Все живое на планете состоит из множества клеток, поддерживающих упорядоченность своей организации за счет содержащейся в ядре генетической информации. Она сохраняется, реализуется и передается сложными высокомолекулярными соединениями – нуклеиновыми кислотами, состоящими из мономерных звеньев – нуклеотидов. Роль нуклеиновых кислот невозможно переоценить. Стабильностью их структуры определяется нормальная жизнедеятельность организма, а любые отклонения в строении неминуемо приводят к изменению клеточной организации, активности физиологических процессов и жизнеспособности клеток в целом.
Понятие нуклеотида и его свойства
Каждая молекула ДНК или РНК собрана из более мелких мономерных соединений – нуклеотидов. Другими словами, нуклеотид – это строительный материал для нуклеиновых кислот, коферментов и многих других биологических соединений, которые крайне необходимы клетке в процессе ее жизнедеятельности.
К основным свойствам этих незаменимых веществ можно отнести:
• хранение информации о структуре белка и наследуемых признаках;
• осуществление контроля над ростом и репродукцией;
• участие в метаболизме и многих других физиологических процессах, протекающих в клетке.
Состав нуклеотида
Говоря о нуклеотидах, нельзя не остановиться на таком важном вопросе, как их структура и состав.
Каждый нуклеотид состоит из:
• сахарного остатка;
• азотистого основания;
• фосфатной группы или остатка фосфорной кислоты.
Можно сказать, что нуклеотид – это сложное органическое соединение. В зависимости от видового состава азотистых оснований и типа пентозы в структуре нуклеотида нуклеиновые кислоты подразделяются на:
• дезоксирибонуклеиновую кислоту, или ДНК;
• рибонуклеиновую кислоту, или РНК.
Состав нуклеиновых кислот
В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК – рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.
Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания наследственной информации с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.
По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.
К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.
Видовой состав азотистых оснований
Нуклеотиды ДНК по азотистому основанию представлены четырьмя видами:
• аденином (А);
• гуанином (Г);
• цитозином (Ц);
• тимином (Т).
Первые два относятся к классу пуринов, два последних – пиримидинов. По молекулярной массе пуриновые всегда тяжелее пиримидиновых.
Нуклеотиды РНК по азотистому основанию представлены:
• аденином (А);
• гуанином (Г);
• цитозином (Ц);
• урацилом (У).
Урацил так же, как и тимин, является пиримидиновым основанием.
В научной литературе нередко можно встретить и другое обозначение азотистых оснований — латинскими буквами (A, T, C, G, U).
Подробнее остановимся на химической структуре пуринов и пиримидинов.
Пиримидины, а именно цитозин, тимин и урацил, в своем составе представлены двумя атомами азота и четырьмя атомами углерода, образующих шестичленное кольцо. Каждый атом имеет свой номер от 1 до 6.
Пурины (аденин и гуанин) состоят из пиримидина и имидазола или двух гетероциклов. Молекула пуриновых оснований представлена четырьмя атомами азота и пятью атомами углерода. Каждый атом пронумерован от 1 до 9.
В результате соединения азотистого основания и остатка пентозы образуется нуклеозид. Нуклеотид – это соединение нуклеозида и фосфатной группы.
Образование фосфодиэфирных связей
Важно разобраться в вопросе о том, как соединяются нуклеотиды в полипептидную цепь и образуют молекулу нуклеиновой кислоты. Происходит это за счет так называемых фосфодиэфирных связей.
Взаимодействие двух нуклеотидов дает динуклеотид. Образование нового соединения происходит путем конденсации, когда между фосфатным остатком одного мономера и гидроксигруппой пентозы другого возникает фосфодиэфирная связь.
Синтез полинуклеотида – неоднократное повторение этой реакции (несколько миллионов раз). Полинуклеотидная цепь строится посредством образования фосфодиэфирных связей между третьим и пятым углеродами сахаров (3С´ и 5С´).
Сборка полинуклеотида – сложный процесс, протекающий при участии фермента ДНК-полимеразы, которая обеспечивает рост цепи только с одного конца (3´) со свободной гидроксигруппой.
Структура молекулы ДНК
Молекула ДНК, так же как и белка, может иметь первичную, вторичную и третичную структуру.
Последовательность нуклеотидов в цепи ДНК определяет ее первичную структуру. Вторичная структура формируется за счет водородных связей, в основе возникновения которых положен принцип комплементарности. Другими словами, при синтезе двойной спирали ДНК действует определенная закономерность: аденин одной цепи соответствует тимину другой, гуанин – цитозину, и наоборот. Пары аденина и тимина или гуанина и цитозина образуются за счет двух в первом и трех в последнем случае водородных связей. Такое соединение нуклеотидов обеспечивает прочную связь цепей и равное расстояние между ними.
Зная последовательность нуклеотидов одной цепи ДНК, по принципу комплементарности или дополнения можно достроить вторую.
Третичная структура ДНК образована за счет сложных трехмерных связей, что делает ее молекулу более компактной и способной размещаться в малом объеме клетки. Так, например, длина ДНК кишечной палочки составляет более 1 мм, тогда как длина клетки — меньше 5 мкм.
Число нуклеотидов в ДНК, а именно их количественное соотношение, подчиняется правилу Чергаффа (число пуриновых оснований всегда равно количеству пиримидиновых). Расстояние между нуклеотидами – величина постоянная, равная 0,34 нм, как и их молекулярная масса.
Структура молекулы РНК
РНК представлена одной полинуклеотидной цепочкой, образованной через ковалентные связи между пентозой (в данном случае рибозой) и фосфатным остатком. По длине она значительно короче ДНК. По видовому составу азотистых оснований в нуклеотиде также имеются различия. В РНК вместо пиримидинового основания тимина используется урацил. В зависимости от функций, выполняемых в организме, РНК может быть трех типов.
• Рибосомальная (рРНК) – содержит обычно от 3000 до 5000 нуклеотидов. Как необходимый структурный компонент принимает участие в формировании активного центра рибосом, места осуществления одного из важнейших процессов в клетке — биосинтеза белка.
• Транспортная (тРНК) – состоит в среднем из 75 — 95 нуклеотидов, осуществляет перенос нужной аминокислоты к месту синтеза полипептида в рибосоме. Каждый вид тРНК (не менее 40) имеет свою, присущую только ему последовательность мономеров или нуклеотидов.
• Информационная (иРНК) – по нуклеотидному составу весьма разнообразна. Переносит генетическую информацию от ДНК к рибосомам, выступает в роли матрицы для синтеза белковой молекулы.
Роль нуклеотидов в организме
Нуклеотиды в клетке выполняют ряд важнейших функций:
• используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);
• участвуют во многих обменных процессах в клетке;
• входят в состав АТФ – главного источника энергии в клетках;
• выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);
• выполняют функцию биорегуляторов;
• могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).
Нуклеотид – это мономерная единица, образующая более сложные соединения – нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.
Строение нуклеотидов
Каждый нуклеотид
содержит 3 химически различных компонента:
гетероциклическое азотистое основание,
моносахарид (пентозу) и остаток фосфорной
кислоты. В зависимости от азотистого
основания, существуют два типа
нуклеотидов: пуриновые — аденин
(А), гуанин
(G) и
пиримидиновые — цитозин
(С), тимин
(Т) и урацил
(U). При
написании структурных формул нуклеотидов,
нумерация атомов в кольцах пурина и
пиримидина записывается внутри цикла
(рис.1). Молекулы сахаров в нуклеотидах
представлены либо остатком рибозы (в
составе РНК), либо дезоксирибозы (в
составе ДНК). Чтобы отличить номера
атомов в пентозах от нумерации атомов
в основаниях, обозначение номера атома
указывают цифрой со штрихом и запись
производят с внешней стороны кольца.
(‘) — 1′, 2′, 3′, 4′ и 5’ (рис. 4-3).
Рис. 1. Пуриновые
и пиримидиновые основания, входящие в
состав нуклеотидов ДНК и РНК.
Рис. 2. Структурная
формула пентоз, входящих в состав
нуклеотидов:
β-D-рибоза в составе нуклеотидов РНК и
β-D-2-дезоксирибоза в составе нуклеотидов
ДНК.
Пентозу соединяет
с азотистым основанием N-гликозидная
связь, образованная
С1-атомом
пентозы (рибозы или дезоксирибозы) и N1
-атомом пиримидина или N9-aтомом
пурина (рис. 1, рис. 3.) Такое образование
называют нуклеозидом, при присоединении
остатка фосфорной кислоты к пентозе
через 5′-ОН –группу нуклеозид превращается
в нуклеотид.
Таким образом,
остов полинуклеотидной цепи ( одинарной
цепи нуклеиновой кислоты) имеет
одинаковое строение по всей длине
молекулы и состоит из чередующихся
групп — пентоза-фосфат-пентоза.
Вариабельными группами в полинуклеотидных
цепях являются азотистые основания —
аденин, гуанин, цитозин, тимин (урацил).
Уникальность структуры и функциональная
индивидуальность молекул ДНК и РНК
определяются их первичной структурой
— последовательным расположением
нуклеотидов в цепи. В состав нуклеиновых
кислот входят монофосфаты, т.е. нуклеотиды
содержащие лищь один остаток фосфорной
кислоты. В таблице 1 приведены номенклатура
и буквенные обозначения монофосфатов.
Кроме нуклеозидмонофосфатов, в клетках
присутствуют нуклеозиддифосфаты ,
нуклеозидтрифосфаты, содержащие,
соответственно, два или три остатков
фосфорной кислоты. Так, если к молекуле
АМФ присоединить еще один остаток
фосфорной кислоты, то получится молекула
АДФ, если присоединить два остатка
фосфорной кислоты — молекула АТФ (Рис.
4).
Рис. 3. Образование
пуриновых (АМФ) и пиримидиновых (ЦМФ)
нуклеотидов.
Таблица 1.
Номенклатура нуклеозидов и нуклеотидов,
входящих в состав нуклеиновых кислот
Азотистое |
Нуклеозид |
Нуклеотид |
Трёхбуквенное |
Однобуквенный |
Аденин |
Аденозин |
Аденозинмонофосфат |
АМФ |
А |
Гуанин |
Гуанозин |
Гуанозинмонофосфат |
ГМФ |
G |
Цитозин |
Цитидин |
Цитидинмонофосфат |
ЦМФ |
С |
Урацил |
Уридин |
Уридинмонофосфат |
УМФ |
U |
Тимин |
Тимидин |
Тимидинмонофосфат |
ТМФ |
Т |
Рис. 4.
Нуклеозидмонофосфат, нуклеозидиофосфат
и нуклеозидтрифосфат аденозина.
Нуклеотиды — фосфорные эфиры нуклеозидов.
Остаток фосфорной кислоты присоединён
к 5′-углеродному атому пентозы
(5′-фосфоэфирная связь).
Структура
дезоксирибонуклеиновой кислоты (ДНК)
Первичная
структура ДНК — порядок
чередования дезоксирибонуклеозидмонофосфатов
(дНМФ) в полинукпеотидной цепи. Каждая
фосфатная группа в полинуклеотидной
цепи, за исключением фосфорного остатка
на 5′-конце молекулы, участвует в
образовании двух эфирных связей с
участием 3′- и 5′-углеродных атомов двух
соседних дезоксирибоз, поэтому связь
между мономерами называют 3′,
5′-фосфодиэфирной связью (Рис. 5).
Рис. 5. Первичная
структура фрагмента одной цепи ДНК,
состоящего из трех нуклеотидов
Концевые нуклеотиды
ДНК различаются по структуре: на 5′-конце
находится фосфатная группа, а на 3′-конце
цепи — свободная ОН-группа. Эти концы
называют 5′- и 3′-концами плинуклеотидной
цепи. Линейная последовательность
дезоксирибонуклеотидов в полимерной
цепи ДНК сокращённо записывают с помощью
однобуквенного кода от 5′- конца к
3′-концу, например -A-G-C-T-T-A-C-A- .
В каждом мономере
нуклеиновой кислоты присутствует
остаток фосфорной кислоты. При рН 7
фосфатная группа полностью ионизирована,
поэтому in
vivo нуклеиновые
кислоты существуют в виде полианионов
(имеют множественный отрицательный
заряд), и соответственно, хорошо
растворяются в воде. Остатки пентоз
тоже проявляют гидрофильные свойства.
Азотистые основания почти нерастворимы
в воде, но некоторые атомы пуринового
и пиримидинового циклов способны
образовывать водородные
связи.
Вторичная
структура ДНК. В
1953 г. Дж. Уотсоном и Ф. Криком была
предложена модель пространственной
структуры ДНК. Согласно этой модели,
молекула ДНК имеет форму спирали,
образованную двумя полинуклеотидными
цепями, закрученными относительно друг
друга и вокруг общей оси.
|
|
Рис. 6. Модель
двойной спирали фрагмента молекулы
ДНК. А-
образование спирали; Б- трехмерная
модель
Молекулы ДНК
состоят из двух антипараллельных цепей
с комплементарной последовательностью
нукпеотидов. Цепи закручены относительно
друг друга в правозакрученную спираль
так, что на один виток приходится примерно
10 пар нуклеотидов.
Двойная спираль
правозакрученная,
полинуклеотидные
цепи в ней антипараллельны
(рис. 6), т.е.
если одна из них ориентирована в
направлении 3’→5′, то вторая — в направлении
5’→3′. Поэтому на каждом из концов молекулы
ДНК расположены 5′-конец одной цепи и
3′-конец другой цепи. На 5′-конце
располагается свободная т 5′-ОН –группа
дезоксирибозы, иногда она может быть
фосфорилированной . На другом конце
располагается свободная 3′-ОН сахара,
она также может быть этерифицирована
фосфатной группой.
Последовательность
нуклеотидов в цепи ДНК изображают в
виде последовательности букв, обозначающих
соответствующие основания. Например,
если имеется следующий фрагмент
двухцепочечной ДНК:
5′ CATGTA
3′
3′ GTAСAT
5′
Такую структуру
представляют в виде простой одноцепочечной
последовательности:
CATGTA
Если последовательность
нуклеотидов записывается, начиная с
5′-конца, нет необходимости указывать
5′ и 3′ – концы.
Все основания
цепей ДНК расположены внутри двойной
спирали, а пентозофосфатный остов —
снаружи. Полинуклеотидные цепи
удерживаются относительно друг друга
за счёт водородных связей между
комплементарными пуриновыми и
пиримидиновыми азотистыми основаниями
А и Т (две связи) и между G и С (три связи)
(рис. 7). При таком сочетании каждая
Рис. 7. Образование
комплементарных пурин-пиримидиновые
пары оснований в двойной цепи ДНК .
Пара Ц — Г стабилизируется тремя
водородными связям, пара А – Т — двумя
водородными связями
пара содержит по
три кольца, поэтому общий размер этих
пар оснований одинаков по всей длине
молекулы. Водородные связи при других
сочетаниях оснований в паре возможны,
но они значительно слабее. Последовательность
нуклеотидов одной цепи полностью
комплементарна последовательности
нуклеотидов второй цепи. Поэтому,
согласно правилу Чаргаффа (Эрвин Чаргафф
в 1951 г. установил закономерности в
соотношении пуриновых и пиримидиновых
оснований в молекуле ДНК), число пуриновых
оснований (А + G) равно числу пиримидиновых
оснований (Т + С). Спонтанный процесс
образования пар оснований называют
гибридизацией.
Если молекулу ДНК разрезать на короткие
двухцепочечные фрагменты длиной от 20
до 100 нуклеотидов, а затем нагреть до 95
С , водородные связи между комплементарными
основаниями разрушются и двухцепочечная
цепь распадается на две одноцепочечные
фрагменты. Этот процесс называют
плавлением
ДНК ( тепловой
денатурацией). Однако, если раствор ДНК
охладить, то одноцепочечные фрагменты
ДНК начнут снова превращаться в
двухцепочечные за счет спаривания по
комплементарных участков. Такая техника
гибридизации молекул называется
отжигом,
ренатурацией ей
Комплементарые
основания уложены в стопку в сердцевине
спирали. Между основаниями двухцепочечной
молекулы в стопке возникают
Ван-Дер-Ваальсовы (стэкинг) взаимодействия
, стабилизирующие
двойную спираль.
Такая структура
исключает контакт азотистых остатков
с водой, но стопка оснований не может
быть абсолютно вертикальной. Пары
оснований слегка смещены относительно
друг друга, как показано на рисунке . В
образованной структуре различают две
бороздки — большую, шириной 2,2 нм, и малую,
шириной 1,2 нм. Азотистые основания в
области большой и малой бороздок
взаимодействуют со специфическими
белками, участвующими в организации
структуры хроматина.
Описанная выше
конформация известна как В-форма
спирали, в такой форме ДНК обычно
находится в клетке. Однако, в зависимости
от условий , ДНК может изменять свою
форму. При обезвоживании клетки, двойная
спираль приобретает более сплющенную
форму с большим углом наклона оснований,
и приобретает так называемую А-форму.
В частности, в А-форма ДНК встречается
в спорах растений. Известна еще одна
форма ДНК, Z—
форма, когда
сахарофосфатный остов образует
зигзагообразную форму вдоль спирали.
В такой форме спираль закручена не
вправо как в В- и А- формах, а влево.
Биологическое значение А и Z
– форм
пока не известно, предполагается что
такие формы представляют приспособительные
конфигурации ДНК в различных участках
хромосом. Важным свойством двойной
спирали является ее способность
изгибаться. Молекулы ДНК в миллионы раз
длинее, чем размеры ядра и клетки, и
соответственно, для упаковки ДНК в них
она должна быть гибкой. Следует отметить,
что ДНК почти всегда находиться в форме
двойной спирали, за исключением
одноцепочечных ДНК некоторых бактериальных
вирусов.
Рис.8. Схематическое
изображение двойной спирали ДНК. а — по
Уотсону и Крику; б — А-форма ДНК; в —
В-форма ДНК.
с —
остаток дезоксирибозы, р
— остаток
фосфорной
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Нуклеиновые кислоты – присутствующие в клетках всех живых организмов биополимеры, которые выполняют важнейшие функции по хранению и передаче генетической информации и участвуют в механизмах ее реализации в процессе синтеза клеточных белков.
Установление состава нуклеиновых кислот путем их последовательного гидролитического расщепления позволяет выделить следующие структурные компоненты.
НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ КИСЛОТЫ
Рассмотрим структурные компоненты нуклеиновых кислот в порядке усложнения их строения.
1. Нуклеиновые основания.
Гетероциклические основания, входящие в состав нуклеиновых кислот (нуклеиновые основания), — это гидрокси- и аминопроизводные пиримидина и пурина. Нуклеиновые кислоты содержат три гетероциклических основания с пиримидиновым циклом (пиримидиновые основания) и два — с пуриновым циклом (пуриновые основания). Нуклеиновые основания имеют тривиальные названия и соответствующие однобуквенные обозначения.
- В составе нуклеиновых кислот гетероциклические основания находятся в термодинамически стабильной оксоформе.
- Кроме этих групп нуклеиновых оснований, называемых основными, в нуклеиновых кислотах в небольших количествах встречаются минорные основания: 6-оксопурин (гипоксантин), 3-N-метилурацил, 1-N-метилгуанин и др.
- Нуклеиновые кислоты включают остатки моносахаридов – D-рибозы и 2-дезокси –D-рибозы. Оба моносахарида присутствуют в нуклеиновых кислотах в b -фуранозной форме.
2. Нуклеозиды.
Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями и рибозой или дезоксирибозой.
Между аномерным атомом углерода моносахарида и атомом азота в положении 1 пиримидинового цикла или атомом азота в положении 9 пуринового цикла образуется b -гликозидная связь.
В зависимости от природы моносахаридного остатка нуклеозиды делят на рибонуклеозиды (содержат остаток рибозы) и дезоксирибонуклеозиды (содержат остаток дезоксирибозы). Названия нуклеозидов строят на основе тривиальных названий нуклеиновых оснований, добавляя окончание –идин для производных пиримидина и —озин для производных пурина. К названиям дезоксирибонуклеозидов добавляют приставку дезокси-. Исключение составляет нуклеозид, образованный тимином и дезоксирибозой, к которому приставка дезокси- не добавляется, так как тимин образует нуклеозиды с рибозой лишь в очень редких случаях.
Для обозначения нуклеозидов используются однобуквенные обозначения, входящих в их состав нуклеиновых оснований. К обозначениям дезоксирибонуклеозидов (за исключением тимидина) добавляется буква ”д”.
Наряду с представленными на схеме основными нуклеозидами в составе нуклеиновых кислот встречаются минорные нуклеозиды, содержащие модифицированные нуклеиновые основания.
- В природе нуклеозиды встречаются также в свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые отличия от обычных нуклеозидов в строении либо углеводной части, либо гетероциклического основания, что позволяет им выступать в качестве антиметаболитов, чем и объясняется их антибиотическая активность.
- Как N-гликозиды, нуклеозиды устойчивы к действию щелочей, но расщепляются под действием кислот с образованием свободного моносахарида и нуклеинового основания. Пуриновые нуклеозиды гидролизуются значительно легче пиримидиновых.
3. Нуклеотиды
Нуклеотиды – это эфиры нуклеозидов и фосфорной кислоты (нуклеозидфосфаты). Сложноэфирную связь с фосфорной кислотой образует ОН группа в положении 5 или 3 моносахарида. В зависимости от природы моносахаридного остатка нуклеотиды делят на рибонуклеотиды (структурные элементы РНК) и дезоксирибонуклеотиды (структурные элементы ДНК). Названия нуклеотидов включают название нуклеозида с указанием положения в нем остатка фосфорной кислоты. Сокращенные обозначения нуклеозидов содержат обозначение нуклеозида, остатка моно-, ди- или трифосфорной кислоты, для 3 -производных указывается также положение фосфатной группы.
Нуклеотиды являются мономерными звеньями, из которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды выполняют роль коферментов и участвуют в обмене веществ.
4. Нуклеотидные коферменты
- Коферменты – это органические соединения небелковой природы, которые необходимы для осуществления каталитического действия ферментов. Коферменты относятся к разным классам органических соединений. Важную группу коферментов составляют нуклеозидполифосфаты
- Аденозинфосфаты – производные аденозина, содержащие остатки моно-, ди- и трифосфорных кислот. Особое место занимают аденозин-5/-моно-, ди- и трифосфаты — АМФ, АДФ и АТФ — макроэргические вещества, которые обладают большими запасами свободной энергии в подвижной форме.
Молекула АТФ содержит макроэргические связи Р-О, которые легко расщепляются в результате гидролиза.
Выделяющаяся при этом свободная энергия обеспечивает протекание сопряженных с гидролизом АТФ термодинамически невыгодных анаболических процессов, например, биосинтез белка.
Кофермент А. Молекула этого кофермента состоит из трех структурных компонентов: пантотеновой кислоты, 2-аминоэтантиола и АДФ.
Кофермент А участвует в процессах ферментативного ацилирования, активируя карбоновые кислоты путем превращения их в реакционноспособные сложные эфиры тиолов.
Никотинамидадениндинуклеотидные коферменты. Никотинамидадениндинуклеотид (НАД+) и его фосфат (НАДФ+) содержат в своем составе катион пиридиния в виде никотинамидного фрагмента. Пиридиниевый катион в составе этих коферментов способен обратимо присоединять гидрид-анион с образованием восстановленной формы кофермента — НАД Н.
Таким образом никотинамидадениндинуклеотидные коферменты участвуют в окислительно-восстановительных процессах, связанных с переносом гидрид-аниона, например, окислении спиртовых групп в альдегидные (превращение ретинола в ретиналь), восстановительном аминировании кетокислот, восстановлении кетокислот в гидроксикислоты. В ходе этих процессов субстрат теряет (окисление) или присоединяет (восстановление) два атома водорода в виде Н+ и Н—. Кофермент служит при этом акцептором (НАД+) или донором (НАД.Н) гидрид-иона. Все процессы с участием коферментов являются стереоселективными. Так, при восстановлении пировиноградной кислоты образуется исключительно L-молочная кислота.
5. Нуклеиновые кислоты.
Первичная структура нуклеиновых кислот представляет собой линейную полимерную цепь, построенную из мономеров – нуклеотидов, которые связаны между собой 3/-5/-фосфодиэфирными связями. Полинуклеотидная цепь имеет 5′-конец и 3′- конец. На 5′-конце находится остаток фосфорной кислоты, а на 3′- конце — свободная гидроксильная группа.
Нуклеотидную цепь принято записывать, начиная с 5′-конца.
В зависимости от природы моносахаридных остатков в нуклеотиде различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК и РНК различаются также по природе входящих в их состав нуклеиновых оснований: урацил входит только в состав РНК, тимин – только в состав ДНК.
РНК | ДНК |
Урацил | Тимин |
Цитозин, аденин, гуанин | Цитозин, аденин, гуанин |
Вторичная структура ДНК представляет собой комплекс двух полинуклеотидных цепей, закрученных вправо вокруг общей оси так, что углевод-фосфатные цепи находятся снаружи, а нуклеиновые основания направлены внутрь (двойная спираль Уотсона-Крика).
Шаг спирали — 3.4 нм, на 1 виток приходится 10 пар нуклеотидов. Полинуклеотидные цепи антипараллельны, т.е. напротив 3′-конца одной цепи находится 5′-конец другой цепи. Две цепи ДНК неодинаковы по своему составу, но они комплементарны. Это выражается в том, что напротив аденина (А) в одной цепи всегда находится тимин (Т) в другой цепи, а напротив гуанина (Г) всегда находится цитозин (Ц). Комплементарное спаривание А с Т и Г с Ц осуществляется за счет водородных связей. Между А и Т образуется две водородные связи, между Г и Ц – три.
Комплементарность цепей ДНК составляет химическую основу важнейшей функции ДНК – хранения и передачи генетической информации.
Типы РНК. Известны три основных вида клеточных РНК: транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомные РНК (рРНК). Они различаются по месторасположению в клетке, составу и размерами, а также функциями.
РНК состоят, как правило, из одной полинуклеотидной цепи, которая в пространстве складывается таким образом, что ее отдельные участки становятся комплементарными друг другу (”слипаются”) и образуют короткие двуспиральные участки молекулы, в то время как другие участки остаются однотяжевыми.
Матричные РНК выполняют функцию матрицы белкового синтеза в рибосомах. Рибосомные РНК выполняют роль структурных компонентов рибосом.
Транспортные РНК участвуют в транспортировке a -аминокислот из цитоплазмы в рибосомы и в переводе информации нуклеотидной последовательности мРНК в последовательность аминокислот в белках.
Механизм передачи генетической информации. Генетическая информация закодирована в нуклеотидной последовательности ДНК. Механизм передачи этой информации включает три основных этапа.
- Первый этап – репликация –копирование материнской ДНК с образованием двух дочерних молекул ДНК, нуклеотидная последовательность которых комплементарна последовательности материнской ДНК и однозначно определяется ею. Репликация осуществляется путем синтеза новой молекулы ДНК на материнской, которая играет роль матрицы.
Двойная спираль материнской ДНК раскручивается и на каждой из двух цепей происходит синтез новой (дочерней) цепи ДНК с учетом принципа комплементарности. Процесс осуществляется под действием фермента ДНК-полимеразы.
Таким образом из одной материнской ДНК образуются две дочерних, каждая из которых содержит в своем составе одну материнскую и одну вновь синтезированную полинуклеотидную цепь.
- Второй этап – транскрипция – процесс, в ходе которого часть генетической информации переписывается с ДНК в форме мРНК. Матричная РНК синтезируется на участке деспирализованной цепи ДНК как на матрице под действием фермента РНК-полимеразы. В полинуклеотидной цепи мРНК рибонуклеотиды, несущие определенные нуклеиновые основания, выстраиваются в последовательности, определяемой комплементарными взаимодействиями с нуклеиновыми основаниями цепи ДНК.
При этом адениновому основанию в ДНК будет соответствовать урациловое основание в РНК. Генетическая информация о синтезе белка закодирована в ДНК с помощью триплетного кода. Одна аминокислота кодируется последовательностью из трех нуклеотидов, которую называют кодоном. Участок ДНК, кодирующий одну полипептидную цепь, называется геном. Каждому кодону ДНК соответствует комплементарный кодон в мРНК. В целом молекула мРНК комплементарна определенной части цепи ДНК – гену.
Процессы репликации и транскрипции происходят в ядре клетки. Синтез белка осуществляется в рибосомах. Синтезированная мРНК мигрирует из ядра в цитоплазму к рибосомам, перенося генетическую информацию к месту синтеза белка.
- Третий этап – трансляция – процесс реализации генетической информации, которую несет мРНК в виде последовательности нуклеотидов в последовательность аминокислот в синтезируемом белке.
А -Аминокислоты, необходимые для синтеза белка транспортируются к рибосомам посредством тРНК, с которыми они связываются путем ацилирования 3/-ОН группы на конце цепи тРНК.
тРНК имеет антикодоновую ветвь, содержащую тринуклеотид — антикодон, который соответствует переносимой ею аминокислоте. На рибосоме тРНК прикрепляются антикодоновыми участками к соответствующим кодонам мРНК.
Специфичность стыковки кодона и антикодона обеспечивается их комплементарностью. Между сближенными аминокислотами образуется пептидная связь.
Таким образом реализуется строго определенная последовательность соединения аминокислот в белки, закодированная в генах.
Источник: http://studentik.net/lekcii/lekcii_xmia/3082-lekcija-19-nukleozidy-nukleotidy-nukleinovye.html
Нуклеиновые кислоты
Нуклеиновые кислоты — это биополимеры, наряду с белками играющие наиважнейшую роль в клетках живых организмов. Нуклеиновые кислоты отвечают за хранение, передачу и реализацию наследственной информации.
Мономерами нуклеиновых кислот являются нуклеотиды, таким образом они сами представляют полинуклеотиды.
Строение нуклеотидов
Каждый нуклеотид, входящий в состав нуклеиновой кислоты, состоит из трех частей:
- пятиуглеродного сахара (пентозы),
- азотистого основания,
- фосфорной кислоты.
Химические связи между частями нуклеотида ковалентные, образующиеся в результате реакций конденсации (т. е. с выделением молекул воды). Конденсация обратна гидролизу.
В нуклеотиде первый атом углерода пентозы связан с азотистым основанием (связь C-N), а пятый — с фосфорной кислотой (фосфоэфирная связь: C-O-P).
Существуют два основных типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). В составе РНК сахар представлен рибозой, а в ДНК — дезоксирибозой. В обоих случаях в нуклеиновых кислотах встречается циклический вариант пентоз. Дезоксирибоза отличается от рибозы отсутствием атома кислорода при втором атоме углерода.
Наличие дополнительной гидроксильной группы (-OH) у рибозы делает РНК молекулой, легче вступающей в химические реакции.
В составе нуклеотидов нуклеиновых кислот обычно встречаются следующие азотистые основания: аденин (А), гуанин (Г, G), цитозин (Ц, C), тимин (Т), урацил (У, U).
Аденин и гуанин относятся к пуринам, остальные — к пиримидинам. В молекуле пуринов имеется два кольца, а у пиримидинов только одно. Урацил почти не встречается в ДНК, а тимин весьма редок для РНК.
То есть для ДНК характерны аденин, гуанин, тимин и цитозин. Для РНК — аденин, гуанин, урацил и цитозин.
Тимин схож с урацилом, отличатся от него лишь метилированным (имеющим группу -CH3) пятым атомом кольца.
Химическое соединение сахара с азотистым основанием называется нуклеозидом. Ниже представлены нуклеозиды, где в качестве сахара выступает рибоза.
Нуклеозид, реагируя с фосфорной кислотой, образует нуклеотид. Ниже представлен нуклеотид, где в качестве сахара выступает дезоксирибоза, а в качестве азотистого основания — аденин.
Именно наличие остатков фосфорной кислоты в молекулах нуклеиновых кислот определяет их кислотные свойства.
Строение нуклеиновых кислот
Нуклеотиды линейно соединяются между собой, образуя длинные молекулы нуклеиновых кислот. Цепочки многих молекул ДНК являются самыми длинными существующими полимерами. Длина молекул РНК обычно существенно меньше ДНК, но при этом различна, т. к. зависит от типа РНК.
При образовании полинуклеотида (нуклеиновой кислоты) остаток фосфорной кислоты предыдущего нуклеотида соединяется с 3-м атомом углерода пентозы следующего нуклеотида. Связь образуется такая же как между 5-м атомом углерода сахара и фосфорной кислотой в самом нуклеотиде – ковалентная фосфоэфирная.
Таким образом, остов молекул нуклеиновых кислот составляют пентозы, между которыми образуются фосфодиэфирные мостики (по-сути остатки пентоз и фосфорных кислот чередуются). От остова в сторону отходят азотистые основания. На рисунке ниже представлена часть молекулы рибонуклеиновой кислоты.
Следует отметить, что молекулы ДНК обычно не только длиннее РНК, но и состоят из двух цепей, соединенных между собой водородными связями, возникающими между азотистыми основаниями. Причем данные связи образуются согласно принципу комплементарности, по которому аденин комплементарен тимину, а гуанин — цитозину.
Подобные связи могут возникать и в РНК (но здесь аденин комплементарен урацилу). Однако в РНК водородные связи образуются между нуклеотидами одной цепи, в результате чего молекула нуклеиновой кислоты сворачивается различным образом.
Источник: https://biology.su/molecular/nucleic-acids
Днк (дезоксирибонуклеиновая кислота)
ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.
Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.
Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.
Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации). Участок молекулы ДНК, кодирующий определенный признак, – ген.
Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки, другие — только молекулы РНК.
Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:
- синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
- синтеза белка (трансляции): в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.
Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.
Строение ДНК
ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:
- азотистого основания;
- пятиуглеродного сахара (пентозы);
- фосфатной группы.
При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание — к 1′-атому.
Основания в ДНК бывают двух типов:
- Пуриновые: аденин ( А ) и гуанин (G);
- Пиримидиновые: цитозин (С) и тимин (Т)
Строение нуклеотидов в молекуле ДНК
В ДНК моносахарид представлен 2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН), а в РНК — рибозой, имеющей 2 гидроксильные группы (OH).
Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом — 5′-фосфатная группа (5′-конец).
Уровни структуры ДНК
Принято выделять 3 уровня структуры ДНК:
- первичную;
- вторичную;
- третичную.
Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.
Вторичная структура ДНК стабилизируется водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллельных цепочек, закрученных вправо вокруг одной оси. Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.
Третичная структура ДНК – суперспирализация ДНК.
Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.
Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см, а в форме суперспирали укладывается в 5 нм.
Правило Чаргаффа
Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:
- У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т или (А + G)/(C + Т)=1.
- В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т): А +C= G + Т или (А +C)/(G + Т)= 1
- Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1; Г/Ц=1.
- Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.
Модель ДНК Уотсона-Крика
Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль.
Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей.
При этом аденин образует пару только с тимином, а гуанин — с цитозином. Пара оснований А—Т стабилизируется двумя водородными связями, а пара G—С — тремя.
Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.
Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы», а пары оснований А—Т и G—С — ее ступеньки.
Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.
В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:
- 5′-TAGGCAT-3′
- 3-ATCCGTA-5′.
В такой записи 5′-конец верхней цепи всегда располагают слева, а 3′-конец — справа.
Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.
Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:
- согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
- нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.
Интересные факты о ДНК
- Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК.
- Международный день ДНК отмечается 25 апреля. Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК.
Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/
Нуклеотид — это… Что такое Нуклеотид?
Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Строение
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.
В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2′-, 3′- или 5′-гидроксильными группами рибонуклеозидов, в случае 2′-дезоксинуклеозидов этерифицируются 3′- или 5′-гидроксильные группы.
Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ).
Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозиндифосфат).
Номенклатура
Буквенные коды для обозначения нуклеотидов Код Означает Комплементарная пара
A | A | T в ДНК; U в РНК |
C | C | G |
G | G | C |
T или U |
T в ДНК; U в РНК |
A |
M | A или C |
K |
R | A или G |
Y |
W | A или T |
W |
S | C или G |
S |
Y | C или T |
R |
K | G или T |
M |
V | A или C или G |
B |
H | A или C или T |
D |
D | A или G или T |
H |
B | C или G или T |
V |
X или N |
A или C или G или T (U) |
любой |
Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх — тринуклеотидами, из небольшого числа — олигонуклеотидами, а из многих — полинуклеотидами, или нуклеиновыми кислотами.
Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.
Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ).
Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква — на количество остатков фосфорной кислоты в структуре (М — моно-, Д — ди-, Т — три-), а третья прописная буква — всегда буква Ф («-фосфат»; англ. P).
Общепринятые буквенные коды для обозначения нуклеотидных оснований соответствуют номенклатуре, принятой Международным союзом теоретической и прикладной химии (International Union of Pure and Applied Chemistry, сокращённо — англ. IUPAC, русск.
ИЮПАК) и Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, сокращённо — англ. IUBMB).
Если при секвенировании последовательности ДНК или РНК возникает сомнение в точности определения того или иного нуклеотида, помимо пяти основных (A, C, T, G, U), используют другие буквы латинского алфавита в зависимости от того, какие наиболее вероятные нуклеотиды могут находиться в данной позиции последовательности.
Длину секвенированных участков ДНК (гена, сайта, хромосомы) или всего генома указывают в парах нуклеотидов (пн), или парах оснований (англ. base pairs, сокращённо bp), подразумевая под этим элементарную единицу двухцепочечной молекулы нуклеиновой кислоты, сложенную из двух спаренных комплементарных оснований.
История
В домолекулярной генетике для обозначения наименьшего элемента в структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, применялся особый термин рекон.
В настоящее время показано, что таким наименьшим элементом является один нуклеотид (или одно азотистое основание в составе нуклеотида), поэтому данный термин более не употребляется. Для определения понятия единица мутации применялся термин мутон.
В настоящее время показано, что фенотипически мутация может проявляется даже при замене одного нуклеотида (или азотистого основания в составе нуклеотида), таким образом, термин мутон соответствует одному нуклеотиду.
Источник: https://dic.academic.ru/dic.nsf/ruwiki/35341
Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями — нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.
…
Оглавление:
- Понятие нуклеотида
- Состав и основные свойства нуклеотидов
- Нуклеиновые кислоты
- Состав азотистых оснований
- Образование фосфодиэфирных связей
- Структура ДНК
- Функции и свойства ДНК
- Молекула РНК – структура
- Роль нуклеотида в организме
Роль нуклеиновых кислот переоценить невозможно. Нормальная жизнедеятельность организма определяется стабильностью их структуры. Если в строении происходят любые отклонения , меняется количество либо последовательность — это обязательно приводит к изменениям в клеточной организации. Изменяется активность физиологических процессов и жизнедеятельность клеток.
Это интересно: водородная связь образуется между молекулами, химический механизм.
Понятие нуклеотида
Как и белки, нуклеиновые кислоты необходимы для жизни. Это генетический материал всех живых организмов, включая вирусы.
Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные — нуклеиновые кислоты. Без них невозможно хранение, воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы — полинуклеотиды.Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.
Это интересно: типы кристаллических решёток, таблица.
Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид — это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.
Состав и основные свойства нуклеотидов
В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:
- Пентоза или пятиугольный сахар:
- дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
- рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.
2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом
3. Фосфатная группа, состоящая из остатков фосфорной кислоты ( в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида .
Свойствами нуклеотидов являются:
- участие в метаболизме и других физиологических процессах, которые протекают в клетке;
- осуществление контроля над репродукцией и ростом;
- хранение информации о наследуемых признаках и о структуре белка.
Нуклеиновые кислоты
Сахар в нуклеиновых кислотах представлен пентозой. В РНК пятиуглеродный сахар называется рибозой, в ДНК — дезоксирибозой. В каждой молекуле пентозы пять атомов углерода, из которых четыре образуют кольцо с атомом кислорода , а пятый атом входит в группу НО-СН2.
В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.
С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.
К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.
Состав азотистых оснований
Виды нуклеотидов по азотистому основанию ДНК :
Первые два класса — пурины:
- аденин (А);
- гуанин (Г).
Два последние относятся к классу пиримидинов:
- тимин (Т);
- цитозин (Ц).
Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.
Нуклеотиды РНК по азотистому соединению представлены:
- гуанином;
- аденином;
- урацитолом;
- цитозином.
Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).
Пиримидины, а именно тимин, цитозин, урацил представлены шестичленным кольцом, состоящим из двух атомов азота и четырех атомов углерода, последовательно пронумерованных , от 1 до 6.
Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.
Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.
Образование фосфодиэфирных связей
Следует разобраться в вопросе о том, как нуклеотиды соединяются в полипептидную цепь, сколько их участвует в процессе ,образуя молекулу нуклеиновой кислоты за счет фосфодиэфирных связей.
При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.
Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.
Структура ДНК
Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей. При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот. Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.
Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.
Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.
Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.
Функции и свойства ДНК
Основные функции ДНК:
- сохраняет наследственную информацию;
- передача (удвоение/репликация);
- транскрипция, реализация;
- ауторепродукция ДНК. Функционирование репликона.
Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.
Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.
Молекула РНК – структура
РНК является одной полинуклеотидной цепочкой, которая образуется через ковалентные связи между фосфатным остатком и пентозой . Она короче ДНК, имеет другую последовательность и различается по видовому составу азотистых соединений. Пиримидиновое основание тимина в РНК заменяется урацилом.
РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:
- информационная (иРНК) — очень разнообразная по нуклеотидному составу. Она является своего рода матрицей для синтеза белковой молекулы, переносит генетическую информацию к рибосомам от ДНК;
- транспортная (тРНК) в среднем состоит из 75-95 нуклеотидов. Она переносит необходимую аминокислоту в рибосоме к месту синтеза полипептида. У каждого вида тРНК и есть своя, присущая только ему последовательность нуклеотидов или мономеров;
- рибосомальная (рРНК) обычно одержит от 3000 до 5000 нуклеотидов. Рибосом является необходимым структурным ом компонент участвующим в важнейшем процессе, происходящем в клетке – биосинтезе белка.
Роль нуклеотида в организме
В клетке нуклеотиды выполняют важные функции:
- являются биорегуляторами;
- используются как структурные блоки для нуклеиновых кислот ;
- входят в состав главного источника энергии в клетке — АТФ;
- участвуют во многочисленных обменных процессах в клетках;
- являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
- могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).
Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.
Лекция № 19
НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ КИСЛОТЫ
План
- Нуклеиновые основания.
- Нуклеозиды.
- Нуклеотиды.
- Нуклеотидные коферменты.
- Нуклеиновые кислоты.
Лекция № 19
НУКЛЕОЗИДЫ. НУКЛЕОТИДЫ. НУКЛЕИНОВЫЕ
КИСЛОТЫ
План
- Нуклеиновые основания.
- Нуклеозиды.
- Нуклеотиды.
- Нуклеотидные коферменты.
- Нуклеиновые кислоты.
Нуклеиновые кислоты – присутствующие в
клетках всех живых организмов биополимеры, которые выполняют важнейшие функции
по хранению и передаче генетической информации и участвуют в механизмах ее
реализации в процессе синтеза клеточных белков.
Установление состава нуклеиновых кислот путем их последовательного
гидролитического расщепления позволяет выделить следующие структурные
компоненты.
Рассмотрим структурные компоненты нуклеиновых
кислот в порядке усложнения их строения.
1. Нуклеиновые основания.
Гетероциклические основания, входящие в состав
нуклеиновых кислот (нуклеиновые основания), — это гидрокси- и
аминопроизводные пиримидина и пурина. Нуклеиновые кислоты содержат три
гетероциклических основания с пиримидиновым циклом (пиримидиновые
основания) и два — с пуриновым циклом (пуриновые основания). Нуклеиновые основания
имеют тривиальные названия и соответствующие однобуквенные обозначения.
В составе нуклеиновых кислот гетероциклические
основания находятся в термодинамически стабильной оксоформе.
Кроме этих групп нуклеиновых оснований,
называемых основными, в нуклеиновых кислотах в небольших количествах
встречаются минорные основания: 6-оксопурин (гипоксантин),
3-N-метилурацил, 1-N-метилгуанин и др.
Нуклеиновые кислоты включают остатки
моносахаридов – D-рибозы и 2-дезокси –D-рибозы. Оба моносахарида присутствуют в
нуклеиновых кислотах в b -фуранозной форме.
2. Нуклеозиды.
Нуклеозиды – это N-гликозиды, образованные нуклеиновыми основаниями и рибозой
или дезоксирибозой.
Между аномерным атомом углерода моносахарида и атомом азота в положении 1
пиримидинового цикла или атомом азота в положении 9 пуринового цикла образуется b -гликозидная
связь.
В зависимости от природы моносахаридного остатка
нуклеозиды делят на рибонуклеозиды (содержат остаток рибозы) и дезоксирибонуклеозиды (содержат остаток дезоксирибозы). Названия
нуклеозидов строят на основе тривиальных названий нуклеиновых оснований,
добавляя окончание –идин для производных пиримидина и -озин для
производных пурина. К названиям дезоксирибонуклеозидов добавляют приставку дезокси-. Исключение составляет нуклеозид, образованный тимином и
дезоксирибозой, к которому приставка дезокси- не добавляется, так как
тимин образует нуклеозиды с рибозой лишь в очень редких случаях.
Для обозначения нуклеозидов используются
однобуквенные обозначения, входящих в их состав нуклеиновых оснований. К
обозначениям дезоксирибонуклеозидов ( за исключением тимидина) добавляется буква
”д”.
Наряду с представленными на схеме основными
нуклеозидами в составе нуклеиновых кислот встречаются минорные нуклеозиды,
содержащие модифицированные нуклеиновые основания (см. выше).
В природе нуклеозиды встречаются также в
свободном состоянии, преимущественно в виде нуклеозидных антибиотиков, которые
проявляют противоопухолевую активность. Нуклеозиды-антибиотики имеют некоторые
отличия от обычных нуклеозидов в строении либо углеводной части, либо
гетероциклического основания, что позволяет им выступать в качестве
антиметаболитов, чем и объясняется их антибиотическая активность.
Как N-гликозиды, нуклеозиды устойчивы к действию
щелочей, но расщепляются под действием кислот с образованием свободного
моносахарида и нуклеинового основания. Пуриновые нуклеозиды гидролизуются
значительно легче пиримидиновых.
3. Нуклеотиды
Нуклеотиды – это эфиры нуклеозидов и фосфорной
кислоты (нуклеозидфосфаты). Сложноэфирную связь с фосфорной кислотой образует ОН
группа в положении 5/ или
3/ моносахарида. В зависимости от
природы моносахаридного остатка нуклеотиды делят на рибонуклеотиды (структурные элементы РНК) и дезоксирибонуклеотиды (структурные элементы
ДНК). Названия нуклеотидов включают название нуклеозида с указанием положения в
нем остатка фосфорной кислоты. Сокращенные обзначения нуклеозидов содержат
обозначение нуклеозида, остатка моно-, ди- или трифосфорной кислоты, для
3/-производных указывается также
положение фосфатной группы.
Нуклеотиды являются мономерными звеньями, из
которых построены полимерные цепи нуклеиновых кислот. Некоторые нуклеотиды
выполняют роль коферментов и участвуют в обмене веществ.
4. Нуклеотидные
коферменты
Коферменты – это органические соединения
небелковой природы, которые необходимы для осуществления каталитического
действия ферментов. Коферменты относятся к разным классам органических
соединений. Важную группу коферментов составляют нуклеозидполифосфаты.
Аденозинфосфаты – производные
аденозина, содержащие остатки моно-, ди- и трифосфорных кислот. Особое место
занимают аденозин-5/-моно-, ди- и
трифосфаты — АМФ, АДФ и АТФ — макроэргические вещества, которые обладают
большими запасами свободной энергии в подвижной форме. Молекула АТФ содержит
макроэргические связи Р-О, которые легко расщепляются в результате гидролиза.
Выделяющаяся при этом свободная энергия обеспечивает протекание сопряженных с
гидролизом АТФ термодинамически невыгодных анаболических процессов, например,
биосинтез белка.
Кофермент А. Молекула этого
кофермента состоит из трех структурных компонентов: пантотеновой кислоты,
2-аминоэтантиола и АДФ.
Кофермент А участвует в процессах
ферментативного ацилирования, активируя карбоновые кислоты путем превращения их
в реакционноспособные сложные эфиры тиолов.
Никотинамидадениндинуклеотидные коферменты. Никотинамидадениндинуклеотид (НАД+) и его фосфат (НАДФ+) содержат в своем составе катион пиридиния в виде
никотинамидного фрагмента. Пиридиниевый катион в составе этих коферментов
способен обратимо присоединять гидрид-анион с образованием восстановленной формы
кофермента — НАД Н.
Таким образом никотинамидадениндинуклеотидные
коферменты участвуют в окислительно-восстановительных процессах, связанных с
переносом гидрид-аниона, например, окислении спиртовых групп в альдегидные
(превращение ретинола в ретиналь), восстановительном аминировании кетокислот,
восстановлении кетокислот в гидроксикислоты. В ходе этих процессов субстрат
теряет (окисление) или присоединяет (восстановление) два атома водорода в виде
Н+ и Н—. Кофермент служит при этом акцептором
(НАД+) или донором
(НАД.Н) гидрид-иона. Все процессы с
участием коферментов являются стереоселективными. Так, при восстановлении
пировиноградной кислоты образуется исключительно L-молочная кислота.
5. Нуклеиновые кислоты.
Первичная структура нуклеиновых кислот представляет собой линейную полимерную цепь, построенную
из мономеров – нуклеотидов, которые связаны между собой
3/-5/-фосфодиэфирными
связями. Полинуклеотидная цепь имеет 5′-конец и 3′- конец. На 5′-конце находится
остаток фосфорной кислоты, а на 3′- конце — свободная гидроксильная группа.
Нуклеотидную цепь принято записывать, начиная с 5′-конца.
В зависимости от природы моносахаридных остатков
в нуклеотиде различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые
кислоты (РНК). ДНК и РНК различаются также по природе входящих в их состав
нуклеиновых оснований: урацил входит только в состав РНК, тимин – только в
состав ДНК.
РНК | ДНК |
Урацил | Тимин |
Цитозин, аденин, гуанин |
Цитозин, аденин, гуанин |
Вторичная структура ДНК представляет собой комплекс двух полинуклеотидных цепей, закрученных вправо
вокруг общей оси так, что углевод-фосфатные цепи находятся снаружи, а
нуклеиновые основания направлены внутрь (двойная спираль Уотсона-Крика).
Шаг спирали — 3.4 нм, на 1 виток приходится 10 пар нуклеотидов. Полинуклеотидные
цепи антипараллельны, т.е.
напротив 3′-конца одной цепи находится 5′-конец другой цепи. Две цепи ДНК
неодинаковы по своему составу, но они комплементарны. Это выражается в
том, что напротив аденина (А) в одной цепи всегда находится тимин (Т) в другой
цепи, а напротив гуанина (Г) всегда находится цитозин (Ц). Комплементарное
спаривание А с Т и Г с Ц осуществляется за счет водородных связей. Между А и Т
образуется две водородные связи, между Г и Ц – три.
Комплементарность цепей ДНК составляет
химическую основу важнейшей функции ДНК – хранения и передачи генетической
информации.
Типы РНК. Известны три основных
вида клеточных РНК: транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомные
РНК (рРНК). Они различаются по месторасположению в клетке, составу и размерами,
а также функциями. РНК состоят, как правило, из одной полинуклеотидной цепи,
которая в пространстве складывается таким образом, что ее отдельные участки
становятся комплементарными друг другу (”слипаются”) и образуют короткие
двуспиральные участки молекулы, в то время как другие участки остаются
однотяжевыми.
Матричные РНК выполняют функцию матрицы
белкового синтеза в рибосомах.
Рибосомные РНК выполняют роль структурных
компонентов рибосом.
Транспортные РНК участвуют в
транспортировке a -аминокислот из цитоплазмы в рибосомы и в переводе информации нуклеотидной
последовательности мРНК в последовательность аминокислот в белках.
Механизм передачи генетической информации. Генетическая информация закодированиа в нуклеотидной последовательности
ДНК. Механизм передачи этой информации включает три основных этапа.
Первый этап – репликация –копирование
материнской ДНК с образованием двух дочерних молекул ДНК, нуклеотидная
последовательность которых комплементарна последовательности материнской ДНК и
однозначно определяется ею. Репликация осуществляется путем синтеза новой
молекулы ДНК на материнской, которая играет роль матрицы. Двойная спираль
материнской ДНК раскручивается и на каждой из двух цепей происходит синтез новой
(дочерней) цепи ДНК с учетом принципа комплементарности. Процесс осуществляется
под действием фермента ДНК-полимеразы. Таким образом из одной материнской ДНК
образуются две дочерних, каждая из которых содержит в своем составе одну
материнскую и одну вновь синтезированную полинуклеотидную цепь.
Второй этап – транскрипция – процесс, в
ходе которого часть генетической информации переписывается с ДНК в форме мРНК.
Матричная РНК синтезируется на участке деспирализованной цепи ДНК как на матрице
под действием фермента РНК-полимеразы. В полинуклеотидной цепи мРНК
рибонуклеотиды, несущие определенные
нуклеиновые основания, выстраиваются в последовательности, определяемой
комплементарными взаимодействиями с нуклеиновыми основаниями цепи ДНК. При этом адениновому основанию в ДНК будет соответствовать урациловое основание в РНК. Генетическая информация о синтезе белка закодирована в ДНК с
помощью триплетного кода. Одна аминокислота кодируется
последовательностью из трех нуклеотидов, которую называют кодоном.
Участок ДНК, кодирующий одну полипептидную цепь, называется геном.
Каждому кодону ДНК соответствует комплементарный кодон в мРНК. В целом молекула
мРНК комплементарна определенной части цепи ДНК – гену.
Процессы репликации и транскрипции происходят в
ядре клетки. Синтез белка осуществляется в рибосомах. Синтезированная мРНК
мигрирует из ядра в цитоплазму к рибосомам, перенося генетическую информацию к
месту синтеза белка.
Третий этап – трансляция – процесс
реализации генетической информации, которую несет мРНК в виде последовательности
нуклеотидов в последовательность аминокислот в синтезируемом белке. a -Аминокислоты, необходимые для
синтеза белка транспортируются к рибосомам посредством тРНК, с которыми они
связываются путем ацилирования 3/-ОН группы на конце цепи тРНК.
тРНК имеет антикодоновую ветвь, содержащую
тринуклеотид — антикодон, который соответствует переносимой ею
аминокислоте. На рибосоме тРНК прикрепляются антикодоновыми участками к
соответствующим кодонам мРНК. Специфичность стыковки кодона и антикодона
обеспечивается их комплементарностью. Между сближенными аминокислотами
образуется пептидная связь. Таким образом реализуется строго определенная
последовательность соединения аминокислот в белки, закодированная в
генах.