-1; 7) и С(1; 8).

Представьте себе, что вам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:

1) провести прямую ВС;

2) провести через точку А прямую, перпендикулярную ВС;

3) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.

Представим себе, что нам нужно Построить искомую точку на плоскости. Последовательность действий при этом можно задать так:

4) провести прямую ВС;

5) провести через точку А прямую, перпендикулярную ВС;

6) найти точку О пересечения этих прямых и отложить на прямой АО по другую сторону прямой ВС отрезок ОА1 = АО.

Тогда точка А1 будет симметричной точке А относительно прямой ВС.

Теперь заменим каждое из действий составлением уравнений и вычислением координат точек.

1) Найдем уравнение прямой ВС в виде:

2) Найдем угловой коэффициент прямой ВС:

Прямая АО Перпендикулярна прямой ВС, поэтому

Составим уравнение прямой АО:

3) Найдем координаты точки О как решение системы:

4) Точка О – середина отрезка АА1, поэтому

Найти угол между прямыми L1: 3Х – у + 5 = 0 и L2: 2Х + У – 7 = 0.

Если J – угол между прямыми L1 и L2, то J = A2 — A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда

Где K1 и K2 – угловые коэффициенты прямых L1 и L2.

Если J – угол между прямыми L1 и L2, то J = A2 — A1, где A2 и A1 – углы, образованные прямыми L1 и L2 с положительной полуосью Ох. Тогда

Где K1 и K2 – угловые коэффициенты прямых L1 и L2. Найдем K1 и K2: для L1

Y = 3X + 5, K1 = 3; для второй: Y = -2X + 7, K2 = -2. Следовательно,

Для прямых А+ В1У + С1 = 0 И А2Х + В2У + С2 = 0

.

Определить, лежит ли точка М(2; 3) внутри или вне треугольника, стороны которого заданы уравнениями 4Х – у – 7 = 0, Х + 3У – 31 = 0, Х + 5У – 7 = 0.

Если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне, а если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника.

Пусть первое уравнение задает сторону АВ, второе – ВС, третье – АС. Найдем координаты точек А, В и С:

Для ответа на вопрос задачи отметим, что:

1) если точка М расположена внутри треугольника АВС, то ее отклонение δ от каждой стороны треугольника имеет тот же знак, что и для вершины, не лежащей на этой стороне (т. е. точка М расположена относительно каждой стороны треугольника в одной полуплоскости с третьей вершиной);

2) если точка М лежит вне треугольника, то по крайней мере с одной из вершин она окажется в разных полуплоскостях относительно стороны треугольника (на рисунке: точки М1 и В расположены по разные стороны от прямой АС).

Составим нормальные уравнения сторон треугольника АВС:

Вычислим соответствующие отклонения:

1) для точек М и А относительно прямой ВС:

2) для точек М и В относительно прямой АС:

3) для точек М и С относительно прямой АВ:

Итак, точки М И С лежат по разные стороны от прямой АВ. Следовательно, точка М расположена вне треугольника АВС.

Ответ: Точка М расположена вне треугольника АВС.

Для треугольника АВС с вершинами А(-3; -1), В(1; 5), С(7; 3) составить уравнения медианы и высоты, выходящих из вершины В.

Составьте уравнение медианы как прямой, проходящей через точки В и М – середину стороны АС, а высоты – как прямой, проходящей через точку В и перпендикулярной стороне АС.

1) Медиана ВМ проходит через точку В и точку М – середину отрезка АС. Найдем координаты точки М:

Тогда уравнение медианы можно записать в виде:

2) Высота ВН перпендикулярна стороне АС. Составим уравнение АС:

Ответ: медиана ВМ: 4Х + У – 9 = 0; высота ВН: 5Х + 2У – 15 = 0.

Определить, при каком значении А прямая

Параллельна оси ординат. Написать уравнение прямой.

Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0

Если прямая параллельна оси ординат, то в уравнении Ах + Ву + С = 0

В = 0, С ≠ 0. Из условия В = 0 получаем: А2 – 1 = 0, А = ± 1.

При А = 1 С = 2 + 7 – 9 = 0 – второе условие не выполняется (получившаяся при этом прямая -4Х = 0 не параллельна оси Оу, а совпадает с ней).

При А = -1 получим: -6Х – 14 = 0, 3Х + 7 = 0.

Составить уравнения всех прямых, проходящих через точку М(2; 3) и отсекающих от координатного угла треугольник площадью 12.

Составьте уравнение искомой прямой «в отрезках»:

Где |A| и |B| — длины отрезков, отсекаемых прямой на координатных осях. Тогда

Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках».

Составим уравнение искомой прямой «в отрезках»:

Где |A| и |B| — длины отрезков, отсекаемых прямой на координатных осях. Тогда

Откуда |Ab| = 24. Кроме того, координаты точки М(2; 3) должны удовлетворять уравнению «в отрезках». Таким образом, для А и B можно составить систему уравнений:

Следовательно, условию задачи удовлетворяют три прямые:

Задача 59148 Подскажите как правильно решать! Найти.

Условие

Подскажите как правильно решать! Найти уравнение диагонали параллелограмма, проходящей через точку пересечения его сторон x+y-1=0 если у+1=0 если известно что диагональ параллелограмма пересекается в точке F(-1, 0) И надо ли в этой задаче чертить рисунок?

Решение

Можно нарисовать схематический чертеж, чтобы понять как решать задачу ( cм. рис)

Противоположные стороны параллелограмма параллельны.

Даны уравнения смежных сторон. Это может быть АВ и ВС

1) чтобы найти точку пересечения сторон АВ и ВС

Это и есть координаты точки B.

2)
Составить уравнение прямой, проходящей через две точки:
(2;-1) и F(–1, 0)

Это можно сделать двумя способами:

Уравнение прямой с угловым коэффициентом имеет вид:
y=kx+b

Подставляем координаты точек:
-1=k*2+b
0=k*(-1)+b
находим k и b

[b]x+3y+1=0[/b] — это ответ.

Второй способ
Уравнение прямой, проходящей через две точки имеет вид: ( cм. скрин)

Подставляем координаты точек

и получаем пропорцию:

[b]x+3y+1=0[/b]- ответ.

Как составить уравнение прямых параллелограмма

Даны уравнения двух сторон параллелограмма x + 2y + 1 = 0 (AB), 2x + y — 3 = 0 (AD) и точка пересечения его диагоналей N(1, 2). Найти уравнения двух других сторон этого параллелограмма.

При решении, замечая, что данные стороны параллелограмма не параллельны, будем следовать такому плану:

1) Найдем координаты точки A пересечения данных сторон.

2) Зная координаты точек A и N, найдем координаты точки C, что мы легко сможем сделать по формуле определения координат середины отрезка.

3) Через найденную точку C проведем сначала прямую, параллельную AD, а потом прямую, параллельную AB.

4) Определим координаты точки A, как точки пересечения прямых AB и AD, и получим, что

5) Формулы для определения координат середины отрезка в данном случае запишутся так:

По этим формулам получим

Итак, точка .

6) Через точку C проведем прямую, параллельную AD, и получим, что уравнение стороны BC будет таким:

источники:

http://reshimvse.com/zadacha.php?id=59148

http://www.pm298.ru/reshenie/ljg83.php

Решение типового варианта контрольной работы. Аналитическая геометрия.

Задача №1.

Даны три последовательные вершины параллелограмма А(2;-3), В(5;1),С(3;-4). Не находя координаты вершины D, найти:

1)  уравнение стороны AD;

2)  уравнение высоты BK, опущенной из вершины В на сторону AD;

3)  длину высоты BK;

4)  уравнение диагонали BD;

5)  тангенс угла между диагоналями параллелограмма.

Записать общие уравнения найденных прямых. Построить чертеж.

Решение.

Сначала построим чертеж. Построим в прямоугольной декартовой системе координат точки , , . Построим отрезки и .

Рис. 1

Достроим полученный рисунок до параллелограмма и нанесем на чертеж высоту BK.

Рис. 2

1)  Составим уравнение прямой AD.

А) Предварительно найдем уравнение прямой BС. Уравнение прямой, проходящей через точки и , имеет вид

(3.1)

По условию , . Подставим координаты точек и в уравнение (3.1): , т. е. .

Запишем полученное уравнение в общем виде, то есть в виде . Для этого в последнем уравнении избавимся от знаменателей и проведем преобразования, перенося все слагаемые в левую часть равенства: или .

Из этого уравнения выразим : ; . Получили уравнение вида — уравнение с угловым коэффициентом.

Б) Воспользуемся тем фактом, что противоположные стороны параллелограмма параллельны. Составим искомое уравнение прямой AD как уравнение прямой, проходящей через точку параллельно прямой .

Уравнение прямой, проходящей через данную точку в данном направлении, имеет вид

(3.2)

Где направление определяется угловым коэффициентом .

Условие параллельности двух прямых и имеет вид

(3.3)

По условию задачи , прямая . Подставим координаты точки в уравнение (3.2): . Так как прямая параллельна прямой , то в силу формулы (3.3) их угловые коэффициенты совпадают. Угловой коэффициент прямой равен , следовательно, уравнение прямой имеет вид .

Запишем уравнение прямой в общем виде. Для этого раскроем скобки и все слагаемые перенесем в левую часть равенства: . Умножим обе часть равенства на (-2) и получим общее уравнение прямой : .

Запишем уравнение прямой в виде с угловым коэффициентом. Для этого выразим из общего уравнения: .

2) Составим уравнение высоты , проведенной из вершины на сторону как уравнение прямой, проходящей через точку перпендикулярно прямой .

Условие перпендикулярности двух прямых и имеет вид

(3.4)

Подставим координаты точки в уравнение (3.2): . Так как высота перпендикулярна прямой , то их угловые коэффициенты связаны соотношением (3.4). Угловой коэффициент прямой равен , следовательно, угловой коэффициент высоты равен и уравнение прямой имеет вид . Запишем уравнение высоты в общем виде: . Запишем это же уравнение в виде с угловым коэффициентом: .

3) Найдем длину высоты как расстояние от точки до прямой .

Расстояние от точки до прямой представляет собой длину перпендикуляра, опущенного из точки на прямую и определяется формулой

(3.5)

Так как перпендикулярна , то длина может быть найдена с помощью формулы (3.5). По условию , прямая определяется уравнением . В силу формулы (3.5) длина высоты равна =.

4) Найдем уравнение диагонали как уравнение прямой, проходящей через точки И , где — середина отрезка .

А) Если и , то координаты точки — середины отрезка , определяются формулами

(3.6)

По условию , . В силу формул (3.6) имеем: , . Следовательно .

Б) Так как точка пересечения диагоналей является их серединой, то точка (середина отрезка ) является точкой пересечения диагоналей и диагональ проходит через точку .

Воспользуемся уравнением (3.1). По условию , . В силу формулы (3.1) уравнение прямой (диагонали ) имеет вид: или . Запишем это уравнение в общем виде: . Запишем это же уравнение в виде с угловым коэффициентом: .

5) Найдем тангенс угла между диагоналями и .

А) Найдем уравнение диагонали как уравнение прямой, проходящей через две данные точки.

Воспользуемся уравнением (3.1). По условию , . Следовательно, . Общее уравнение диагонали имеет вид , уравнение с угловым коэффициентом – вид , угловой коэффициент прямой равен .

Б) Уравнение диагонали имеет вид , ее угловой коэффициент .

В) Тангенс угла между прямыми и определяется формулой

Следовательно, . Отсюда .

Задача №2.

Условие задачи №2 несколько различается в зависимости от номера варианта контрольной работы. Приведем решения простейших задач, входящих в это задание.

1) Составить уравнение плоскости, проходящей через точки , , .

Решение.

Уравнение плоскости, проходящей через точки , , имеет вид:

(3.7)

Тогда уравнение плоскости в силу уравнения (3.7) имеет вид или .

Запишем полученное уравнение в общем виде, т. е. в виде . Для этого раскроем определитель по первой строке . После преобразований получим: .

2) Найти нормальный вектор плоскости .

Решение.

Нормальный вектор — это вектор, перпендикулярный плоскости. Если плоскость задана общим уравнением , то нормальный вектор имеет координаты .

Рис. 3

Для плоскости нормальным является вектор =.

Отметим, что любой вектор, коллинеарный вектору = так же является нормальным вектором плоскости . Таким образом, при каждом ненулевом вектор с координатами будет являться нормальным вектором рассматриваемой плоскости.

3) Найти косинус угла между плоскостями и .

Решение.

Угол между двумя плоскостями и представляет собой угол между их нормальными векторами и определяется равенством

Для плоскости координаты нормального вектора определяются равенствами , , . Для плоскости — равенствами , , . Следовательно, =.

4) Составить уравнение плоскости , проходящей через точку параллельно плоскости : .

Решение.

Уравнение плоскости, проходящей через точку , имеет вид

(3.8)

Подставим в уравнение (3.8) координаты точки : .

Условие параллельности плоскостей и имеет вид

(3.9)

Так как плоскости и параллельны, то в качестве нормального вектора Плоскости можно взять нормальный вектор плоскости , т. е. в формуле (3.9) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .

5) Найти расстояние от точки до плоскости : .

Решение.

Расстояние от точки до плоскости представляет собой длину перпендикуляра, опущенного из точки на плоскость, и определяется формулой

(3.10)

Для плоскости координаты нормального вектора определяются равенствами , , . Следовательно, .

6) Составить канонические уравнения прямой, проходящей через точки и .

Решение.

Уравнения прямой, проходящей через точки и имеют вид

(3.11)

Так как , , то в силу (3.11) получим уравнения или .

7) Найти направляющий вектор прямой .

Решение.

Направляющий вектор — это вектор, параллельный прямой.

Если прямая задана каноническими уравнениями , то направляющий вектор имеет координаты .

Рис. 4

Для рассматриваемой прямой направляющим вектором является вектор .

Отметим, что любой вектор, коллинеарный вектору так же является направляющим вектором прямой . Таким образом, при каждом ненулевом вектор с координатами будет являться направляющим вектором рассматриваемой прямой.

8) Найти косинус угла между прямыми и .

Решение.

Угол между двумя прямыми и представляет собой угол между их направляющими векторами и определяется равенством

Для прямой координаты направляющего вектора определяются равенствами , , . Для прямой — равенствами , , . Значит, .

9) Составить канонические уравнения прямой , проходящей через точку параллельно прямой : .

Решение.

Канонические уравнения прямой имеют вид . Здесь — координаты точки, через которую проходит прямая.

В канонические уравнения прямой подставим координаты точки . Получим: .

Условие параллельности прямых и имеет вид

(3.12)

Так как прямые и параллельны, то в качестве направляющего вектора прямой можно взять направляющий вектор прямой , т. е. в формуле (3.12) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид .

10) Найти угол между прямой : и плоскостью : .

Решение.

Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. Угол между прямой и плоскостью равен , где — угол между направляющим вектором прямой и нормальным вектором плоскости.

Рис. 5

Угол между прямой и плоскостью определяется формулой

Для плоскости : координаты нормального вектора определяются равенствами , , . Для прямой : координаты направляющего вектора — равенствами , , . Синус угла между прямой и плоскостью равен =. Следовательно, .

11) Составить уравнение плоскости , проходящей через точку перпендикулярно прямой : .

Решение.

Уравнение плоскости, проходящей через данную точку, имеет вид .

Подставим в указанное уравнение координаты точки . Получим: .

Условие перпендикулярности плоскости и прямой имеет вид

(3.13)

Так как искомая плоскость перпендикулярна прямой , то в качестве нормального вектора плоскости можно взять направляющий вектор прямой , т. е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .

12) Составить канонические уравнения прямой , проходящей через точку перпендикулярно плоскости : .

Решение.

Канонические уравнения прямой, проходящей через данную точку, имеют вид .

Подставим в эти уравнения координаты точки . Получим:

Условие перпендикулярности прямой и плоскости имеет вид .

Так как прямая перпендикулярна плоскости , то в качестве направляющего вектора прямой можно взять нормальный вектор плоскости , т. е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид: .

13) Найти координаты точки пересечения прямой : и плоскости : .

Решение.

Координаты точки пересечения прямой и плоскости представляют собой решение системы

(3.14)

Запишем параметрические уравнения прямой : и подставим выражения для в уравнение плоскости : . Отсюда ; . Подставим найденное значение в параметрические уравнения прямой : . Следовательно, .

Задача №3.

К кривым второго порядка относятся эллипс (рис.6), гипербола (рис. 7 и 8), парабола (рис. 9-12). Приведем рисунки и канонические уравнения этих кривых.

Эллипс

Рис. 6

Гипербола Гипербола .

Рис. 7 Рис. 8

Парабола Парабола

Рис. 9

Рис. 10

Парабола Парабола

Рис. 11

Рис. 12

Приведем примеры решения задачи №3.

Пример 1. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.

Решение.

Для приведения уравнения кривой второго порядка к каноническому виду применяют метод выделения полного квадрата.

Сгруппируем слагаемые, содержащие текущие координаты. Коэффициенты при и вынесем за скобки: .

Выделим полный квадрат: . Отсюда . Разделим обе части равенства на 25: . Запишем полученное уравнение в каноническом виде: .

Выполним параллельный перенос осей координат по формулам . При таком преобразовании начало координат переносится в точку , уравнение эллипса принимает канонический вид .

В нашем примере , , , .

Итак, рассматриваемое уравнение определяет эллипс с центром в точке и полуосями и .

Рис. 13

Пример 2. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.

Решение.

Как и в предыдущем примере, сгруппируем слагаемые, содержащие текущие координаты: .

В скобках выделим полный квадрат: ; . Отсюда .

Выполним замену переменных . После этого преобразования уравнение параболы принимает канонический вид , вершина параболы в системе координат расположена в точке .

Рис. 14

Задача №4.

Кривая задана в полярной системе координат уравнением .

Требуется:

1)  найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

2)  построить полученные точки;

3)  построить кривую, соединив построенные точки (от руки или с помощью лекала);

4)  составить уравнение этой кривой в прямоугольной декартовой системе координат.

Решение.

Сначала построим таблицу значений и :

0

2,00

1,92

1,71

1,38

1,00

0,62

0,29

0,08

0,00

0,08

0,29

0,62

1,00

1,38

1,71

1,92

Построим эти точки в полярной системе координат. Полярная система координат состоит из начала координат (полюса) и полярной оси . Координаты точки в полярной системе координат определяются расстоянием от полюса (полярным радиусом) и углом между направлением полярной оси и полярным радиусом (полярным углом). Для того, чтобы построить точку , необходимо построить луч, выходящий из точки под углом к полярной оси; отложить на этом луче отрезок длиной .

Рис. 15

Построим все точки, определенные в таблице и соединим их плавной линией

Рис. 16

Запишем уравнение рассматриваемой кривой в прямоугольной декартовой системе координат. Для этого воспользуемся формулами перехода от декартовой к полярной системе координат.

Если полюс совпадает с началом координат прямоугольной декартовой системы координат, полярная ось – с осью абсцисс, то между прямоугольными декартовыми координатами и полярными координатами существует следующая связь:

,

Откуда

Рис. 17

Итак, в уравнении исходной кривой , . Поэтому уравнение принимает вид . После преобразований получим уравнение .

Задача №5.

Построить на плоскости геометрическое место точек, определяемое неравенствами

1)

2)

Решение.

Для того, чтобы решить неравенство на плоскости, надо построить график линии . Кривая разбивает плоскость на части, в каждой из которых выражение сохраняет свой знак. Выбирая пробную точку в каждой из этих частей, найдем часть плоскости, являющуюся искомым решением неравенства.

1) Построим прямые и , заштрихуем область, в которой . Затем построим параболу и заштрихуем область, содержащую ось симметрии параболы (расположенную внутри параболы); построим прямую и заштрихуем область, лежащую выше прямой. Пересечение всех заштрихованных областей и определит множество точек, представляющих решение рассматриваемой системы.

Рис. 18

2) Построим линию, определяемую уравнением . Эта линия представляет собой ту часть окружности или , на которой . Далее построим прямую (). Решением рассматриваемого двойного неравенства является часть плоскости, расположенная между нижней половиной окружности с центром в точке радиуса прямой .

Рис. 19

< Предыдущая   Следующая >

210

Определить, какие из точек M1(3; 1), M2(2; 3), M3(6; 3), M4(-3;
-3), M5(3; -1), M6(-2; 1) лежат
на прямой
и какие на ней не лежат.
211 Точки P1,
P2, P3, P4, P5 расположены
на прямой
; их абсциссы соответственно равны
числам 4; 0; 2; -2; -6. Определить ординаты этих точек.
212 Точки Q1,
Q2, Q3, Q4, Q5 расположены
на прямой
; их ординаты соответственно равны
числам 1; 0; 2; -1, 3. Определить абсциссы этих точек.
213 Определить точки
пересечения прямой
с координатными
осями и построить эту прямую на чертеже.
214 Найти точку
пересечения двух прямых
, . 215 Стороны АВ, ВС и АС
треугольника АВС даны соответственно
уравнениями
, , . Определить
координаты его вершин.
216 Даны уравнения двух
сторон параллелограмма
, и уравнение одной из
его диагоналей
.
Определить координаты вершин
этого параллелограмма.
217 Стороны
треугольника лежат на прямых
, , . Вычислить его площадь S. 218 Площадь
треугольника S=8, две его вершины суть точки А(1; -2),
В(2; 3), а третья вершина С лежит на прямой
. Определить координаты вершины С. 219 Площадь
треугольника S=1,5, две его вершины суть точки А(2;
-3), В(3; -2), центр масс этого треугольника лежит на
прямой
.
Определить координаты третьей
вершины С.
220 Составить
уравнение прямой и построить прямую на чертеже,
зная ее угловой коэффициент k и отрезок b,
отсекаемый ею на оси Oy:
220.1 k=2/3, b=3; 220.2 k=3, b=0; 220.3 k=0, b=-2; 220.4 k=-3/4, b=3; 220.5 k=-2, b=-5; 220.6 k=-1/3, b=2/3. 221 Определить угловой
коэффициент k и отрезок b, отсекаемый на оси Oy, для
каждой из прямых:
221.1 ; 221.2 ; 221.3 ; 221.4 ; 221.5 . 222 Дана прямая . Определить угловой коэффициент k
прямой:
222.1 Параллельной
данной прямой;
222.2 Перпендикулярно к
данной прямой.
223 Дана прямая . Составить уравнение прямой,
проходящей через точку М
0(2; 1):
223.1 Параллельно данной
прямой;
223.2 Перпендикулярно
данной прямой.
224 Даны уравнения двух
сторон прямоугольника
, и одна из его вершин
А(2; -3). Составить уравнения двух других сторон
этого прямоугольника.
225 Даны уравнения двух
сторон прямоугольника
, и уравнение одной из
его диагоналей
.
Найти вершины прямоугольника.
226 Найти проекцию
точке Р(-5; 13) относительно прямой
. 227 Найти точку Q,
симметричную точке Р(-5; 13) относительно прямой
. 228 В каждом из
следующих случаев составить уравнение прямой,
параллельной двум данным прямым и проходящей
посередине между ними:
228.1 , ; 228.2 , ; 228.3 , ; 228.4 , ; 228.5 , . 229 Вычислить угловой
коэффициент k прямой, проходящей через две данные
точки:
229.1 M1(2;
-5), M2(3; 2);
229.2 P(-3, 1), Q(7; 8); 229.3 A(5; -3), B(-1; 6). 230 Составить
уравнения прямых, проходящих через вершины
треугольника A(5; -4), B(-1; 3), C(-3; -2) параллельно
противоположным сторонам.
231 Даны середины
сторон треугольника M
1(2; 1), M2(5;
3), M3(3; -4). Составить
уравнение его сторон.
232 Даны две точки P(2; 3),
Q(-1; 0). Составить уравнение прямой, проходящей
через точку Q перпендикулярно к отрезку
. 233 Составить
уравнение прямой, если точка P(2; 3) служит
основанием перпендикуляра, опущенного из начала
координат на эту прямую.
234 Даны вершины
треугольника M
1(2; 1), M2(-1; -1),
M3(3; 2). Составить уравнения
его высот.
235 Стороны
треугольника даны уравнениями
, , . Определить точку пересечения его
высот.
236 Даны вершины
треугольника A(1; -1), B(-2; 1), C(3; 5). Составить
уравнение перпендикуляра, опущенного из вершины
А на медиану, проведенную из вершины В.
237 Даны вершины
треугольника A(2; -2), B(3; -5), C(5; 7). Составить
уравнение перпендикуляра, опущенного из вершины
С на биссектрису внутреннего угла при вершине А.
238 Составить
уравнения сторон и медиан треугольника с
вершинами A(3; 2), B(5; -2), C(1; 0).
239 Через точки M1(-1; 2), M2(2; 3) проведена
прямая. Определить точки пересечения этой прямой
с осями координат.
240

Доказать,
что условие, при котором три точки M
1(x1,
y1), M2(x2, y2), M3(x3,
y3) лежат на одной прямой,
может быть записано в следующем виде:

241

Доказать,
что уравнение прямой, проходящей через две
данные точки M
1(x1, y1),
M2(x2, y2), может
быть записано в следующем виде:

242 Даны
последовательные вершины выпуклого
четырехугольника A(-3; 1), B(3; 9), C(7; 6), D(-2; -6).
Определить точку пересечения его диагоналей.
243 Даны две смежные
вершины A(-3; -1), B(2; 2) параллелограмма ABCD и точка Q(3;
0) пересечения его диагоналей. Составить
уравнения сторон этого параллелограмма.
244 Даны уравнения двух
сторон прямоугольника
, и уравнение его
диагонали
. Составить уравнения остальных
сторон и второй диагонали этого прямоугольника.
245 Даны вершины
треугольника A(1; -2), B(5; 4), C(-2; 0). Составить
уравнения биссектрис его внутреннего и внешнего
углов при вершине А.
246 Составить
уравнение прямой, проходящей через точку P(3; 5) на
одинаковых расстояниях от точек A(-7; 3) и B(11; -15).
247 Найти проекцию
точки P(-8; 12) на прямую, проходящую через точки A(2;
-3), B(-5; 1).
248 Найти точку M1, симметричную точке М2(8;
-9) относительно прямой,
проходящей через точки А(3; -4), B(-1; -2).
249 На оси абсцисс
найти такую точку P, чтобы сумма ее расстояний до
точек M(1; 2), N(3; 4) была наименьшей.
250 На оси ординат
найти такую точку P, чтобы сумма ее расстояний до
точек M(-3; 2), N(2; 5) была наибольшей.
251 На прямой найти такую точку Р, сумма
расстояний которой до точек A(-7; 1), B(-5; 5) была бы
наименьшей.
252 На прямой найти такую точку Р, разность
расстояний которой до точек A(4; 1), B(0; 4) была бы
наибольшей.
253 Определить угол между двумя прямыми: 253.1 , ; 253.2 , ; 253.3 , ; 253.4 , . 254 Дана прямая . Составить уравнение прямой,
проходящей через точку M
0(2; 1) под углом 450 к данной прямой.
255 Точка А(-4; 5)
является вершиной квадрата, диагональ которого
лежит на прямой
. Составить
уравнения сторон и второй диагонали этого
квадрата.
256 Даны две
противоположные вершины квадрата A(-1; 3), C(6; 2).
Составить уравнения его сторон.
257 Точка E(1; -1) является
центром квадрата, одна из сторон которого лежит
на прямой
. Составить уравнения
прямых, на которых лежат остальные стороны этого
квадрата.
258 Из точки M0(-2; 3) под углом к оси
Ox направлен луч света. Известно, что
. Дойдя
до оси Ox, луч от нее отразился. Составить
уравнения прямых, на которых лежат падающий и
отраженный лучи.
259 Луч света направлен
по прямой
, луч от нее отразился.
Составить уравнение прямой, на которой лежит
отраженный луч.
260 Даны уравнения
сторон треугольника
, , . Доказать, что этот треугольник
равнобедренный. Решить задачу при помощи
сравнения углов треугольника.
261 Доказатть, что
уравнение прямой, проходящей через точку M
1(x1; y1) параллельно
прямой
, может быть записано в виде .
262 Составить
уравнение прямой, проходящей через точку М
1(2: -3) параллельно
прямой:
262.1 ; 262.2 ; 262.3 ; 262.4 ; 262.5 . 263 Доказать, что
условие перпендикулярности прямых
; может быть записано
в следующем виде:
.
264 Установить, какие
из следующих пар прямых перпендикулярны. Решить
задачу, не вычисляя угловых коэффициентов данных
прямых.
264.1  , ; 264.2 , ; 264.3 , ; 264.4 , ; 264.5 , ; 264.6 , . 265

Доказать,
что формула для определения угла
между
прямыми
, может
быть записана в следующей форме:

266 Определить угол , образованный двумя прямыми. Решить
задачу, не вычисляя угловых коэффициентов данных
прямых.
266.1 , ; 266.2  , ; 266.3  , . 267 Даны две вершины
треугольника M
1(-10; 2), M2(6; 4);
его высоты пересекаются в точке
N(5; 2). Определить координаты третьей вершины M
3.
268 Даны две вершины A(3;
-1), B(5; 7) треугольника ABC и точка N(4; -1) пересечения
его высот. Составить уравнения сторон этого
треугольника.
269 В треугольнике АВС
даны: уравнение стороны АВ:
, уравнения
высот АМ:
и BN: . Составить уравнения двух
других сторон и третьей высоты этого
треугольника.
270 Составить
уравнения сторон треугольника АВС, если даны
одна из его вершина А(1; 3) и уравнения двух медиан
, . 271 Составить
уравнения сторон треугольника, сли даны одна из
его вершин B(-4; -5) и уравнения двух высот
, . 272 Составить
уравнения сторон треугольника, зная одну из его
вершин A(4; -1) и уравнения двух биссектрис
, . 273 Составить
уравнения сторон треугольника, зная одну из его
вершин B(2; 6), а также уравнения высоты
и
биссектрисы
, проведенных из одной вершины.
274 Составить
уравнения сторон треугольника, зная одну его
вершину B(2; -1), а также уравнения высоты
и биссектрисы , проведенных из
различных вершин.
275 Составить
уравнения сторон треугольника, зная одну его
вершину C(4; -1), а также уравнения высоты
и медианы , проведенной из
одной вершины.
276 Составить
уравнения сторон треугольника, зная одну его
вершину B(2; -7), а также уравнения высоты
и медианы , проведенных из
различных вершин.
277 Составить
уравнения сторон треугольника, зная одну его
вершину C(4; 3), а также уравнения биссектрисы
и медианы , проведенных из
одной вершины.
278 Составить
уравнения сторон треугольника, зная одну его
вершину A(3; -1), а также уравнения биссектрисы
и медианы , проведенных из
различных вершин.
279 Составить
уравнение прямой, которая проходит черезначало
координат и вместе с прямыми
, образует
треугольник с площадью, равной 1,5.
280 Среди прямых,
проходящих через точку P(3; 0), найти такую, отрезок
которой, заключенный между прямыми
, , делится в точке Р
пополам.
281 Через точку Р(-3; -1)
проведены всевозможные прямые. Доказать, что
отрезок каждой из них, заключенный между прямыми
, , делится
в точке Р пополам.
282 Через точку Р(0; 1)
проведены всевозможные прямые. Доказать, что
среди них нет прямой, отрезок которой,
заключенный между прямыми
, , делился бы в точке Р
пополам.
283 Составить
уравнение прямой, проходящей через начало
координат, зная, что длина ее отрезка,
заключенного между прямыми
, , равна . 284 Составить
уравнение прямой, проходящей через точку С(-5; 4),
зная, что длина ее отрезка, заключенного между
прямыми
, , равна 5.

Решение: согласно условия задачи нужно найти уравнение прямых, на которых лежат диагонали параллелограмма. Уравнения прямых будем искать по формуле уравнения прямой, проходящей через две заданные точки, т.е. нужно найти все четыре вершины параллелограмма.

1. Известна одна вершина с координатами A(3,-1), проверим принадлежит ли она данным прямым:
A(3,-1) ( l_1: quad 2x-y+3 = 0 => 2*3 — (-1)+3 ne 0 )
A(3,-1) ( l_2: quad x+3y-2 = 0 => 3 + 3(-1)-2 ne 0 ) 

Получили, что точка не принадлежит прямым.

Согласно условия задачи, две стороны параллелограмма лежат на двух прямых  ( l_1: quad 2x-y+3=0 ) и ( l_2: quad x+3y-2=0), определим взаимное расположение этих прямых.

Прямые могут быть коллинеарными или пересекающимися 

Проверяем прямые на коллинеарность

Две прямые называются коллинеарными, если они параллельны или совпадают
Прямые (l_1: quad A_1x+B_1y+C_1=0 ) и (l_2: quad A_2x+B_2y+C_2=0) параллельны тогда и только тогда, когда соответствующие коэффициенты при неизвестных в их уравнениях пропорциональны, т.е. существует такое число ( lambda ne 0) , что (A_1 = lambda A_2), (B_1 = lambda B_2) , но ( C_1 ne lambda C_2).
По другому это условие можно записать $$l_1||l_2: quad frac{A_1}{A_2} =frac{B_1}{B_2} ne frac{C_1}{C_2} $$

Прямые (l_1, l_2) совпадают тогда и только тогда, когда все соответствующие коэффициенты в их уравнениях пропорциональны:  (A_1 = lambda A_2), (B_1 = lambda B_2) , ( C_1 = lambda C_2). 
По другому это условие можно записать $$ l_1≡ l_2: quad frac{A_1}{A_2} =frac{B_1}{B_2} = frac{C_1}{C_2} $$

Проверяем на коллинеарность прямые  ( l_1: quad  quad 2x-y+3=0) и ( l_2: quad x+3y-2=0). $$ frac{2}{1} ne  frac{-1}{3} ne frac{3}{-2} $$ 
Вывод: прямые не являются  коллинеарными.  

2. Найдем вторую вершину — точку пересечения прямых ( l_1: quad 2x-y+3=0 ) и ( l_2: quad x+3y-2=0)
Составим систему уравнений $$ begin{cases}2x-y+3=0 \ x+3y-2=0end{cases} =>  begin{cases} 2x-y+3=0 \ 2x+6y-4=0 end{cases} => begin{cases}x=-1\ y=1end{cases}$$
Получили точку пересечения С(-1;1) 
Вывод: точка пересечения двух сторон — вершина параллелограмма С(-1;1).  

Получили две вершины, которые лежат на одной диагонали A(3;-1) и C(-1;1).
Найдем уравнение первой диагонали, проходящей через две заданные точки по формуле ( frac{x-x_1}{x_2-x_1} = frac{y-y_1}{y_2-y_1}).
Подставляем координаты вершин A(3;-1) и C(-1;1) в уравнение и получим искомое уравнение диагонали $$ frac{x-3}{-1-3} = frac{y+1}{1+1} => y = frac{1}{2} — frac{1}{2}x$$
Ответ: получили первое уравнение прямой, на которой лежит диагональ  ( y = frac{1}{2} — frac{1}{2}x )

3. Найдем третью вершину.

Параллелограмм — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.
Получаем, что через вершину C проходит две прямые, параллельные известным, найдем их, для этого применим формулу уравнения прямой, проходящей через заданную точку в заданном направлении. Направление — угловой коэффициент прямой (y — y_0 = k(x-x_0)). Для параллельных прямых известно свойство — угловые коэффициенты параллельных прямых равны (k_1=k_2).
Рассмотрим прямую  ( l_1: quad  quad 2x-y+3=0 ) преобразуем канонической уравнение прямой в уравнение прямой с угловым коэффициентом ( y = kx+b)
( l_1: quad  quad 2x-y+3=0 => y = 2x+3 => k=2)
Найдем искомое уравнение прямой, для точки  A(3;-1) с угловым коэффициентом ( k =2), получаем (y+1 = 2(x-3) => y = 2x-7)
найдем точку пересечения полученной прямой ( y = 2x-7 ) и ( l_2: quad x+3y-2 = 0 ). Составим и решим систему уравнений $$ begin{cases}y = 2x-7 \ x+3y-2 = 0end{cases} => begin{cases}y = 2x-7 \ 2x+6y-4 = 0end{cases} =>  begin{cases}y = — frac{3}{7} \ x = frac{23}{7} end{cases}$$

Получили координаты искомой вершины (B( frac{23}{7}; — frac{3}{7} )) 

Рассмотрим прямую  ( l_2: quad x+3y-2 = 0 ) преобразуем канонической уравнение прямой в уравнение прямой с угловым коэффициентом ( y = kx+b)
( l_2: quad  quad x+3y-2 = 0 => y = frac{2}{3} — frac{1}{3}x => k = — frac{1}{3})
Найдем искомое уравнение прямой, для точки  A(3;-1) с угловым коэффициентом ( k = — frac{1}{3}), получаем (y+1 = — frac{1}{3}(x-3) => y = — frac{1}{3}x )

4. Найдем четвертую вершину.
Найдем точку пересечения полученной прямой ( y = — frac{1}{3}x ) и ( l_1: quad 2x-y+3 = 0 ). Составим и решим систему уравнений $$ begin{cases} y = — frac{1}{3}x \ 2x-y+3 = 0 end{cases} => begin{cases} y = frac{3}{7} \ x = -frac{9}{7} end{cases} $$
Получили координаты искомой вершины (D( -frac{9}{7};  frac{3}{7} ))  

Найдем уравнение второй диагонали, проходящей через две заданные точки по формуле ( frac{x-x_1}{x_2-x_1} = frac{y-y_1}{y_2-y_1}).
Подставляем координаты вершин (B( frac{23}{7}; — frac{3}{7} ))  и (D( -frac{9}{7};  frac{3}{7} )) в уравнение и получим искомое уравнение диагонали $$ frac{x-frac{23}{7}}{- frac{9}{7}-frac{23}{7}} = frac{y+ frac{3}{7}}{frac{3}{7}+ frac{3}{7}} => y = -frac{3}{16}x + frac{3}{16}$$
Ответ: получили второе уравнение прямой, на которой лежит диагональ  ( y = -frac{3}{16}x + frac{3}{16} ) 

Ответ: уравнения диагоналей  параллелограмма ( y = frac{1}{2} — frac{1}{2}x ) и ( y = -frac{3}{16}x + frac{3}{16} ) 

Строим рисунок:

уравнения диагоналей  параллелограмма

Приведём уравнения заданных прямых к виду с угловыми коэффициентами:

1) $$y = 2x + 3 (CD)$$ 2)$$y = -x/3 + 2/3 (BC)$$ Примем сторону CD лежащей на прямой 1), а BC — на прямой 2). Известную вершину параллелограмма с координатами (3; -1) обозначим A(3; -1). Через эту точку проходят прямые, параллельные соответственно прямым 1) и 2). При обходе контура параллелограмма против часовой стрелки считаем, что вершины его будут B, С, D. Уравнение 1) — это прямая CD, уравнение 2) — это прямая BC. Уравнение прямой AD находим из условия параллельности её прямой BC (угловые коэффициенты обеих прямых равны друг другу). Уравнение AD будет: $$y = -x/3 + b$$ Величину b находим из условия, что прямая AD проходит через точку A(3; -1). Отсюда: b = 0. Итак, уравнение AD $$y = -x/3$$ Прямая AB параллельна прямой CD. Значит, её уравнение будет:$$y = 2x + r$$ Величину r находим из условия прохождения прямой AB через точку A(3; -1). Значит: r = -7, а уравнение AB $$y = 2x — 7$$ Точка B — это точка пересечения прямых $$y = 2x — 7$$ и $$y = -x/3 + 2/3$$ Отсюда находим координаты точки B. $$y = 2x — 7 = -x/3 + 2/3$$ $$B(23/7;-3/7)$$ По аналогии находим координаты точки C. $$y = 2x — 3 = -2x/3 +2/3$$ $$C (-1;1)$$ Диагональ AC прходит через точки A(3;-1) и C(-1;1). Отсюда: $$((y — (-1))/ (1 — (-1) = (x — 3)/(-1 — 1). Или: y = — x/2 + 1/2$$ По аналогии находим уравнение диагонали, проходящей через точки B(23/7; -3/7) и D(-9/7; 3/7) $$y = (3/16)x — 177/714$$ Через точки A(3; -1), B(23/7; -3/7), C(-1: 1) и D(-9/7;3/7), построенные на масштабной бумаге или на клетчатой бумаге, проводим прямые (стороны параллелограмма и диагонали). Задача несложная, но требует много рутинной работы, поэтому за её решение никто и не берётся.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как нажать найти на странице
  • Как найти в телефоне хонор заметки
  • Как составить словесный портрет моего друга
  • Если поцарапал ламинат как исправить
  • Как найти сихр во дворе

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии