Как составить уравнение многоугольника

Уравнения  многоугольников

Автор работы: Шпакова Маргарита Андреевна, г.о. Тольятти, МБУ СОШ

№ 58,  8 класс

Научный руководитель: Владимирова Ольга Ивановна, учитель математики первой категории МБУ СОШ № 58.

В школьном курсе математики учащиеся часто встречаются с алгебраическими уравнениями, уравнениями прямых, уравнениями окружностей, квадратными уравнениями и т.д. Что собой  представляют уравнения многоугольников, учащиеся не знают.

 Как, например, выглядит уравнение треугольника? Можно ли по фигуре на плоскости составить уравнение?  Можно ли рассчитать площадь фигуры по заданному уравнению?   Можно ли по  заданному уравнению  определить, что за многоугольник? Решение  этих вопросов  меня и заинтересовало.  В них есть проблема моей  исследовательской работы.

Цель работы:   изучить и исследовать на примерах методы,  которые  дают возможность получить уравнение с модулем  любого выпуклого многоугольника на плоскости, координаты вершин которого известны.  Найти взаимосвязь площади фигуры от ее уравнения.

Основные ЗАДАЧИ   исследования:

  1. Познакомиться с некоторыми видами уравнений  прямых на плоскости (уравнение прямой в отрезках,  уравнение прямой, проходящей через две различные точки на плоскости);
  2. Научиться составлять уравнение  прямой  через заданную точку и параллельную  другой прямой;
  3. Научиться составлять уравнение прямой, проходящей через две заданные точки;
  4. Научиться по уравнению строить многоугольник на плоскости и наоборот, по чертежу составлять уравнение многоугольника;
  5. Изучить метод областей при решении уравнений, содержащих  знак модуля.

    Как известно из курса геометрии, любая прямая на координатной  плоскости может быть задана уравнением вида

                                       ах+by+с = 0

    Подобное уравнение называют линейным.  Уравнение такого вида называют  также общим уравнением прямой на плоскости.

     Если  ax+by+c = 0  —  уравнение некоторой прямой  m, то уравнение ax+by+c = p, где р ≠ 0, задает прямую m`, параллельную m. Это следует из того, что данные два уравнения не имеют общих решений, а значит, прямые не имеют общих точек.

    У параллельных прямых

y=k1x+b

y=k2x+d

k1=k2

   Пример1. Составим уравнение прямой, проходящей через точку М (1;-2) и параллельной прямой  3x-4y+5=0

Подставляя координаты точки М в левую часть уравнения, получаем значение 16. Значит,  искомым уравнением прямой будет  3x+4y+5=16 или окончательно 3x+4y-11=0.

    Пусть известны координаты двух точек М1 (x1;y2), М2 (x2;y2), лежащих на данной прямой. Составим уравнение прямой, проходящей через две заданные точки:

                                          =

                                (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

 Пример 2.  Составим уравнение прямой, проходящей через точку М1 (3;1) и М2 (2;2).

Получаем такое уравнение   (x-3)(2-1)-(y-1)(2-3)=0

после преобразований  выходит  х+у-4=0.

    Если известны координаты (а;0) и (0;b) точек пересечения прямой с осями Ох и Оу, то для этой прямой проще всего записать уравнение в отрезках   += 1.

    Рассмотрим на координатной плоскости ху треугольник с вершинами в точках А (х11), В (х22), С (х33). Уравнение прямой, на которой лежит сторона АВ этого треугольника,  можно записать в виде    

 (x-x1)(y2-y1)-(y-y1)(x2-x1)=0.

     Подставим координаты третьей вершины С (х33) в левую часть этого уравнения,

получим некоторое значение

                             q=(x3-x1)(y2-y1)-(y3-y1)(x2-x1)

        

 Чтобы понять геометрический смысл числа q, заметим, что уравнение

 (х-х1)(у21)-(у-у1)(х21)=q  задает прямую,  параллельную стороне АВ данного треугольника. Поэтому для каждой точки этой прямой результат подстановки ее координат в левую часть уравнения тот же, что и для точки C (х33), и дает число q. Значит, то же значение получится и для точки С1 41) пересечения упомянутой прямой с прямой у=у1, параллельной оси абсцисс и проходящей через вершину A треугольника. Но в этой точке

 (х-х1)(у21)-(у-у2)(х21) = (х41)(у21). Геометрический смысл последнего выражения понять уже несложно: |(х41)(у21)|  площадь параллелограмма со сторонами АВ и АС1. Длина стороны АС1  равна |х41|, а длина высоты параллелограмма, опущенной из вершины B на эту сторону, есть  |у21|. Поэтому  |q| есть площадь  ΔАВС1, но она такая же, что и у ΔАВС.   В результате приходим к следующей формуле для площади треугольника

                               S =|(x3-x1)(y2-y1)-(y3-y1)(x2-x1)|.  (3, стр. 169).

                     Уравнение треугольника

Если треугольник  задан в декартовой системе координат и имеет своими вершинами точки  А (х11), В (х22), С (х33), то можно составить уравнение треугольника:

 |(x-x1)(y2-y1)-(y-y1)(x2-x1)| + |(x-x2)(y3-y2)-(y-y2)(x3-x2)| +

+ |(x-x3)(y1-y3)—(y-y3)(x1-x3)| = 2S,  где

                               S =|(x3-x1)(y2-y1)-(y3-y1)(x2-x1)|.

  Пример 3.    Составим уравнение треугольника, изображенного на рисунке. Для этого составим уравнения  прямых, которые являются его сторонами, по формуле

 (x-x1)(y2-y1)-(y-y1)(x2-x1)=0, задающей уравнение прямой по двум ее точкам. При этом допустимым считаем раскрытие скобок  и приведение подобных слагаемых и недопустимым – умножение обеих частей уравнения на некоторое число (за исключением -1).

А(0;1), В(1;0),  С(-1;0)

Уравнения сторон имеют вид:  х-у+1=0, х+у-1=0, 2у=0. Сложив модули левых частей этих уравнений,  и приравняв полученное выражение к удвоенной площади  ΔАВС, равной в данном случае 1, приходим к искомому уравнению  |x-y+1|+|x+y-1|+2|y|=2.

Описанный метод дает возможность получить уравнение любого выпуклого многоугольника на плоскости, координаты вершин которого известны.

Уравнение квадрата, ромба

Пример 4. Составить уравнение  квадрата:

|x-1| + |y-1| + |x| + |y| = 1.  Площадь равна 1.

Пример 5. Составить уравнение ромба:

Через  точки с координатами (1;0), (0;1) уравнение прямой: x +y -1 = 0.

Через точки с координатами  (-1;0), (0;1) уравнение прямой: x – y + 1 = 0.

Через точки с координатами (-1;0), (0;-1) уравнение прямой: x + y + 1 = 0.

Через точки с координатами (0;-1), (1;0) уравнение прямой: -x + y + 1 = 0.

Получили:  | x + y — 1| + | x – y + 1| + | x + y + 1| + | -x + y + 1 | = 4.

Этот же ромб имеет другое уравнение: |х| + |у| = 1, которое лучше решать «методом областей».  Площадь ромба равна  2.

Пример 6.  Докажите, что уравнения:  |x + y| + |x — y| = 2 и  |x + 1| + |y + 1| + |x -1| +|y — 1| =4  относятся к одному квадрату.

Первое уравнение лучше решать «методом областей», где вся плоскость разбивается прямыми  у =-х  и у=х на четыре области, значит, искомая фигура четырехугольник, стороны которого параллельны осям координат. Из уравнений каждой области  у=1, х=1и т.д. понимаем, что это квадрат, площадь которого равна 4.

Второе уравнение наглядно изображено, подтверждая первое.

 Пример 7.  Определить вид  многоугольника  по уравнениям:

|х| + 3|у| = 6;   |х-3| + |у+3| = 3;  |х-1| + 7|у| = 1.

Во всех  случаях даны уравнения ромба .

Уравнение шестиугольника

Пример 8.  Изобразить на плоскости многоугольник  по данному уравнению:  |x|+|y|+|x+y|=4.

   Из данного уравнения следует, что х=0, у=0, х= -у –прямые, которые разбивают плоскость на несколько областей.

Найдем уравнение прямой,  стороны многоугольника,  в каждой из областей:

  1. (2;1)

          х+у+х+у=4

          2х+2у=4

          х+у=2

          х=2-у

  1.  (-1;2)

-х+у+х+у=4

2у=4

у=2

  1. (-2;1)

-х+у-х-у=4

-2х=4

х=-2

  1. (-2;-1)

-х-у-х-у=4

-2х-2у=4

-х=2+у

х=-2-у

  1. (1;-2)

х-у-х-у=4

-2у=4

у=-2

  1. (2;-1)

х-у+х+у=4

2х=4

х=2

 В каждой  из полученных областей  построили  соответствующую  прямую. Получили шестиугольник, площадь которого равна 12.

Пример 9.  Определить вид многоугольника:  2|х| + |у| + |3х-4у| = 10.

По аналогии с предыдущим примером дано уравнение шестиугольника, так как прямые х=0, у=0, у=0,75х разбивают плоскость на 6 областей.

Вывод: чтобы определить вид многоугольника, нужно использовать или «метод областей» (по числу получившихся областей), или  количество  прямых, которые являются сторонами многоугольника. Чтобы составить уравнение многоугольника, можно так же использовать предыдущие два метода.

Литература

  1. Васильев Н.Б., Гутенмахер В.Л. Прямые и кривые – М.: Наука, 1976.
  2. Виленкин Н.Я. Множества на координатной плоскости. Факультативный курс: Избранные вопросы математики 7 -8. – М.: Просвещение, 1978.
  3. Никольская И.Л. Факультативный курс по математике: учебное пособие для 7 -9 классов.  – М.: Просвещение, 1991.

| О проекте | Главная | Оставить сообщение | Адрес для связи: tbam1@rambler.ru |

УРАВНЕНИЯ
МНОГОУГОЛЬНИКОВ
И СПИРАЛЕЙ НА
ИХ ОСНОВЕ

       
А.М. Белов                                  

Различные
геометрические
фигуры
обычно
описываются
либо
графически,
либо
словесными
формулировками.
Уравнения, не
требующие
при
применении
использования
дополнительных
словесных
формулировок,
существуют
только для
задания
прямой,
окружности,
эллипса и
фигур (линий),
получаемых
на их основе. 
В число
геометрических
фигур для
описания,
которых
используются
уравнения не
входят
многоугольники. 
Актуальность
получения
уравнений
многоугольников
определяется,
прежде всего,
их
практически
бесконечным
разнообразием
и
повсеместным
использованием
объектов,
имеющих
форму
различных
многоугольников.

При
этом конечно
нельзя
утверждать,
что при
описании
многоугольников
совсем не
используются
никакие
уравнения.
При описании
многоугольников
могут
использоваться
системы
линейных
уравнений,
задающих
прямые, но при
этом эти
системы
линейных
уравнений
обязательно
должны
сопровождаться
словесными
описаниями,
ограничивающими
область
применения
каждого из
входящего в
систему
уравнения
или
символами,
обозначающими
эти
словесные
описания. В
противном
случае
график такой
системы
уравнений
будет
представлять
собой не
многоугольник,
а несколько
пересекающихся
прямых линий.
Это связано с
тем, что
линейное
уравнение
без
соответствующих
словесных
пояснений не
в состоянии
определить
отдельный
отрезок или
отдельную
точку.

Таким
образом,
очевидно, что
для
составления
уравнений
многоугольников
необходимо
применять
уравнения
способные
определить
произвольный
отрезок без
использования
при этом
дополнительных
словесных
описаний.

Необходимыми
свойствами
обладает
специальное
уравнение , 
состоящее
из суммы
произведений:
[ x/xi
]*[ xi/x]*yi
. В этом
выражении: [ ] –
знак,
обозначающий
целую часть
числа и далее
по тексту
статьи
предполагает
выполнение
процедуры по
отбрасыванию
дробной
части числа , 
yi 
— значение
функции при 
значении
аргумента x
равном xi
. 

В
работе [1] было
показано, что
на основе
использования
специального
уравнения
можно
получить
уравнения
обеспечивающие
определение
отдельных
отрезков или
линий,
состоящих из
нескольких
отрезков.

Далее
приведены
конкретные
примеры
уравнений
многоугольников
составленных
на основе
использования
специального
уравнения. В
качестве
примеров
были выбраны
треугольник
и
прямоугольник
ориентированные
по разному
относительно
координатных
осей. Не
имеющие
сторон
параллельных
координатным
осям и
имеющие
стороны
параллельные
координатным
осям. Все
уравнения
других
многоугольников
будут иметь
вид
аналогичный
виду
приведенных
ниже в
качестве
примеров
уравнений.

Сформировать
уравнения
для других
многоугольников
можно так же
по тем же
правилам, что
и для
уравнения
треугольника
или
прямоугольника.
При этом
различия
уравнений
для разных
многоугольников
будут
выражаться в
основном в их
объеме. Чем
больше
сторон имеет
многоугольник,
тем больше
объем его
уравнения.
Кроме этого
необходимо
отметить, что
многоугольники
ориентированные,
так, что хотя
бы одна их
сторона
оказывается
параллельной
оси y, могут
быть
представлены
только в виде
уравнения,
задающего
неявную
функцию.  

Произвольный
треугольник,
не
содержащий
ни одной
стороны
параллельной
оси y,
однозначно
определяется
в виде
неявной
функции,
заданной
уравнением (1).
Решения
уравнения (1)
относительно
x
приведены в
виде системы
уравнений (2).
График
уравнения (1),
построенный
при
значениях
координат
вершин
треугольника
x1 = -175; x2=20;
x
3=170;
y
1=
-150;  y2=140; y3=
-20 приведен на
рис. 1.

 

Произвольный
прямоугольник,
содержащий
стороны
параллельные
оси y,
определяется
в виде
неявной
функции,
заданной
уравнением (3)
для всех x и y>0.
График
уравнения (3),
построенный
при x1 = 25; x2=250; 
y
1= 30;  y2=220
приведен на
рис. 2.

 

Уравнения
многоугольников
(1, 3)
обеспечивают
возможность
составления
уравнений
треугольной
и
прямоугольной
спиралей.

Треугольная
спираль
может быть
определена
системой
уравнений (4).
График
системы
уравнений (4)
приведен на
рис. 3.

 

где
x01;
x
02;
x
03;
y
01;
y
02;
y
03
координаты
вершин
начального
треугольника,
начиная с
которого
начинает
раскручиваться
спираль; D
– шаг спирали; N
– номер витка
спирали.

 

График
системы
уравнений (4)
на рис. 3 был
построен при x01=
-5; x02=
-1; x03=7;
y
01=
-5; y02=7;
y
03=
-2; D=7.

Необходимо
отметить, что
система
уравнений (4)
не является
универсальной.
Так она не
определяет
спираль, если
у начального
треугольника
одна из его
сторон будет
параллельна
оси y
и в ряде
других
случаев,
касающихся в
основном
положения
вершин
начального
треугольника
относительно
осей
координат.

Прямоугольная
спираль
может быть
определена
уравнением (5)
для всех x
и y>0.
График
системы
уравнений (5)
приведен на
рис. 4.

 

где
x01;
x02 и
y01;
y02

соответственно
координаты,
определяющие
ширину и
высоту
начального
прямоугольника,
начиная с
которого
начинает
раскручиваться
спираль; D
– шаг спирали; N
– номер витка
спирали.

 

График
уравнения (5)
на рис. 4 был
построен при x01= 145; x02=
160; y01=
145; y02=170;
D
=7.

           
Приведенные
примеры
показывают
принципиальную
возможность
задания
аналитическим
способом
уравнений
многоугольников
и спиралей на
их основе.

           
Необходимо
отметить, что
в уравнениях
(1), (3) и (5) нельзя
производить
дальнейшие
сокращения
точно так же,
как нельзя
заменять
выражение x/x
на 1, если
допускается,
что х может
быть равно
нулю.

           
Приведенные
уравнения
спиралей
можно
рассматривать
так же, как
уравнения,
задающие
фракталы, так
как  каждый
виток
спирали по
форме
повторяет
предыдущие,
имея
различия
лишь в
размерах, т. е.
спирали
имеют все
основные
свойства
фракталов. 

   
Литература

           
1. Белов А.М. К
вопросу
задания в
аналитическом
виде
ступенчатых
и импульсных
функций. http://www.laboratory.ru.

Читайте: Уравнение правильных многоугольников в полярных координатах

Читайте: Уравнение спиралей в виде многоугольников в полярных координатах

Выход на главную страницу

                                               
                                                  
май 2003 год


Rambler's Top100

Сообщения без ответов | Активные темы | Избранное

Правила форума

В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте

его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву

, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения

и указать конкретные затруднения.

Обязательно просмотрите тему

Правила данного раздела, иначе Ваша тема может быть удалена

или перемещена в Карантин, а Вы так и не узнаете, почему.

 

Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 16:24 


06/08/12
16

Здравствуйте!
Нигде и никогда не видел статей в которых говорилось про то как задать уравнением(не системой) правильный многоугольник в декартовых координатах. А все таки интересно как же оно выглядит. Ребят, может кто-то из вас это знает? Расскажите пожалуйста.

Профиль  

ИСН 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 16:25 

Заслуженный участник
Аватара пользователя


18/05/06
13417
с Территории

А какая принципиальная разница между уравнением и системой?

Профиль  

Sender 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 16:48 


14/01/11
2869

Профиль  

vld 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 16:50 


06/08/12
16

Спасибо, Sender. Но хотелось бы общую формулу получить.

Профиль  

Aritaborian 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 17:32 

Аватара пользователя


11/06/12
10363
стихия.вздох.мюсли

Sender

, с квадратом всё ясно, но как строится формула шестиугольника? Что-то я никак не пойму…

Профиль  

Kitonum 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 18:19 


15/03/13
12

В полярных координатах уравнение правильного n-угольника можно записать так:

$r=frac{Rcos(frac{pi}{n})}{cos(|(frac{{varphi}n}{2pi}-[frac{{varphi}n}{2pi}])cdotfrac{2pi}{n}-frac{pi}{n}|)}$

,

где $r$ — полярный радиус, $varphi$ — полярный угол, $R$ — радиус описанной окружности, квадратные скобки в знаменателе означают целую часть числа.

Профиль  

ИСН 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 21:46 

Заслуженный участник
Аватара пользователя


18/05/06
13417
с Территории

Не надо в полярных. И не надо целую часть. Можно же как сказал Sender

.

Профиль  

Aritaborian 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 21:55 

Аватара пользователя


11/06/12
10363
стихия.вздох.мюсли

Можно же как сказал Sender.

Sender

не раскрыл загадку.

Профиль  

ИСН 

 Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 22:04 

Заслуженный участник
Аватара пользователя


18/05/06
13417
с Территории

Да всё он раскрыл. Подумаешь, загадка. Вы видели когда-нибудь график функции $|x-1|+|x+1|$?

— менее минуты назад —

Забыл уточнить: трёхмерный

график. (Это функция от x и y.)

Профиль  

Kitonum 

 Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 22:14 


15/03/13
12

Не надо в полярных. И не надо целую часть. Можно же как сказал Sender

.

А чем не нравятся полярные координаты? Всё таки явное уравнение. На мой взгляд с ним работать удобнее, чем с неявным в декартовых. Например, построить график.
Построение графика правильного семиугольника в Maple:

Код:

n:=7:
plot(cos(Pi/n)/cos(abs(frac(phi/(2*Pi/n))*2*Pi/n-Pi/n)), phi=0..2*Pi, coords=polar, thickness=2, scaling=constrained, numpoints=5000);

Изображение

Профиль  

ИСН 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение06.02.2014, 22:18 

Заслуженный участник
Аватара пользователя


18/05/06
13417
с Территории

Тем, что вопрос был про декартовы. А так-то к Вашему уравнению претензий нет.

Профиль  

TOTAL 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение07.02.2014, 12:50 

Заслуженный участник
Аватара пользователя


23/08/07
5188
Нов-ск

Так годится?
$$prod_{i=1}^{i=n}left( sqrt{(x-x_i)^2 + (y-y_i)^2}  +  sqrt{(x-x_{i+1})^2 + (y-y_{i+1})^2} -  sqrt{(x_i-x_{i+1})^2 + (y_i-y_{i+1})^2}right) = 0$$

Профиль  

ИСН 

 Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение07.02.2014, 13:29 

Заслуженный участник
Аватара пользователя


18/05/06
13417
с Территории

:appl: :appl: :lol:
Да тут куча вариантов, как я погляжу.

— менее минуты назад —

Вместо третьего корня можно же сразу подставить константу.

Профиль  

TOTAL 

Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение07.02.2014, 13:55 

Заслуженный участник
Аватара пользователя


23/08/07
5188
Нов-ск

(Оффтоп)

Вместо третьего корня можно же сразу подставить константу.

Так мы же не стали мараться и задали произвольный многоугольник с известными координатами вершин. :mrgreen:

Профиль  

vld 

 Re: Как задать уравнением правильный многоугольник в дек-х к-х?

Сообщение07.02.2014, 14:22 


06/08/12
16

TOTAL, да ты вообще красавчик!) Взял точку на стороне многоугольника, сложил расстояния от нее до ближайших вершин и отнял длину стороны, т.к. очевидно что нуль получается. И так получилось N похожих уравнений с правой частью равной нулю, и перемножил их! Все правильно сделал, претензий нет) :appl:

— 07.02.2014, 21:47 —

Да и тем более этим уравнением можно задать любой многоугольник в $mathbb{R}^2$ , хоть правильный, хоть неправильный.

Профиль  

Модераторы: Модераторы Математики, Супермодераторы

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Уравнение многоугольника

Составление и решение уравнений многоугольников

Скачать:

Вложение Размер
составление и решение уравнений многоугольников 124.82 КБ

Предварительный просмотр:

Автор работы: Шпакова Маргарита Андреевна, г.о. Тольятти, МБУ СОШ

Научный руководитель: Владимирова Ольга Ивановна, учитель математики первой категории МБУ СОШ № 58.

В школьном курсе математики учащиеся часто встречаются с алгебраическими уравнениями, уравнениями прямых, уравнениями окружностей, квадратными уравнениями и т.д. Что собой представляют уравнения многоугольников, учащиеся не знают.

Как, например, выглядит уравнение треугольника? Можно ли по фигуре на плоскости составить уравнение? Можно ли рассчитать площадь фигуры по заданному уравнению? Можно ли по заданному уравнению определить, что за многоугольник? Решение этих вопросов меня и заинтересовало. В них есть проблема моей исследовательской работы.

Цель работы: изучить и исследовать на примерах методы, которые дают возможность получить уравнение с модулем любого выпуклого многоугольника на плоскости, координаты вершин которого известны. Найти взаимосвязь площади фигуры от ее уравнения.

Основные ЗАДАЧИ исследования:

  1. Познакомиться с некоторыми видами уравнений прямых на плоскости (уравнение прямой в отрезках, уравнение прямой, проходящей через две различные точки на плоскости);
  2. Научиться составлять уравнение прямой через заданную точку и параллельную другой прямой;
  3. Научиться составлять уравнение прямой, проходящей через две заданные точки;
  4. Научиться по уравнению строить многоугольник на плоскости и наоборот, по чертежу составлять уравнение многоугольника;
  5. Изучить метод областей при решении уравнений, содержащих знак модуля.

Как известно из курса геометрии, любая прямая на координатной плоскости может быть задана уравнением вида

Подобное уравнение называют линейным. Уравнение такого вида называют также общим уравнением прямой на плоскости.

Если ax+by+c = 0 — уравнение некоторой прямой m, то уравнение ax+by+c = p, где р ≠ 0, задает прямую m`, параллельную m. Это следует из того, что данные два уравнения не имеют общих решений, а значит, прямые не имеют общих точек.

У параллельных прямых

Пример1 . Составим уравнение прямой, проходящей через точку М (1;-2) и параллельной прямой 3x-4y+5=0

Подставляя координаты точки М в левую часть уравнения, получаем значение 16. Значит, искомым уравнением прямой будет 3x+4y+5=16 или окончательно 3x+4y-11=0.

Пусть известны координаты двух точек М 1 (x 1 ;y 2 ), М 2 (x 2 ;y 2 ), лежащих на данной прямой. Составим уравнение прямой, проходящей через две заданные точки:

(x-x 1 )(y 2 -y 1 )-(y-y 1 )(x 2 -x 1 )=0

Пример 2 . Составим уравнение прямой, проходящей через точку М 1 (3;1) и М 2 (2;2).

Получаем такое уравнение (x-3)(2-1)-(y-1)(2-3)=0

после преобразований выходит х+у-4=0.

Если известны координаты (а;0) и (0;b) точек пересечения прямой с осями Ох и Оу, то для этой прямой проще всего записать уравнение в отрезках + = 1.

Рассмотрим на координатной плоскости ху треугольник с вершинами в точках А (х 1 ;у 1 ), В (х 2 ;у 2 ), С (х 3 ;у 3 ). Уравнение прямой, на которой лежит сторона АВ этого треугольника, можно записать в виде

(x-x 1 )(y 2 -y 1 )-(y-y 1 )(x 2 -x 1 )=0.

Подставим координаты третьей вершины С (х 3 ;у 3 ) в левую часть этого уравнения,

получим некоторое значение

q=(x 3 -x 1 )(y 2 -y 1 )-(y 3 -y 1 )(x 2 -x 1 )

Чтобы понять геометрический смысл числа q, заметим, что уравнение

(х-х 1 )(у 2 -у 1 )-(у-у 1 )(х 2 -х 1 )=q задает прямую, параллельную стороне АВ данного треугольника. Поэтому для каждой точки этой прямой результат подстановки ее координат в левую часть уравнения тот же, что и для точки C (х 3 ;у 3 ), и дает число q. Значит, то же значение получится и для точки С 1 (х 4 ;у 1 ) пересечения упомянутой прямой с прямой у=у 1 , параллельной оси абсцисс и проходящей через вершину A треугольника. Но в этой точке

(х-х 1 )(у 2 -у 1 )-(у-у 2 )(х 2 -х 1 ) = (х 4 -х 1 )(у 2 -у 1 ). Геометрический смысл последнего выражения понять уже несложно: |(х 4 -х 1 )(у 2 -у 1 )| площадь параллелограмма со сторонами АВ и АС 1 . Длина стороны АС 1 равна |х 4 -х 1 |, а длина высоты параллелограмма, опущенной из вершины B на эту сторону, есть |у 2 -у 1 |. Поэтому |q| есть площадь ΔАВС 1 , но она такая же, что и у ΔАВС. В результате приходим к следующей формуле для площади треугольника

S = |(x 3 -x 1 )(y 2 -y 1 )-(y 3 -y 1 )(x 2 -x 1 )|. (3, стр. 169).

Если треугольник задан в декартовой системе координат и имеет своими вершинами точки А (х 1 ;у 1 ), В (х 2 ;у 2 ), С (х 3 ;у 3 ), то можно составить уравнение треугольника:

|(x-x 1 )(y 2 -y 1 )-(y-y 1 )(x 2 -x 1 )| + |(x-x 2 )(y 3 -y 2 )-(y-y 2 )(x 3 -x 2 )| +

+ |(x-x 3 )(y 1 -y 3 )—(y-y 3 )(x 1 -x 3 )| = 2S, где

S = |(x 3 -x 1 )(y 2 -y 1 )-(y 3 -y 1 )(x 2 -x 1 )|.

Пример 3 . Составим уравнение треугольника, изображенного на рисунке. Для этого составим уравнения прямых, которые являются его сторонами, по формуле

(x-x 1 )(y 2 -y 1 )-(y-y 1 )(x 2 -x 1 )=0, задающей уравнение прямой по двум ее точкам. При этом допустимым считаем раскрытие скобок и приведение подобных слагаемых и недопустимым – умножение обеих частей уравнения на некоторое число (за исключением -1) .

Уравнения сторон имеют вид: х-у+1=0, х+у-1=0, 2у=0. Сложив модули левых частей этих уравнений, и приравняв полученное выражение к удвоенной площади ΔАВС, равной в данном случае 1, приходим к искомому уравнению |x-y+1|+|x+y-1|+2|y|=2.

Описанный метод дает возможность получить уравнение любого выпуклого многоугольника на плоскости, координаты вершин которого известны.

Уравнение квадрата, ромба

Пример 4 . Составить уравнение квадрата:

|x-1| + |y-1| + |x| + |y| = 1. Площадь равна 1.

Пример 5 . Составить уравнение ромба:

Через точки с координатами (1;0), (0;1) уравнение прямой: x +y -1 = 0.

Через точки с координатами (-1;0), (0;1) уравнение прямой: x – y + 1 = 0.

Через точки с координатами (-1;0), (0;-1) уравнение прямой: x + y + 1 = 0.

Через точки с координатами (0;-1), (1;0) уравнение прямой: -x + y + 1 = 0.

Получили: | x + y — 1| + | x – y + 1| + | x + y + 1| + | -x + y + 1 | = 4.

Этот же ромб имеет другое уравнение: |х| + |у| = 1, которое лучше решать «методом областей». Площадь ромба равна 2.

Пример 6 . Докажите, что уравнения: |x + y| + |x — y| = 2 и |x + 1| + |y + 1| + |x -1| +|y — 1| =4 относятся к одному квадрату.

Первое уравнение лучше решать «методом областей», где вся плоскость разбивается прямыми у =-х и у=х на четыре области, значит, искомая фигура четырехугольник, стороны которого параллельны осям координат. Из уравнений каждой области у=1, х=1и т.д. понимаем, что это квадрат, площадь которого равна 4.

Второе уравнение наглядно изображено, подтверждая первое.

Пример 7. Определить вид многоугольника по уравнениям:

|х| + 3|у| = 6; |х-3| + |у+3| = 3; |х-1| + 7|у| = 1.

Во всех случаях даны уравнения ромба .

Пример 8 . Изобразить на плоскости многоугольник по данному уравнению: |x|+|y|+|x+y|=4.

Из данного уравнения следует, что х=0, у=0, х= -у –прямые, которые разбивают плоскость на несколько областей.

Найдем уравнение прямой, стороны многоугольника, в каждой из областей:

Уравнение квадрата в декартовой системе координат.

Проанализируем расположение квадрата на координатной плоскости.

В общем случае уравнение квадрата в декартовой (прямоугольной) системе координат принимает вид:

где точка О`(a;b)точка пересечения диагоналей квадрата;

d – длина диагонали квадрата.

В частном случае, когда точка О(0;0) — начала координат, является одновременно и точкой пересечения диагоналей квадрата, уравнение квадрата принимает вид:

где dдлина диагонали квадрата.

Кривые второго порядка — определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение и надо построить фигуру Ф, уравнением которой является ;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).

Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением

Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а — правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).

Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .

Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим

или

(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.

Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:

и сделаем параллельный перенос по формулам

В новых координатах преобразуемое уравнение примет вид: где р — положительное число, определяется равенством .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

где коэффициенты А, В и С не равны одновременно нулю

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число — мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а — его фокусами (рис. 12).

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

— каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью

Найдем эксцентриситет эллипса:

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.

В новой системе координат координаты вершин и фокусов гиперболы будут следующими:

Переходя к старым координатам, получим:

Построим график эллипса.

Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://www.calc.ru/Uravneniye-Kvadrata-V-Dekartovoy-Sisteme-Koordinat.html

http://www.evkova.org/krivyie-vtorogo-poryadka

Содержание:

Изучив материал этой лекции, вы узнаете формулу, с помощью которой можно найти сумму углов выпуклого многоугольника.

  • Вы расширите свои представления о такой знакомой вам величине, как площадь.
  • Вы научитесь находить площадь параллелограмма, треугольника, трапеции.

Определение многоугольников

Рассмотрим фигуру, состоящую из точек Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 195 зеленым цветом. Эту часть плоскости вместе с отрезками Многоугольник - определение и вычисление с примерами решения называют многоугольником. Точки Многоугольник - определение и вычисление с примерами решения называют вершинами многоугольника, а указанные выше отрезки — сторонами многоугольника.

Стороны, являющиеся соседними отрезками, называют соседними сторонами многоугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника.

Две соседние стороны многоугольника образуют угол многоугольника. Например, на рисунке 196 Многоугольник - определение и вычисление с примерами решения — углы многоугольника, а Многоугольник - определение и вычисление с примерами решения не является углом многоугольника.

Многоугольник - определение и вычисление с примерами решения

Многоугольник называют по количеству его углов: треугольник, четырехугольник, пятиугольник и т. п.

Многоугольник обозначают по его вершинам. Например, на рисунке 197 изображен пятиугольник ABCDE. В обозначении многоугольника буквы, стоящие рядом, соответствуют соседним вершинам. Например, пятиугольник, изображенный на рисунке 197, можно обозначить еще и так: CDEAB, EABCD, EDCBA и т. д.

Периметром многоугольника называют сумму длин всех его сторон.

Отрезок, соединяющий несоседние вершины многоугольника, называют диагональю. Например, на рисунке 198 отрезок АЕ — диагональ шестиугольника ABCDEF.

Многоугольник - определение и вычисление с примерами решения

На рисунке 199 изображен многоугольник, все углы которого меньше развернутого. Такой многоугольник называют выпуклым. Из сказанного следует, что любой треугольник является выпуклым многоугольником. Заметим, что многоугольники, изображенные на рисунках 196-198, не являются выпуклыми.

Выпуклый многоугольник обладает такими свойствами:

  1. выпуклый многоугольник расположен в одной полуплоскости относительно любой прямой, содержащей его сторону (рис. 200);
  2. выпуклый многоугольник, отличный от треугольника, содержит любую свою диагональ (рис. 201).

Если многоугольник не является выпуклым, то он такими свойствами не обладает (рис. 198, 202).

Многоугольник - определение и вычисление с примерами решения

Теорема 19.1. Сумма углов выпуклого n-угольника равна Многоугольник - определение и вычисление с примерами решения

Доказательство. Для случая n = 3 теорема была доказана в 7 классе (теорема 16.1).

Пусть Многоугольник - определение и вычисление с примерами решения На рисунке 203 изображен выпуклый n-угольник Многоугольник - определение и вычисление с примерами решения

Докажем, что сумма всех его углов равна 180° (n-2).

Проведем все его диагонали, выходящие из вершины Многоугольник - определение и вычисление с примерами решения Эти диагонали разбивают данный многоугольник на (n — 2) треугольника. Сумма всех углов этих треугольников равна сумме углов n-угольника. Поскольку сумма углов каждого треугольника равна 180°, то искомая сумма равна 180° (n — 2). 

Многоугольник - определение и вычисление с примерами решения

Отметим, что эта теорема справедлива и для любого многоугольника, не являющегося выпуклым.

Определение. Окружность называют описанной около многоугольника, если она проходит через все его вершины.

На рисунке 204 изображена окружность, описанная около многоугольника. В этом случае также говорят, что многоугольник вписан в окружность.

Центр окружности, описанной около многоугольника, равноудален от всех его вершин. Следовательно, этот центр принадлежит серединным перпендикулярам всех сторон многоугольника, вписанного в окружность.

Около многоугольника можно описать окружность, если существует точка, равноудаленная от всех его вершин. Следовательно, если серединные перпендикуляры всех сторон многоугольника пересекаются в одной точке, то около такого многоугольника можно описать окружность.

Определение. Окружность называют вписанной в многоугольник, если она касается всех его сторон.

Многоугольник - определение и вычисление с примерами решения

На рисунке 205 изображена окружность, вписанная в многоугольник. В этом случае также говорят, что многоугольник описан около окружности.

Центр окружности, вписанной в многоугольник, равноудален от всех его сторон. Следовательно, этот центр принадлежит биссектрисам всех углов многоугольника, описанного около окружности.

Понятие площади многоугольника. Площадь прямоугольника

С такой величиной, как площадь, вы часто встречаетесь в повседневной жизни: площадь квартиры, площадь дачного участка, площадь поля и т. п.

Опыт подсказывает вам, что равные земельные участки имеют равные площади, что площадь квартиры равна сумме площадей всех ее помещений (комнат, кухни, коридора и т. д.).

Вы знаете, что площади земельных участков измеряют в сотках (арах) и гектарах; площади регионов и государств — в квадратных километрах; площадь квартиры — в квадратных метрах.

На этих практических знаниях о площади основывается определение площади многоугольника.

Определение. Площадью многоугольника называют положительную величину, которая обладает следующими свойствами:

  1. равные многоугольники имеют равные площади;
  2. если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
  3. за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.

Измерить площадь многоугольника — это значит сравнить его площадь с площадью единичного квадрата. В результате получают числовое значение площади данного многоугольника. Это число показывает, во сколько раз площадь данного многоугольника отличается от площади единичного квадрата.

Например, если клетку вашей тетради принять за единичный квадрат, то площадь многоугольника, изображенного на рисунке 207, будет равна 11 квадратным единицам (кратко записывают: 11 ед.2). 

Многоугольник - определение и вычисление с примерами решения

Обычно для нахождения площади используют формулы, то есть вычисляют площадь многоугольника по определенным элементам (сторонам, диагоналям, высотам и т. д.). Некоторые из формул вы уже знаете. Например, вы неоднократно применяли формулу S = ab, где S — площадь прямоугольника, а и b — длины его соседних сторон.

Для доказательства этой формулы потребуется следующая лемма.
Лемма. Площадь квадрата со стороной Многоугольник - определение и вычисление с примерами решения ед. (n — натуральное число) равна Многоугольник - определение и вычисление с примерами решения

Доказательство. Рассмотрим единичный квадрат и разделим его на Многоугольник - определение и вычисление с примерами решения равных квадратов со стороной Многоугольник - определение и вычисление с примерами решения (рис. 208).
Из определения площади многоугольника (свойство 1) следует, что все эти квадраты имеют равные площади. По свойству 2 сумма площадей этих квадратов равна площади единичного квадрата, то есть 1 ед.2. Поэтому площадь каждого маленького квадрата равна Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Теорема 20.1. Площадь прямоугольника равна произведению длин его соседних сторон.

Доказательство. На рисунке 209 изображен прямоугольник ABCD, длины соседних сторон которого равны a и b: АВ = а, ВС = b. Докажем для случая, когда а и b — рациональные числа, что площадь S прямоугольника вычисляют по формуле S = ab.

Числа а и b представим в виде обыкновенных дробей с одинаковыми знаменателями:
Многоугольник - определение и вычисление с примерами решения где Многоугольник - определение и вычисление с примерами решения— натуральные числа.
Разделим сторону АВ на р равных частей, а сторону ВС — на q равных частей. Через точки деления проведем прямые, параллельные сторонам прямоугольника. Тогда прямоугольник будет разделен на Многоугольник - определение и вычисление с примерами решения равных квадратов со стороной Многоугольник - определение и вычисление с примерами решения

Согласно лемме площадь каждого квадрата равна Многоугольник - определение и вычисление с примерами решения Из определения площади (свойство 2) следует, что площадь прямоугольника равна сумме площадей всех квадратов, то есть Многоугольник - определение и вычисление с примерами решения
Рассмотрение случая, когда хотя бы одно из чисел а или b является иррациональным, выходит за рамки школьного курса геометрии. 

Определение. Многоугольники, имеющие равные площади, называют равновеликими.

Многоугольник - определение и вычисление с примерами решения

Из определения площади (свойство 1) следует, что все равные фигуры равновелики. Однако не все фигуры, имеющие равные площади, являются равными. Например, на рисунке 210 изображены два многоугольника, каждый из которых составлен из семи единичных квадратов. Эти многоугольники равновелики, но не равны.

Площадь параллелограмма

Теорема 21.1. Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.

Доказательство. На рисунке 214 изображены параллелограмм ABCD, площадь которого равна S, и его высота ВМ. Докажем, что S = ВС • ВМ.

Проведем высоту CN. Легко показать (сделайте это самостоятельно), что четырехугольник MBCN — прямоугольник. Покажем, что он равновелик данному параллелограмму.

Площадь параллелограмма равна сумме площадей треугольника АВМ и трапеции MBCD. Площадь прямоугольника равна сумме площадей указанной трапеции и треугольника DCN. Однако треугольники АВМ и DCN равны по гипотенузе и острому углу (отрезки АВ и CD равны как противолежащие стороны параллелограмма, углы 1 и 2 равны как соответственные при параллельных прямых АВ и DC и секущей AD). Значит, эти треугольники равновелики. Отсюда следует, что параллелограмм ABCD и прямоугольник MBCN равновелики.

По теореме 20.1 площадь прямоугольника MBCN равна произведению длин сторон ВС и ВМ. Тогда S = ВС • ВМ, где S — площадь параллелограмма ABCD.

Для завершения доказательства надо рассмотреть случаи, когда основание М высоты ВМ не будет принадлежать стороне AD (рис. 215) или совпадет с вершиной D (рис. 216). И в этом случае параллелограмм ABCD и прямоугольник MBCN будут равновеликими. Докажите этот факт самостоятельно. 

Многоугольник - определение и вычисление с примерами решения

Если обозначить длины стороны параллелограмма и проведенной к ней высоты соответственно буквами а и h, то площадь S параллелограмма вычисляют по формуле Многоугольник - определение и вычисление с примерами решения

Площадь треугольника

Теорема 22.1. Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.

Многоугольник - определение и вычисление с примерами решения

Доказательство. На рисунке 220 изображены треугольник АВС, площадь которого равна S, и его высота ВМ. Докажем, что Многоугольник - определение и вычисление с примерами решения
Через вершины В и С треугольника проведем прямые, параллельные сторонам АС и АВ соответственно (рис. 220). Пусть эти прямые пересекаются в точке N. Четырехугольник ABNC — параллелограмм по определению. Треугольники АВС и NCB равны (докажите это самостоятельно). Следовательно, равны и их площади. Тогда площадь треугольника АВС равна половине площади параллелограмма ABNC. Высота ВМ треугольника АВС является также высотой параллелограмма
ABNC. Отсюда Многоугольник - определение и вычисление с примерами решения

Если воспользоваться обозначениями для высот и сторон треугольника АВС, то согласно доказанной теореме имеем:
Многоугольник - определение и вычисление с примерами решения

где S — площадь треугольника.   

Следствие. Площадь прямоугольного треугольника равна половине произведения его катетов.    

Докажите эту теорему самостоятельно.   

Пример №1

Докажите, что площадь ромба равна половине произведения его диагоналей.

Многоугольник - определение и вычисление с примерами решения

Решение:

На рисунке 221 изображен ромб ABCD, площадь которого равна S. Его диагонали АС и BD пересекаются в точке О. Докажем, что Многоугольник - определение и вычисление с примерами решения
Поскольку диагонали ромба перпендикулярны, то отрезки АО и СО являются высотами треугольников BAD и BCD соответственно. Тогда можно записать:
Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Площадь трапеции

Теорема 23.1. Площадь трапеции равна произведению полусуммы ее оснований и высоты.

Доказательство. На рисунке 224 изображена трапеция ABCD (AD||BC), площадь которой равна S. Отрезок CN — высота этой трапеции. Докажем, что Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Проведем диагональ АС и высоту AM трапеции. Отрезки AM и CN являются высотами треугольников АВС и ACD соответственно.

Имеем:
Многоугольник - определение и вычисление с примерами решения

Если обозначить длины оснований трапеции и ее высоты соответственно буквами Многоугольник - определение и вычисление с примерами решения то площадь S трапеции вычисляют по формуле

Многоугольник - определение и вычисление с примерами решения

Следствие. Площадь трапеции равна произведению ее средней линии и высоты.

Равносоставленные и равновеликие многоугольники

Если некоторый многоугольник можно разрезать на части и составить из них другой многоугольник, то такие два многоугольника называют равносоставленными.

Например, если прямоугольник разрезать вдоль его диагонали (рис. 228), то получим два равных прямоугольных треугольника, из которых можно составить равнобедренный треугольник (рис. 229). Фигуры на рисунках 228 и 229 — равно составленные.

Многоугольник - определение и вычисление с примерами решения

Очевидно, что равносоставленные многоугольники являются равновеликими. Этот факт применяют при доказательстве теорем и решении задач. Например, доказывая теорему 21.1, мы фактически разрезали параллелограмм на треугольник АВМ и трапецию MBCD, из которых составили прямоугольник MBCN (см. рис. 215).

Если треугольник разрезать вдоль средней линии, то из полученных треугольника и трапеции можно составить параллелограмм (рис. 230).

Легко установить (сделайте это самостоятельно), что такое разрезание треугольника приводит к еще одному доказательству теоремы о площади треугольника (теорема 22.1). Этой же цели служит разрезание треугольника на части, из которых можно составить прямоугольник (рис. 231).

Многоугольник - определение и вычисление с примерами решения

Евклид в своей знаменитой книге «Начала» формулирует теорему Пифагора так:

«Площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах».

Если показать, что можно разрезать квадраты, построенные на катетах, на части и составить из этих частей квадрат со стороной, равной гипотенузе, то тем самым будет доказана теорема Пифагора.

На рисунке 232 показан один из возможных способов такого разрезания. Квадраты, построенные на катетах, разрезаны на части, площади которых равны Многоугольник - определение и вычисление с примерами решения Из этих частей сложен квадрат, построенный на гипотенузе.

Из определения площади многоугольника следует, что равносоставленные многоугольники являются равновеликими. Но совсем неочевидной является такая теорема.

Теорема. Любые два равновеликих многоугольника являются равносоставленными.

Впервые этот факт доказал в 1832 г. венгерский математик Фаркаш Бойяи. Позднее немецкий математик Пауль Гервин нашел другое доказательство. Поэтому эту теорему называют теоремой Бойяи—Гервина.

Многоугольник - определение и вычисление с примерами решения

Теорема Чевы

На сторонах ВС, СА и АВ треугольника АВС отметим произвольные точки Многоугольник - определение и вычисление с примерами решения (рис. 234). Каждый из отрезков АЛ,, BBV СС, называют чевианой треугольника АВС. Такое название связано с именем итальянского инженера и математика Джованни Чевы (1648-1734), открывшего удивительную теорему.

Многоугольник - определение и вычисление с примерами решения

Если точки Многоугольник - определение и вычисление с примерами решения выбраны так, что чевианы являются биссектрисами, либо медианами, либо высотами остроугольного треугольника, то эти чевианы пересекаются в одной точке.

Если три прямые пересекаются в одной точке, то их называют конкурентными.

Теорема Чевы дает общий критерий конкурентности произвольных трех чевиан.

Теорема. Для того чтобы, чевианы Многоугольник - определение и вычисление с примерами решения треугольника АВС пересекались в одной точке, необходимо и достаточно, чтобы выполнялось равенство

Многоугольник - определение и вычисление с примерами решения
Доказательство. Докажем сначала необходимое условие конкурентности: если чевианы Многоугольник - определение и вычисление с примерами решения пересекаются в одной точке, то выполняется равенство (*).

Воспользовавшись результатом ключевой задачи 757, можно записать (рис. 235):

Многоугольник - определение и вычисление с примерами решения

Перемножив записанные равенства, получим равенство (*).

Докажем теперь достаточное условие конкурентности: если выполняется равенство (*), то чевианы Многоугольник - определение и вычисление с примерами решения пересекаются в одной точке.

Пусть чевианы Многоугольник - определение и вычисление с примерами решения пересекаются в точке D, а чевиана, проходящая через вершину С и точку D, пересекает сторону АВ в некоторой точке Многоугольник - определение и вычисление с примерами решения Из доказанного выше можно записать:
Многоугольник - определение и вычисление с примерами решения
Сопоставляя это равенство с равенством (*), приходим к выводу, что  Многоугольник - определение и вычисление с примерами решениято есть точки Многоугольник - определение и вычисление с примерами решения делят отрезок АВ в одном и том же отношении, а значит, эти точки совпадают. Следовательно, прямая CD пересекает сторону АВ в точке Многоугольник - определение и вычисление с примерами решения

Напомню:

Сумма углов выпуклого n-угольника
Сумма углов выпуклого n-угольника равна 180° (n — 2).

Окружность, описанная около многоугольника
Окружность называют описанной около многоугольника, если она проходит через все его вершины.

Окружность, вписанная в многоугольник
Окружность называют вписанной в многоугольник, если она касается всех его сторон.

Площадь многоугольника
Площадью многоугольника называют положительную величину,
которая обладает следующими свойствами:

  1. равные многоугольники имеют равные площади;
  2. если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
  3. за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.

Площадь прямоугольника
Площадь прямоугольника равна произведению длин его соседних сторон.

Равновеликие многоугольники
Многоугольники, имеющие равные площади, называют равновеликими.

Площадь параллелограмма
Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.

Площадь треугольника
Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.

Площадь прямоугольного треугольника
Площадь прямоугольного треугольника равна половине произведения его катетов.

Площадь трапеции

  • Площадь трапеции равна произведению полусуммы ее оснований и высоты.
  • Площадь трапеции равна произведению ее средней линии и высоты.

Ломанная линия и многоугольники

Ломаная линия состоит из таких нескольких последовательно-соединенных отрезков: конец первого является началом второго, конец второго является началом третьего и т.д. Если конечная точка последнего отрезка совпадает с начальной точкой первого отрезка, то ломаная называется замкнутой. Многоугольник — это фигура, образованная замкнутой ломаной линией, в которой смежные отрезки не лежат на одной прямой, а несмежные — не пересекаются.

Многоугольник - определение и вычисление с примерами решения

  • Многоугольник — это плоская фигура.
  • Стороны состоят из конечного числа отрезков.
  • Многоугольник это замкнутая фигура, делящая плоскость на 2 части: внутреннюю замкнутую область и внешнюю бесконечную область.
  • Многоугольник обозначают буквами, указывающими его вершины.

Многоугольник - определение и вычисление с примерами решения

Многоугольники бывают выпуклые и вогнутые. Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой содержащей его сторону. Если не лежит в одной полуплоскости — вогнутым.

Многоугольник - определение и вычисление с примерами решения

Многоугольник называется правильным, если у него все стороны все углы конгруэнтны.

Многоугольник - определение и вычисление с примерами решения

В многоугольнике количество вершин, сторон и углов одинаковые. Многоугольник с Многоугольник - определение и вычисление с примерами решения— сторонами называют еще и Многоугольник - определение и вычисление с примерами решения — угольным.

Соответственно количеству сторон, многоугольники называются треугольными, четырехугольными, пятиугольными, шестиугольными т.д. Из любой вершины выпуклого Многоугольник - определение и вычисление с примерами решения — угольника выходят Многоугольник - определение и вычисление с примерами решения диагонали.

Внутренние и внешние углы многоугольника

Угол, образованный двумя сторонами, исходящими из данной вершины называется внутренним углом при данной’ вершине выпуклого многоугольника. Угол, смежный с внутренним углом многоугольника называется внешним. Сумма внутренних и внешних углов (взятых по одному при каждой вершине) многоугольника при любой вершине равна Многоугольник - определение и вычисление с примерами решения.

Многоугольник - определение и вычисление с примерами решения

Теорема 1. Сумма внутренних углов выкуплого Многоугольник - определение и вычисление с примерами решения— угольника Многоугольник - определение и вычисление с примерами решения равна Многоугольник - определение и вычисление с примерами решения.

Следствие: Каждый внутренний угол правильного Многоугольник - определение и вычисление с примерами решения— угольника равен Многоугольник - определение и вычисление с примерами решения

Теорема 2. Сумма внешних углов выкуплого многоугольника равен Многоугольник - определение и вычисление с примерами решения.

Многоугольник - определение и вычисление с примерами решения

Следствие 2. Каждый внешний угол правильного Многоугольник - определение и вычисление с примерами решения— угольника равен Многоугольник - определение и вычисление с примерами решения.

Многоугольник - определение и вычисление с примерами решения

Пример №2

Один из внешних углов правильного многоугольника равен Многоугольник - определение и вычисление с примерами решения.

a) найдите градусную меру внутреннего угла многоугольника;

b) найдите число сторон многоугольника.

Решение: а) Многоугольник - определение и вычисление с примерами решения;

Внутренний угол: Многоугольник - определение и вычисление с примерами решения

b) Многоугольник - определение и вычисление с примерами решения

Многоугольники вписанные в окружность и описанные около окружности

Определение 1. Многоугольник называется вписанным в окружность, если все его вершины лежат на окружности, а окружность называется описанной около многоугольника. На рисунке треугольник Многоугольник - определение и вычисление с примерами решения вписан в окружность.

Многоугольник - определение и вычисление с примерами решения

Определение 2. Многоугольник называется описанным около окружности, если все его стороны касаются окружности, а окружность называется вписанной в многоугольник. На рисунке четырехугольник Многоугольник - определение и вычисление с примерами решения описан около окружности.

Многоугольник - определение и вычисление с примерами решения

Окружность, вписанная в треугольник и описанная около нее

Теорема 1. В любой треугольник можно вписать окружность. Центром этой окружности будет точка пересечения биссектрис углов треугольника.

Многоугольник - определение и вычисление с примерами решения

Теорема 2. Около любого треугольника можно описать окружность. Центром этой окружности будет точка пересечения серединных перпендикуляров к сторонам треугольника.

Многоугольник - определение и вычисление с примерами решения

Теорема 3. Если в окружность вписан прямоугольный треугольник, то гипотенуза является диаметром этой окружности.

Многоугольник - определение и вычисление с примерами решения

Обратная теорема. Если сторона треугольника, вписанного в окружность, является диаметром, то этот треугольник — прямоугольный.

Доказательство 1-ой теоремы (текстовое). Проведем биссектрисы углов Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения треугольника Многоугольник - определение и вычисление с примерами решения и точку пересечения обозначим буквой Многоугольник - определение и вычисление с примерами решения. Произвольная точка, взятая на биссектрисе находится на одинаковом расстоянии от сторон угла. Поэтому Многоугольник - определение и вычисление с примерами решения Точка Многоугольник - определение и вычисление с примерами решения находится и на биссектрисе угла Многоугольник - определение и вычисление с примерами решения(почему?). Нарисуем окружность с центром в точке Многоугольник - определение и вычисление с примерами решения и радиусом Многоугольник - определение и вычисление с примерами решения Так как стороны треугольника перпендикулярны радиусам Многоугольник - определение и вычисление с примерами решения то в точках Многоугольник - определение и вычисление с примерами решенияони касаются окружности. А значит, эта окружность является вписанной в треугольник.

Многоугольник - определение и вычисление с примерами решения

Доказательство 2-ой теоремы. Через середины сторон Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения треугольника Многоугольник - определение и вычисление с примерами решения проведем перпендикуляры и точку их пересечения обозначим буквой Многоугольник - определение и вычисление с примерами решения. По свойству серединного перпендикуляра к отрезку Многоугольник - определение и вычисление с примерами решения. Так как Многоугольник - определение и вычисление с примерами решения равнобедренный, то точка Многоугольник - определение и вычисление с примерами решения находится и на серединном перпендикуляре стороны Многоугольник - определение и вычисление с примерами решения. Окружность с центром в точке Многоугольник - определение и вычисление с примерами решения и радиусом Многоугольник - определение и вычисление с примерами решения, пройдя через все вершины треугольника, будет описанной около нее.

Многоугольник - определение и вычисление с примерами решения

Замечание: Около данного треугольника можно описать только одну окружность. В данную окружность можно вписать бесконечное количество треугольников.

Свойства четырехугольников, вписанных в окружность и описанного около нее

В отличие от треугольников, не во всякий четырехугольник можно вписать или описать окружность.

Теорема 4. В любом описанном четырехугольнике суммы противоположных сторон равны.

Многоугольник - определение и вычисление с примерами решения

Обратная теорема. Если суммы противоположных сторон четырехугольника равны, то в этот четырехугольник можно вписать окружность.

Многоугольник - определение и вычисление с примерами решения

Теорема 5. Сумма двух противоположных углов четырехугольника, вписанного в окружность, равна Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Обратная теорема. Если сумма противоположных углов четырехугольника равна Многоугольник - определение и вычисление с примерами решения, то около этого четырехугольника можно описать окружность.

Многоугольник - определение и вычисление с примерами решения

Доказательство теоремы 4: Пусть точки Многоугольник - определение и вычисление с примерами решения будут точками касания сторон четырехугольника. По свойству касательных, проведенных из данной точки к окружности, Многоугольник - определение и вычисление с примерами решения

Если сложить почленно эти равенства, получим Многоугольник - определение и вычисление с примерами решения или же Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Отношение стороны треугольника, вписанного в окружность, к синусу противолежащего угла равно диаметру этой окружности: Многоугольник - определение и вычисление с примерами решения

Исследуйте данное доказательство для случая, когда центр окружности расположен внутри треугольника, обсудите и напишите в тетради.

Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

В любой правильный многоугольник можно вписать и описать окружность. Центры этих окружностей совпадут. Биссектрисы углов правильного многоугольника пересекаются в точке Многоугольник - определение и вычисление с примерами решения и образуют равнобедренные треугольники конгруэнтные показанному на рисунке Многоугольник - определение и вычисление с примерами решения(по признаку УСУ). Нарисуем окружность радиусом Многоугольник - определение и вычисление с примерами решения с центром в точке Многоугольник - определение и вычисление с примерами решения. Эта окружность, пройдя через все вершины, будет описанной окружностью. Многоугольник - определение и вычисление с примерами решения окружность с радиусом Многоугольник - определение и вычисление с примерами решения, касаясь всех сторон многоугольника, будет вписанной окружностью. Многоугольник - определение и вычисление с примерами решения— радиус окружности, описанной около правильного Многоугольник - определение и вычисление с примерами решения-угольника, Многоугольник - определение и вычисление с примерами решения-радиус вписанной окружности, Многоугольник - определение и вычисление с примерами решения-сторона правильного Многоугольник - определение и вычисление с примерами решения-угольника, Многоугольник - определение и вычисление с примерами решения — центральный угол

Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Задача на построение: Постройте правильный шестиугольник.

1. Нарисуйте отрезок Многоугольник - определение и вычисление с примерами решения, равный стороне правильного шестиугольника.

Многоугольник - определение и вычисление с примерами решения

2. Циркулем нарисуйте окружность, радиус которой равен длине этого отрезка.

3. Не меняя раствора циркуля, разбейте всю окружность на части одинаковой длины и отметьте их точками.

4. Соедините последовательно отмеченные точки. Получится правильный шестиугольник, вписанный в окружность.

Многоугольник - определение и вычисление с примерами решения

Если соединить попарно некоторые вершины правильного шестиугольника Многоугольник - определение и вычисление с примерами решения, например, вершины Многоугольник - определение и вычисление с примерами решения, то получится правильный треугольник. Чтобы построить правильный четырехугольник, нужно провести два взаимно перпендикулярных диаметра и последовательно соединить их концы. Если в окружность вписан правильный Многоугольник - определение и вычисление с примерами решения— угольник, то отметив точки пересечения серединных перпендикуляров с окружностью, получим точки являющиеся вершинами правильного Многоугольник - определение и вычисление с примерами решения-угольника.

Площадь правильного многоугольника

Центр правильного многоугольника. Центр окружности, описанного около правильного многоугольника или вписанного в него, является центром правильного многоугольника. Центр правильного многоугольника находится на одинаковом расстоянии от всех вершин и всех сторон многоугольника.

Апофема правильного многоугольника. Перпендикуляр, проведенный из центра многоугольника к его стороне, называется апофемой. Апофема правильного многоугольника равна радиусу вписанной окружности.

Выполните следующее упражнение по шагам и выведите формулу зависимости площади правильного многоугольника от апофемы.

Многоугольник - определение и вычисление с примерами решения

1. Нарисуйте правильный пятиугольник Многоугольник - определение и вычисление с примерами решения.

2. Из центра Многоугольник - определение и вычисление с примерами решения проведите перпендикуляр, делящий сторону Многоугольник - определение и вычисление с примерами решения пополам.

Многоугольник - определение и вычисление с примерами решения

3. Соедините точки Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения с центром Многоугольник - определение и вычисление с примерами решения.

4. Выразите площадь треугольника Многоугольник - определение и вычисление с примерами решения переменными Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения. Обратите внимание какому измерению многоугольника соответствует высота треугольника.

Многоугольник - определение и вычисление с примерами решения

5. Соедините точки Многоугольник - определение и вычисление с примерами решения с точкой Многоугольник - определение и вычисление с примерами решения. Сравните площади полученных треугольников.

Многоугольник - определение и вычисление с примерами решения

6. Обратите внимание на то, что площадь пятиугольника равна сумме площадей этих треугольников. Площадь пятиугольника:

Многоугольник - определение и вычисление с примерами решения 7. Какому измерению соответствует выражение Многоугольник - определение и вычисление с примерами решения? Выразите площадь пятиугольника через его периметр.

Площадь правильного многоугольника:

Соединив центр правильного Многоугольник - определение и вычисление с примерами решения-угольника с вершинами, получится Многоугольник - определение и вычисление с примерами решения количество равнобедренных конгруэнтных треугольников. Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения-длина стороны многоугольника , Многоугольник - определение и вычисление с примерами решения-число сторон, Многоугольник - определение и вычисление с примерами решения-апофема.

Пример №3

В окружность радиусом равным единице, вписан правильный пятиугольник. Найдите площадь пятиугольника. Решение:

Площадь многоугольника: Многоугольник - определение и вычисление с примерами решения

Нужно найти апофему Многоугольник - определение и вычисление с примерами решения и периметр Многоугольник - определение и вычисление с примерами решения.

Центральный угол Многоугольник - определение и вычисление с примерами решения равен Многоугольник - определение и вычисление с примерами решения. Многоугольник - определение и вычисление с примерами решения — равнобедренный треугольник, а значит его высота Многоугольник - определение и вычисление с примерами решения является и медианой, и биссектрисой.

Тогда Многоугольник - определение и вычисление с примерами решения. Чтобы найти стороны треугольника Многоугольник - определение и вычисление с примерами решения, воспользуемся тригонометрическими соотношениями . Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения — апофема пятиугольника,Многоугольник - определение и вычисление с примерами решения

Сторона пятиугольника: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения Многоугольник - определение и вычисление с примерами решения

Историческое сведение. В 3-ем веке до н.э. Архимед — древнегреческий ученый, для того, чтобы определить численное значение Многоугольник - определение и вычисление с примерами решения, воспользовался периметрами правильных; многоугольников описанных и вписанных в окружность. Пользуясь данным способом исследуйте значение Многоугольник - определение и вычисление с примерами решения.

1. Принимая за единицу диаметр окружности, найдите периметр вписанного шестиугольника.

2. Покажите, что длина окружности с единичным диаметром равна Многоугольник - определение и вычисление с примерами решения.

3. Нарисуйте радиус окружности. Найдите периметр описанного шестиугольника.

4. Напишите неравенство: Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения.

Увеличив число сторон многоугольника в 2 раза и продолжая вычисления для 12-ти, а затем для 96-ти угольного многоугольника Архимед, определил, что значения Многоугольник - определение и вычисление с примерами решения больше Многоугольник - определение и вычисление с примерами решения, но меньше Многоугольник - определение и вычисление с примерами решения.

Паркетирование

Паркетированием называется покрытие площади фигурами до заполнения всей пустоты.

Многоугольник - определение и вычисление с примерами решения

Если сумма углов при общей вершине многоугольника равна Многоугольник - определение и вычисление с примерами решения, то паркетированием можно покрыть всю пустую часть площади. Паркетирование возможно при помощи правильных треугольников, ромбов (квадратов) и правильных шестиугольников. Однако, при помощи правильных пятиугольников это сделать невозможно, потому что, градусная мера одного угла равна Многоугольник - определение и вычисление с примерами решения, а сумма углов при общей вершине трех пятиугольников Многоугольник - определение и вычисление с примерами решения, а четырех пятиугольников Многоугольник - определение и вычисление с примерами решения.

Справочный материал по многоугольникам

Многоугольник и его элементы.

Сумма углов выпуклого многоугольника. многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.

Рассмотрим фигуру Многоугольник - определение и вычисление с примерами решения изображенную на рисунке 213. Она состоит из отрезков Многоугольник - определение и вычисление с примерами решения Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения При этом отрезки размещены так, что соседние отрезки (Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения) не лежат на одной прямой, а несоседние отрезки не имеют общих точек. Такую фигуру называют многоугольником. Точки Многоугольник - определение и вычисление с примерами решения Многоугольник - определение и вычисление с примерами решения называют вершинами многоугольника, а отрезки Многоугольник - определение и вычисление с примерами решениясторонами многоугольника.

Очевидно, что количество вершин многоугольника равно количеству его сторон.

Сумму длин всех сторон многоугольника называют его периметром.

Наименьшее количество вершин (сторон) у многоугольника — три. В этом случае имеем треугольник. Еще одним отдельным видом многоугольника является четырехугольник.

Многоугольник, у которого Многоугольник - определение и вычисление с примерами решения вершин, называют Многоугольник - определение и вычисление с примерами решенияугольником. На рисунке 213 изображен шестиугольник Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Две стороны многоугольника называют соседними, если они имеют общую  вершину. Стороны многоугольника, не имеющие общей вершины, называют несоседними. Например, стороны Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения — соседние, a Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения — несоседние (рис. 213).

Две вершины многоугольника называют соседними, если они принадлежат одной стороне, а вершины многоугольника, не принадлежащие одной стороне, называют несоседними.

Например, вершины Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения — соседние, Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решения — несоседние (рис. 213).

Отрезок, соединяющий две несоседние вершины многоугольника, называют диагональю многоугольника. На рисунке 214 изображены диагонали многоугольника Многоугольник - определение и вычисление с примерами решения выходящие из вершины Многоугольник - определение и вычисление с примерами решения Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Пример №4

Сколько диагоналей имеет Многоугольник - определение и вычисление с примерами решенияугольник?

Решение:

Из каждой вершины Многоугольник - определение и вычисление с примерами решенияугольника выходит Многоугольник - определение и вычисление с примерами решения диагонали. Всего вершин Многоугольник - определение и вычисление с примерами решения а каждая диагональ повторяется дважды, например Многоугольник - определение и вычисление с примерами решения и Многоугольник - определение и вычисление с примерами решенияПоэтому всего диагоналей у Многоугольник - определение и вычисление с примерами решенияугольника будет Многоугольник - определение и вычисление с примерами решения

Ответ. Многоугольник - определение и вычисление с примерами решения

Углы, стороны которых содержат соседние стороны многоугольника, называют углами многоугольника. Пятиугольник Многоугольник - определение и вычисление с примерами решения имеет углы Многоугольник - определение и вычисление с примерами решения

Если каждый из углов многоугольника меньше развернутого, то такой многоугольник называют выпуклым. Если хотя бы один угол многоугольника больше развернутого, то такой многоугольник называют невыпуклым.

Многоугольник Многоугольник - определение и вычисление с примерами решения — выпуклый (рис. 215), а многоугольник Многоугольник - определение и вычисление с примерами решения — невыпуклый (рис. 216), так как угол при вершине Многоугольник - определение и вычисление с примерами решения больше чем 180°.

Многоугольник - определение и вычисление с примерами решения

Теорема (о сумме углов выпуклого Многоугольник - определение и вычисление с примерами решенияугольника). Сумма углов выпуклого Многоугольник - определение и вычисление с примерами решенияугольника равна Многоугольник - определение и вычисление с примерами решения

Доказательство:

Выберем во внутренней области многоугольника произвольную точку Многоугольник - определение и вычисление с примерами решения и соединим ее со всеми вершинами Многоугольник - определение и вычисление с примерами решенияугольника (рис. 217). Получим Многоугольник - определение и вычисление с примерами решения треугольников, сумма всех углов которых равна Многоугольник - определение и вычисление с примерами решения Сумма углов с вершиной в точке Многоугольник - определение и вычисление с примерами решения равна Многоугольник - определение и вычисление с примерами решения Сумма углов данного Многоугольник - определение и вычисление с примерами решенияугольника равна сумме углов всех треугольников, кроме углов с вершиной в точке Многоугольник - определение и вычисление с примерами решения то есть: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Углы выпуклого многоугольника называют еще его внутренними углами. Угол, смежный с внутренним углом многоугольника, называют внешним углом многоугольника. На рисунке 218 угол Многоугольник - определение и вычисление с примерами решения — внешний угол многоугольника Многоугольник - определение и вычисление с примерами решения— при вершине Многоугольник - определение и вычисление с примерами решения

Очевидно, что каждый многоугольник имеет по два внешних угла при каждой вершине. 

Многоугольник - определение и вычисление с примерами решения

Пример №5

Докажите, что сумма внешних углов выпуклого Многоугольник - определение и вычисление с примерами решенияугольника, взятых по одному при каждой вершине, равна 360°.

Решение:

Сумма внутреннего и внешнего углов при каждой вершине многоугольника равна 180°. Поэтому сумма всех внутренних и внешних углов Многоугольник - определение и вычисление с примерами решенияугольника равна Многоугольник - определение и вычисление с примерами решения Так как сумма внутренних углов равна Многоугольник - определение и вычисление с примерами решения то сумма внешних углов равна:

Многоугольник - определение и вычисление с примерами решения

Многоугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около многоугольника (рис. 219). 

Около многоугольника не всегда можно описать окружность. Если же это возможно, то центром такой окружности является точка пересечения серединных перпендикуляров к сторонам многоугольника (как и в случае треугольника).

Многоугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в многоугольник (рис. 220).

Не в каждый многоугольник можно вписать окружность. Если же это возможно, то центром такой окружности является точка пересечения биссектрис внутренних углов многоугольника (как и в случае треугольника).

Многоугольник и его свойства

Вы уже знаете, что такое треугольник и четырёхугольник. Более общим является понятие многоугольника. На рисунке 327 вы видите многоугольник ABCDEF. Он состоит из отрезков АВ, ВС, CD, DE, EFy FA, размещённых таким образом, что смежные отрезки не лежат на одной прямой, а несмежные -не имеют общих точек. Отрезки, из которых состоит многоугольник, называются его сторонами, углы, образованные смежными сторонами, — углами, а вершины этих углов — вершинами многоугольника.

В зависимости от количества вершин (углов либо сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д. Многоугольник с n вершинами называется n-угольником.

Многоугольник - определение и вычисление с примерами решения

Многоугольник обозначают названиями его вершин, например шестиугольник ABCDEF (рис. 327), пятиугольник Многоугольник - определение и вычисление с примерами решения (рис. 328). ? | На рисунке 329 вы видите многоугольники Многоугольник - определение и вычисление с примерами решения. В чём их различие?

Ни одна из прямых, проходящих через стороны многоугольника Многоугольник - определение и вычисление с примерами решения не пересекает другие его стороны. Он лежит по одну сторону от любой из этих прямых. Такой многоугольник называется выпуклым. Многоугольник Многоугольник - определение и вычисление с примерами решения не является выпуклым.

В дальнейшем мы будем рассматривать лишь выпуклые многоугольники.

Периметром многоугольника называется сумма длин всех его сторон. Его обозначают буквой Р.

Многоугольник - определение и вычисление с примерами решения

Посмотрите на рисунок 330. В шестиугольнике ABCDEF отрезки AC, AD, АЕ соединяют вершину А с несоседними вершинами. Это — диагонали шестиугольника.

Диагональю n-угольника называется отрезок, который соединяет две несоседние его вершины.

Теорема (о сумме углов n-угольника).

Сумма углов n-угольника равна 180° • (n — 2).

Дано: Многоугольник - определение и вычисление с примерами решения — n-угольник (рис. 331),Многоугольник - определение и вычисление с примерами решения — диагонали. Доказать: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Доказательство. В заданном n-угольнике диагонали Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решениявыходят из одной вершины Многоугольник - определение и вычисление с примерами решения Поэтому они разбивают n-угольник на n — 2 треугольников. Сумма всех углов образованных треугольников равна сумме углов данного n-угольника. Поскольку в каждом треугольнике сумма углов равна 180°, то сумма углов данного n-угольника — 180° • (n — 2).

Угол, смежный с углом многоугольника (рис. 332), называется внешним углом многоугольника.

Многоугольник - определение и вычисление с примерами решения

Многоугольники могут быть вписанными в окружность (рис. 333) или описанными около окружности (рис. 334). Попытайтесь дать определения и сравните их с указанными в учебнике.

Многоугольник все вершины которого лежат на окружности, называется вписанным, в эту окружность, а окружность — описанной около этого многоугольника.

Многоугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот многоугольник.

Стороны вписанного многоугольника и его диагонали — это хорды окружности. Каждый его угол является вписанным углом (рис. 335).

Многоугольник - определение и вычисление с примерами решения

Стороны описанного многоугольника являются касательными к окружности, а его диагонали — секущими (рис. 336).

1. Геометрическая фигура называется простой, если её можно разбить на конечное количество треугольников. Многоугольник — это простая фигура (см. рис. 330 и 331), а окружность не является простой фигурой (рис. 337). Даже вписав в окружность многоугольник с очень большим количеством сторон, мы только приблизим его контур к окружности. Поэтому в геометрии длину окружности и площадь круга находят другими методами, чем периметр и площадь многоугольника.

Многоугольник - определение и вычисление с примерами решения

2. У вас может возникнуть вопрос: Всегда ли из равенства сторон многоугольника следует равенство его углов и наоборот? Нет, это свойство лишь треугольника. Вы знаете пример четырёхугольника, в котором все стороны равны, а углы — не равны. Это ромб. В прямоугольнике все углы равны, а вот стороны — нет. Среди многоугольников с большим количеством вершин также можно выделить равносторонние многоугольники, в которых не все углы равны (рис. 338), и равноугольные многоугольники, в которых не все стороны равны

Понятие площади

Многоугольник разбивает плоскость на две области — внутреннюю (рис. 345) и внешнюю (рис. 346). Многоугольник - определение и вычисление с примерами решения

Многоугольник вместе с его внутренней областью называется плоским многоугольником.

Каждый плоский многоугольник (например, многоугольник F на рис. 347) занимает часть плоскости. Если эту часть плоскости выразить некоторым числом, то получим площадь многоугольника. Далее будем говорить «площадь многоугольника», имея в виду, что многоугольник -плоский. Это относится и к другим плоским фигурам.

Площадь обозначают буквой S. Иногда указывают название фигуры, например Многоугольник - определение и вычисление с примерами решения, а для нескольких фигур — индексы, например Многоугольник - определение и вычисление с примерами решения и т. д.

На рисунке 348 фигуры Многоугольник - определение и вычисление с примерами решения равны, поскольку совмещаются наложением. Понятно, что они имеют равные площади. Можем записать: Многоугольник - определение и вычисление с примерами решения. Для измерения площади фигуры выбирают единицу измерения. Для этого используют квадрат, со стороной равной единице измерения длины. Площадь квадрата со стороной 1 см — это единица измерения площади в квадратных сантиметрах, со стороной 1 м — в квадратных метрах и т. д. Многоугольник - определение и вычисление с примерами решения

Единицы измерения площади кратко записываем так: 1 см2, а говорим: «один квадратный сантиметр». Говорить «сантиметр в квадрате» -неправильно!

Некоторые единицы измерения площади имеют специальные названия: ар (квадрат со стороной 10м), гектар (квадрат со стороной 100 м) и т. д.

На рисунке 349 вы видите квадрат ABCD со стороной 2 см. Он состоит из четырёх квадратов площадью 1 см2, поэтому его площадь равна 4 см2.

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Можем записать: Многоугольник - определение и вычисление с примерами решения

Ясно, что площадь любой фигуры выражается положительным числом. Изменится ли площадь квадрата ABCD, если за единицу измерения принять 1 мм2? Нет, площадь квадрата не изменится, но будет выражена иначе: Многоугольник - определение и вычисление с примерами решения

На рисунке 350 длина стороны квадрата KLMN равна 2,5 см. Он вмещает четыре квадрата площадью 1 см2 и ещё 9 маленьких квадратов площадью 0,25 см2. Поэтому Многоугольник - определение и вычисление с примерами решения = 4 + 9 • 0,25 = 6,25 (см2).

Ясно, что площадь любой фигуры равна сумме площадей частей, из которых она состоит.

Из предыдущих классов вы знаете, что площадь квадрата со стороной а можно вычислить иначе — по формуле площади квадрата:

Многоугольник - определение и вычисление с примерами решения

Для квадратов ABCD и KLMN получим: Многоугольник - определение и вычисление с примерами решения

Поскольку 4 см2 < 6,25 см2, то можем записать: Многоугольник - определение и вычисление с примерами решения

Формулу площади квадрата будем считать основной, поэтому принимаем её без доказательства. Для других фигур формулы площади нужно выводить, исходя из основных свойств площади. Сформулируем их.

Основные свойства площади

  1. Площадь каждой фигуры больше нуля.
  2. Равные фигуры имеют равные площади.
  3. Площадь фигуры равна сумме площадей фигур, из которых она состоит.
  4. Единицей измерения площади является площадь квадрата со стороной, равной единице длины.

Основные свойства площади подсказывают способ выведения формул площади.

Для того чтобы вывести формулу площади многоугольника, нужно: либо разбить его на части, формулы площадей которых известны, либо дополнить его до такой фигуры, формула площади которой известна.

Теорема (о площади прямоугольника).

Площадь прямоугольника равна произведению его смежных сторон.

Дано: ABCD— прямоугольник (рис. 351),

AB=a,AD=b.

Доказать: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Доказательство. Достроим данный прямоугольник ABCD до квадрата AMKN со стороной о + b (рис. 352). Тогда SМногоугольник - определение и вычисление с примерами решения

С другой стороны, квадрат AMKNcociom из двух прямоугольников ABCD и OKLC и двух квадратов ВМОС и DNLC. Поэтому, по третьему свойству площади, Многоугольник - определение и вычисление с примерами решения

Прямоугольники ABCD и OKLC равны, поскольку равны смежные стороны а и b. Поэтому, по второму свойству площади, Многоугольник - определение и вычисление с примерами решенияКвадраты ВМОС и DNLC имеют соответственно стороны b и а, поэтому Многоугольник - определение и вычисление с примерами решения

Далее получим:

Многоугольник - определение и вычисление с примерами решения

Следствие. Площадь прямоугольного треугольника с катетами а и b равна половине произведения катетов.

Действительно, диагональ АС разбивает прямоугольник ABCD со сторонами а и b (рис. 353) на два равных прямоугольных треугольника ABC и ADC с катетами а и b. Поэтому Многоугольник - определение и вычисление с примерами решения

Пример №6

Докажите, что отношение площадей подобных прямоугольных треугольников равно квадрату их коэффициента подобия.

Многоугольник - определение и вычисление с примерами решения

Решение:

Пусть один из заданных прямоугольных треугольников (рис. 354) имеет катеты Многоугольник - определение и вычисление с примерами решения и площадь Многоугольник - определение и вычисление с примерами решения, другой — катеты Многоугольник - определение и вычисление с примерами решения и площадь Многоугольник - определение и вычисление с примерами решения, а коэффициент их подобия равен k.

Докажем, что Многоугольник - определение и вычисление с примерами решения

Поскольку треугольники подобны, то Многоугольник - определение и вычисление с примерами решения Найдём площади треугольников и их отношение:

Многоугольник - определение и вычисление с примерами решения

У вас может возникнуть вопрос: Как доказать, что площадь квадрата равна квадрату его стороны? Пусть сторона квадрата ABCD равна а. Возможны два случая: сторону АВ можно разбить на целое число п единичных отрезков (рис. 355); на стороне АВ можно разместить л единичных отрезков, но остаётся ещё отрезок, который короче единичного (рис. 356).

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Рассмотрим первый случай (рис. 355). Разобьём сторону АВ на п единичных отрезков (на рисунке их три), тогда о — n • 1 — n. Аналогично разобьём сторону AD. Через точки деления проведём прямые, перпендикулярные АВ и AD. Эти прямые разбивают квадрат ABCD на Многоугольник - определение и вычисление с примерами решения равных квадратов площадью 1.

Поэтому Многоугольник - определение и вычисление с примерами решения.

Рассмотрим второй случай (рис. 356). Пусть на отрезке АВ помещается n единичных отрезков и остаётся ещё отрезок длиной меньше 1. Это означает, что отрезок АК из п единичных отрезков меньше отрезка АВ, а отрезок AM из n + 1 единичных отрезков — больше этого отрезка. Получаем неравенство: n < а < n + 1.

Чтобы точнее оценить площадь заданного квадрата, разделим единичный отрезок на т равных частей. Тогда длина каждой части будет равна Многоугольник - определение и вычисление с примерами решения .

Пусть на отрезке АК их помещается Многоугольник - определение и вычисление с примерами решения, а на отрезке Многоугольник - определение и вычисление с примерами решения

Число а будет лежать в пределах Многоугольник - определение и вычисление с примерами решения а квадрат этого числа — в пределах Многоугольник - определение и вычисление с примерами решения Площадь квадрата со стороной АК будет равна Многоугольник - определение и вычисление с примерами решения, а квадрата со стороной AM —Многоугольник - определение и вычисление с примерами решения Поэтому площадь квадрата ABCD будет лежать в пределах Многоугольник - определение и вычисление с примерами решения

При увеличении количества точек деления число т станет как угодно большим. Площадь квадрата ABCD и квадрат числа а будут лежать в пределах, разность которых как угодно мала: Многоугольник - определение и вычисление с примерами решения

А это возможно лишь в случае, если Многоугольник - определение и вычисление с примерами решения

3. Символ S для обозначения площади фигуры происходит от латинского слова superficils, что означает «поверхность».

Параллелограмм и его площадь

Вы уже знаете формулы площадей трёх фигур -квадрата, прямоугольника и прямоугольного треугольника. Выведем формулу площади параллелограмма.

Теорема (о площади параллелограмма).

Площадь параллелограмма равна произведению его стороны на высоту, проведённую к этой стороне.

Дано: ABCD — параллелограмм (рис. 367), DH— высота, АВ= a, DH= Многоугольник - определение и вычисление с примерами решения.

Доказать: Многоугольник - определение и вычисление с примерами решения.

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Доказательство. Проведём из вершины С высоту СМ= DH = Многоугольник - определение и вычисление с примерами решения(рис. 368). Получили трапецию AMCD. Рассмотрим две пары фигур, из которых она состоит: данный параллелограмм ABCD и ∆ВМС, прямоугольник HMCD и ∆AHD. По третьему свойству площади, Многоугольник - определение и вычисление с примерами решения Многоугольник - определение и вычисление с примерами решения∆ВМС= ∆AHD по катету и гипотенузе: СМ= DH как высоты, проведённые к одной стороне АВ параллелограмма, AD — ВС как противоположные стороны параллелограмма. Поэтому, согласно второму свойству площади , Многоугольник - определение и вычисление с примерами решения. Следовательно, Многоугольник - определение и вычисление с примерами решения. Для прямоугольника HMCD имеем: Многоугольник - определение и вычисление с примерами решения Согласно доказанному, площадь данного параллелограмма ABCD равна площади прямоугольника HMCD, поэтому Многоугольник - определение и вычисление с примерами решения

Пример №7

В параллелограмме стороны равны 8 см и 6,4 см, а высота, проведённая к большей стороне, — 6 см. Найдите высоту параллелограмма, проведённую к меньшей его стороне.

Решение:

Пусть ABCD— данный параллелограмм (рис. 369), в котором ab =6,4 см, ВС — 8 см, DM= 6 см.

Многоугольник - определение и вычисление с примерами решения

Требуется найти высоту DH.

Площадь параллелограмма ABCD можно выразить двумя способами: либо как произведение стороны ВС на высоту DAf, либо как произведение стороны АВ на высоту DH.

Многоугольник - определение и вычисление с примерами решения

Для того чтобы найти длину неизвестной стороны или высоту параллелограмма, выразите площадь двумя способами: через одну из двух смежных сторон параллелограмма и высоту, проведённую к ней, и через другую смежную сторону и соответствующую ей высоту. Составьте и решите уравнение относительно искомой величины.

Можно ли найти площадь ромба по стороне и высоте, проведённой к ней? Можно, поскольку ромб — частный вид параллелограмма.

Вы знаете, как находить площадь прямоугольного треугольника по его катетам. Воспользуемся этим, чтобы вывести ещё одну формулу площади ромба.

Теорема (о площади ромба по его диагоналям).

Площадь ромба равна половине произведения его диагоналей.

Дано: ABCD — ромб (рис. 370), АС и BD — диагонали, Многоугольник - определение и вычисление с примерами решения

Доказать: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решения

Доказательство. В ромбе ABCD все стороны равны. Его диагонали АС и BD взаимно перпендикулярны и в точке пересечения делятся пополам. Поэтому они разбивают ромб на четыре равных прямоугольных треугольника ABO, СВО, CDO и ADO с катетамиМногоугольник - определение и вычисление с примерами решения

Поскольку площадь ромба равна сумме площадей этих треугольников, то Многоугольник - определение и вычисление с примерами решения

Следствие. Площадь квадрата равна половине квадрата его диагонали.

Утверждение следует из того, что квадрат — это частный вид ромба и имеет равные диагонали, пусть d. Следовательно, Многоугольник - определение и вычисление с примерами решения

1. У вас может возникнуть вопрос: Зависит ли формула площади параллелограмма ABCD от расположения высоты DH (рис. 368)? Нет, не зависит. В расположении точки H возможны три случая. Один из них рассмотрен в учебнике. Ещё два случая: точка Н находится либо в вершине В параллелограмма (рис. 371), либо на продолжении его стороны АВ (рис. 372).

Многоугольник - определение и вычисление с примерами решения

Во втором случае (рис. 371) параллелограмм ABCDсостоит из двух равных прямоугольных треугольников ABD u CDB, поэтому Многоугольник - определение и вычисление с примерами решения

В третьем случае (рис. 372) доказательство аналогично изложенному в учебнике. Проведите это самостоятельно.

2. Для фигур, имеющих равные площади, используют специальное название — равновеликие. Например, параллелограмм ABCD и прямоугольник HMCD на рисунке 372 являются равновеликими. Понятно, что два равных многоугольника всегда равновелики, но не любые два равновеликих многоугольника равны.

Два многоугольника называются равносоставленными, если их можно разбить на одинаковое количество попарно равных многоугольников, в частности треугольников. Таковы, например, параллелограмм ABCD и прямоугольник

HMCD на рисунке 368, поскольку каждый состоит из общей для них трапеции и равных прямоугольных треугольников ADH и ВСМ.

Между равновеликими и равносоставленными фигурами существует такая связь: равносоставленные многоугольники являются равновеликими (из определения о равносоставленных многоугольниках); равновеликие многоугольники являются равносоставленными. Последнее утверждение известно, как «теорема Больяи — Гервина», доказанная в XIX в. Интересно, что Фаркаш Больяи (1775 — 1856, Венгрия), доказавший теорему, был отцом Яноша Больяи (1802 — 1860) — одного из творцов неевклидовой геометрии. Янош Больяи.

Треугольник и его площадь

Вы уже знаете, как вычислить площадь прямоугольного треугольника по его катетам. Возникает вопрос: Как найти площадь любого треугольника по его стороне и высоте, проведённой к этой стороне?

Теорема (о площади треугольника).

Площадь треугольника равна половине произведения его стороны на высоту, проведённую к этой стороне.

Дано: Многоугольник - определение и вычисление с примерами решения (рис. 380), ‘ АН— высота, ВС= а, АН— Многоугольник - определение и вычисление с примерами решения

Доказать: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Доказательство. На стороне АВ заданного треугольника ABC построим равный ему треугольник BAD (рис. 381). Образованный четырёхугольник ADBC— параллелограмм, поскольку, по построению, AD = ВС, BD = АС. В нём сторона ВС= а, высота АН=Многоугольник - определение и вычисление с примерами решения, поэтому Многоугольник - определение и вычисление с примерами решения. Поскольку параллелограмм состоит из двух равных треугольников ABC и BAD, то площадь треугольника ABC равна половине площади параллелограмма ADBC.

Следовательно: Многоугольник - определение и вычисление с примерами решения

Пример №8

Докажите, что площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Решение:

Пусть ABC — данный треугольник (рис. 382), в котором ВС= а, АС— b, АВ= с, Многоугольник - определение и вычисление с примерами решения — полу периметр, точка О— центр вписанной окружности, г — радиус вписанной окружности.

Докажем, что Многоугольник - определение и вычисление с примерами решения

Соединим отрезками вершины треугольника ABC с центром О вписанной в него окружности (рис. 383). Получаем три треугольника — ВОС, АОС и АОВ. В каждом из них радиус вписанной окружности r является высотой, проведённой к стороне, равной соответственно a, b или с.

ПоэтомуМногоугольник - определение и вычисление с примерами решения Площадь Многоугольник - определение и вычисление с примерами решения равна сумме площадей этих треугольников. Следовательно,Многоугольник - определение и вычисление с примерами решения Для того, чтобы найти площадь треугольника (четырехугольника) можно воспользоваться способом сложения площадей его частей. При этом иногда нужны дополнительные построения, чтобы образовались вспомогательные треугольники, площади которых можно найти по условию задачи.

1. Способы вычисления площади треугольника (а также прямоугольника и трапеции) были известны ещё в Древнем Египте. Сведения об этом дошли до нас на папирусах. Среди них наиболее известные — папирус Ринда (около 1800 г. до н. э.), содержащий 84 задачи с решениями (страница из этого папируса на рис. 384), и так называемый московский папирус (около 1600 г. до н. э.), он содержит 25 задач с решениями. Чтобы найти площадь треугольника, древние египтяне основание треугольника делили пополам и умножали на высоту. А для определения площади равнобедренного треугольника использовали полупроизведение его боковых сторон.

2. Геометрические расчёты по точным формулам проводились и в древнем Вавилоне. Сведения сохранились на клинописных табличках (образец вы видите на рис. 385). Дошедшие до нас тексты свидетельствуют, что вавилоняне знали и использовали в практических задачах пропорциональность параллельных отрезков. Например, они умели вычислять длину отрезков AW, СМ и ВМ (рис. 386) в треугольнике ABC по его стороне АС= 30, разности S, — S2 = 42 площадей трапеции и треугольника, на которые разбивается данный треугольник параллельной прямой MN, и разности ВМ — СМ = 20. Сейчас для решения этой задачи нам пришлось бы составлять систему уравнений.

Трапеция и её площадь

Вы знаете, чтобы вывести формулы площадей прямоугольника, параллелограмма или треугольника, надо составить из этих фигур такие, площади которых умеете находить. Воспользуемся этим способом и выведем формулу площади трапеции.

Теорема (о площади трапеции).

Площадь трапеции равна произведению полусуммы её оснований на высоту.

Дано: ABCD— трапеция (рис. 397),

AB и CD — основания, СН— высота, АВ=о, CD=b, CH=h. а + b

Доказать: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Доказательство. Проведём в трапеции диагональ АС (рис. 398). Она разбивает трапецию на два треугольника ABC и ADC. Высота h трапеции является высотой треугольника ABC, проведённой к стороне АВ = а, и равна высоте треугольника ADC, проведённой к стороне CD = b. Площадь трапеции равна сумме площадей этих треугольников, поэтому Многоугольник - определение и вычисление с примерами решения

Пример №9

Диагонали АС и BD трапеции ABCD пересекаются в точке О (рис. 399). Докажите, что треугольники AOD и ВОС имеют равные площади.

Многоугольник - определение и вычисление с примерами решения

Решение:

Рассмотрим треугольники ABD и ABC. В них сторона АВ— общая, а высоты, проведённые к этой стороне, равны высоте трапеции. Поэтому Многоугольник - определение и вычисление с примерами решенияТреугольник ABD состоит из треугольников АОВ и AOD, а треугольник АВС-из треугольников AOBw ВОС. Отсюда получим:

Многоугольник - определение и вычисление с примерами решения

Следовательно, площади треугольников AOD и ВОС равны как разности равных площадей.

Для того чтобы установить, что неравные фигуры имеют равные площади, нужно доказать, что площади этих фигур равны либо сумме равных площадей, либо разности равных площадей.

1. У вас может возникнуть вопрос: Существует ли трапеция, средняя линия которой делит её площадь пополам?

Существование фигуры с заданными свойствами можно доказать, если привести пример такой фигуры. Однако не всегда этот путь — самый простой. История свидетельствует о том, что иногда на поиски примера, подтверждающего существование некоторого математического объекта, учёные затрачивали многие годы. Чтобы упростить поиск, проводят предварительные аналитические расчёты. Именно это мы и сделаем, чтобы ответить на поставленный вопрос. Пусть трапеция ABCD (рис. 400) имеет основания а и b и высоту h. Средняя линия MN разбивает её на две трапеции с равными высотами Многоугольник - определение и вычисление с примерами решения(докажите этo самостоятельно). Обозначим площади этих трапеций Многоугольник - определение и вычисление с примерами решения и выразим их через основания данной трапеции и её высоту:

Многоугольник - определение и вычисление с примерами решения

Найдём отношение площадей Многоугольник - определение и вычисление с примерами решения После сокращений получим: Многоугольник - определение и вычисление с примерами решения

Многоугольник - определение и вычисление с примерами решенияМногоугольник - определение и вычисление с примерами решения

Равенство площадей Многоугольник - определение и вычисление с примерами решения возможно только в случае, если 3b + а = За + b, то есть при а= b. А такой трапеции не существует.

Интересно, что отрезок, соединяющий середины оснований трапеции (иногда его называют второй средней линией трапеции), делит площадь трапеции пополам. Докажите это самостоятельно, используя рисунок 401.

2. Изучая четырёхугольники, вы узнали о дельтоиде (рис. 402). Этот четырёхугольник, как и ромб, имеет взаимно перпендикулярные диагонали. Существуют трапеции со взаимно перпендикулярными диагоналями (рис. 403), а также произвольные четырёхугольники с аналогичным свойством (рис. 404). И ромб, и дельтоид, и указанная трапеция являются частными видами четырёхугольников со взаимно перпендикулярными диагоналями.

Многоугольник - определение и вычисление с примерами решения

Докажите самостоятельно, что площадь четырехугольника со взаимно перпендикулярными диагоналями равна половине произведения этих диагоналей. Эта формула справедлива и для ромба, и для дельтоида, и для трапеции.

  • Площадь многоугольника
  • Правильные многоугольники
  • Вписанные и описанные многоугольники
  • Площадь прямоугольника
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Ведьмак как найти винсента оборотня
  • Как исправить gle
  • Debian как найти программу
  • Как найти дежурного электрика
  • Автономная работа почты outlook как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии