Как составить формулу спирта по названию

Одноатомные предельные спирты

Спиртами называют производные углеводородов общей формулы RОН, где R – углеводородный радикал. Формула спирта получается из формулы соответствующего алкана заменой атома Н на группу ОН: RН  RОН.
Вывести химическую формулу спиртов можно иначе, включая атом кислорода О между атомами
С–Н молекулы углеводорода:

RН  RОН, СН3–Н  СН3–О–Н.

Гидроксильная группа ОН является функциональной группой спиртов. То есть группа ОН – особенность спиртов, она обусловливает главные физические и химические свойства этих соединений.

Общая формула одноатомных предельных спиртов – СnH2n+1OH.

Названия спиртов получают из названий углеводородов с таким же числом атомов С, как в спирте, добавлением суффикса —ол-. Например:

Название спиртов как производных соответствующих алканов характерно для соединений с линейной цепью. Положение группы ОН в них – при крайнем или при внутреннем атоме
С – указывают цифрой после названия:

Названия спиртов – производных разветвленных углеводородов – составляют обычным образом. Выбирают главную углеродную цепь, которая должна включать атом С, соединенный с группой ОН. Нумеруют атомы С главной цепи таким образом, чтобы углерод с группой ОН получил меньший номер:

Название cоставляют, начиная с цифры, указывающей положение заместителя в главной углеродной цепи: «3-метил…» Затем называют главную цепь: «3-метилбутан…» Наконец добавляют суффикс —ол-(название группы ОН) и цифрой указывают атом углерода, с которым связана группа ОН: «3-метилбутанол-2».
Если заместителей при главной цепи несколько, их перечисляют последовательно, указывая цифрой положение каждого. Повторяющиеся заместители в названии записывают с помощью приставок «ди-», «три-», «тетра-» и т.д. Например:

Изомерия спиртов. Изомеры спиртов имеют одинаковую молекулярную формулу, но разный порядок соединения атомов в молекулах.
Два вида изомерии спиртов:
1) изомерия углеродного скелета;
2) изомерия положения гидроксильной группы в молекуле.
Представим изомеры спирта С5Н11ОН этих двух видов в линейно-уголковой форме записи:

По числу атомов С, связанных со спиртовым (–С–ОН) углеродом, т.е. соседних с ним, спирты называют первичными (один сосед С), вторичными (два С) и третичными (три С-заместителя при углероде –С–ОН). Например:

Задача. Составьте по одному изомеру спиртов молекулярной формулы С6Н13ОН с главной углеродной цепью:

а) С6, б) С5в) С4г) С3

и назовите их.

Решение

1) Записываем главные углеродные цепи с заданным числом атомов С, оставляя место для атомов Н (их укажем позже):

а) С–С–С–С–С–С; б) С–С–С–С–С; в) С–С–С–С; г) С–С–С.

2) Произвольно выбираем место присоединения группы ОН к главной цепи и при внутренних атомах С указываем углеродные заместители:

В примере г) нет возможности разместить три заместителя СН3– при атоме С-2 главной цепи. У спирта С6Н13ОН нет изомеров с трехуглеродной главной цепью.

3) Расставляем атомы Н при углеродах главной цепи изомеров а)–в), руководствуясь валентностью углерода С(IV), и называем соединения:

УПРАЖНЕНИЯ.

1. Подчеркните химические формулы предельных одноатомных спиртов:

СН3ОН, С2Н5ОН, СН2=СНСН2ОН, СНССН2ОН, С3Н7ОН,

СН3СНО, С6Н5СН2ОН, С4Н9ОН, С2Н5ОС2Н5, НОСН2СН2ОН.

2. Назовите следующие спирты:




3. Составьте структурные формулы по названиям спиртов: а) гексанол-3;
б) 2-метилпентанол-2; в) н-октанол; г) 1-фенилпропанол-1; д) 1-циклогексилэтанол.




4. Составьте структурные формулы изомеров спиртов общей формулы С6Н13ОН:
а) первичного; б) вторичного; в) третичного
. Назовите эти спирты.




5. По линейно-уголковым (графическим) формулам соединений запишите их структурные формулы и дайте названия веществам:




 Получение спиртов

Низкомолекулярные спирты – метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН, а также изопропанол (СН3)2СНОН – бесцветные подвижные жидкости со специфическим алкогольным запахом. Высокие температуры кипения: 64,7 °С – СН3ОН, 78 °С – С2Н5ОН, 97 °С – н3Н7ОН и 82 °С – (СН3)2СНОН – обусловлены межмолекулярной водородной связью, существующей в спиртах. Спирты С(1)–С(3) смешиваются с водой (растворяются) в любых соотношениях. Эти спирты, особенно метанол и этанол, наиболее широко используются в промышленности.

1. Метанол синтезируют из водяного газа:

2. Этанол получают гидратацией этилена (присоединением воды к С2Н4):

3. Другой способ получения этанола – сбраживание сахаристых веществ под действием дрожжевых ферментов. Процесс спиртового брожения глюкозы (виноградного сахара) имеет вид:

4. Этанол получают из крахмала, а также из древесины (целлюлозы) путем гидролиза до глюкозы ипоследующего сбраживания в спирт:

5. Высшие спирты получают из галогенпроизводных углеводородов гидролизом под действием водных растворов щелочей:

30-2.jpg (6038 bytes)

Гидролиз и гидратация – способы получения спиртов
Гидролиз и гидратация – способы получения спиртов

Задача. Как из пропана получить пропанол-1?

Решение

Из пяти предложенных выше способов получения спиртов ни в одном не рассмотрено получение спирта из алкана (пропана и т.п.). Поэтому синтез пропанола-1 из пропана будет включать несколько стадий. По способу 2 спирты получают из алкенов, которые в свою очередь доступны при дегидрировании алканов. Схема процесса следующая:

Другая схема такого же синтеза на одну стадию длиннее, зато ее легче осуществить в лаборатории:

Присоединение воды к пропену на последней стадии протекает по правилу Марковникова и приводит к вторичному спирту – пропанолу-2. В задании требуется получить пропанол-1. Поэтому задача не решена, ищем другой способ.
Способ 5 состоит в гидролизе галогеналканов. Необходимый полупродукт для синтеза пропанола-1 – 1-хлорпропан – получают следующим образом. Хлорирование пропана дает смесь 1- и 2-монохлорпропанов:

Из этой смеси выделяют 1-хлорпропан (например, с помощью газовой хроматографии или за счет разных температур кипения: для 1-хлорпропана tкип = 47 °С, для 2-хлорпропана tкип = 36 °С). Действием на 1-хлорпропан водной щелочью КОН или NaOH синтезируют целевой пропанол-1:

Обратите внимание, что взаимодействие одних и тех же веществ: СН3СН2СН2Сl и КОН – в зависимости от растворителя (спирт С2Н5ОН или вода) приводит к разным продуктам – пропилену
(в спирте) или пропанолу-1 (в воде).

УПРАЖНЕНИЯ.

1. Приведите уравнения реакций промышленного синтеза метанола из водяного газа и этанола – гидратацией этилена.




2. Первичные спирты RСН2ОН получают гидролизом первичных алкилгалогенидов RСН2Наl, а вторичные спирты синтезируют гидратацией алкенов. Завершите уравнения реакций:

3. Предложите способы получения спиртов: а) бутанола-1; б) бутанола-2;
в) пентанола-3, исходя из алкенов и алкилгалогенидов.




4. При ферментативном брожении сахаров наряду с этанолом в небольшом количестве образуется смесь первичных спиртов С3–С5 – сивушное масло. Главный компонент в этой смеси – изопентанол (СН3)2СНСН2СН2ОН, минорные компоненты – н3Н7ОН, (СН3)2СНСН2ОН и СН3СН2СН(СН3)СН2ОН. Назовите эти «сивушные» спирты по номенклатуре ИЮПАК. Составьте уравнение реакции брожения глюкозы С6Н12О6в которой бы получались все четыре примесных спирта в мольном соотношении соответственно 2:1:1:1. Введите газ СО2 в правую часть уравнения в количестве 1/3 моль от всех исходных атомов С, а также необходимое количество молекул Н2О.




5. Приведите формулы всех ароматических спиртов состава С8Н10О. (В ароматических спиртах группа ОН удалена от бензольного кольца на один или несколько атомов С:
С6Н5– (СН2)n ОН.)



Содержание

  • Определение
  • Гомологический ряд, номенклатура, изомерия
  • Строение молекул
  • Свойства одноатомных спиртов
    • Физические свойства
    • Химические свойства
  • Получение и применение спиртов (на примере этилового спирта)
  • Многоатомные спирты
  • Понятие о фенолах
  • Выводы

Определение

Спирты — это производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксогруппу ОН.

Если углеводородный радикал обозначить буквой R, то в общем виде формулу молекулы спирта можно изобразить так:

У атома углерода, который соединен с гидроксогруппой, все связи должны быть простыми:

Соединения, у которых гидроксогруппа находится рядом с двойной связью, неустойчивы:

По строению углеводородного радикала спирты делят на:

  • предельные

в углеводородном радикале, все связи простые;

  • непредельные

в углеводородном радикале, есть кратная связь;

  • ароматические

имеется бензольное кольцо, т. е. в углеводородном радикале есть ароматическая связь.

По числу гидроксогрупп спирты делят на:

  • одноатомные

в состав молекулы входит одна гидроксогруппа ОН;

  • многоатомные

в состав молекул входит две или более (много) гидроксогрупп.

Рассмотрим строение молекул и свойства предельных одноатомных спиртов.

Гомологический ряд, номенклатура, изомерия

Для того чтобы вывести общую формулу гомологического ряда предельных одноатомных спиртов, сравним их состав и состав алканов:

В названиях спиртов гидроксогруппа обозначается суффиксом ОЛ. Этот суффикс прибавляется к названию исходного углеводорода:

Кроме этих названий (по ИЮПАК) для простейших спиртов используют рациональные названия, которые происходят от названия радикала:

Начиная с n = 3, для спиртов возможна изомерия. Она связана с положением группы ОН в молекуле:

Вопрос. Как обозначить положение группы ОН в молекуле?

Как всегда, положение группы ОН обозначают цифрой, которая соответствует номеру атома углерода, соединённому с группой ОН. Нумерацию основной цепи начинают с того конца, к которому ближе группа ОН.

Таким образом: название спирта (1) пропанол-1; название спирта (2) пропанол-2.

Поскольку спирты называют «по радикалам», эти спирты можно назвать и так: пропиловый спирт (1) и изопропиловый спирт (2).

Задание 22.1. Составьте молекулярные формулы этих спиртов и убедитесь, что это — изомеры.

Спирты изомерны простым эфирам, в молекулах которых атом кислорода соединяет два углеродных радикала (это изомерия между разными классами веществ):

Простые эфиры — это вещества, в молекулах которых два радикала соединены атомом кислорода. Поэтому их называют, исходя из названий радикалов. Например, простой эфир (3) — это диметиловый эфир.

Задание 22.2. Составьте графическую формулу изомера пропиловых спиртов, который является простым эфиром. Назовите его.

Строение молекул

Если при помощи графической формулы показать строение молекулы этилового спирта, то легко можно увидеть, что атомы водорода в ней неравноценны:

Действительно, пять атомов водорода соединены с атомами углерода, а один — с атомом кислорода. Теория Бутлерова утверждает, что «атомы в молекуле взаимно влияют друг на друга». Поэтому можно ожидать, что этот атом водорода будет отличаться от остальных пяти. Это отличие заключается в том, что связь О–Н гораздо более полярна, чем связи С–Н. Дело в том, что атом кислорода имеет бОльшую электроотрицательность, чем атом углерода, т. е. способен сильнее смещать к себе общую пару электронов. В результате, на атомах кислорода и водорода связи О–Н появляются значительные заряды (+) и (–).

Вопрос. На каком атоме появляется (+), а на каком (–)?

Величина этих зарядов меньше единицы, но они способны притягивать к себе молекулы других реагирующих веществ, т. е. активнее участвовать в химических реакциях будут наиболее полярные связи.

Вывод. Самыми полярными связями в молекуле спирта являются связи О–Н и О–С. За счёт их разрыва происходят химические реакции (спирт функционирует). Поэтому ОHфункциональная группа спиртов.

Свойства одноатомных спиртов

Физические свойства

Поскольку в молекуле спирта появились полярные связи, он, в отличие от углеводородов, будет иметь более высокие температуры кипения и плавления (если сравнивать соединения с одинаковым числом атомов углерода). Это связано с тем, что полярные молекулы сильнее притягиваются друг к другу, и для того чтобы оторвать их друг от друга (перевести жидкость в газ), нужно затратить много энергии — дополнительно нагреть. Кроме того, между молекулами спиртов возникают водородные связи (а), которые дополнительно притягивают молекулы друг к другу. Поэтому этиловый спирт — бесцветная жидкость (а этан и диметиловый эфир — газы!) с т. кип. 78 °C. Спирт хорошо растворим в воде, так как и с молекулами воды спирт образует водородные связи (б).

Водородные связи непрочные, поэтому низшие одноатомные спирты (мало атомов углерода в молекуле) — летучие жидкости с характерным запахом.

Химические свойства

Спирты могут реагировать с натрием и другими щелочными металлами. При этом атом водорода ОН-группы замещается на атом металла:

Вопрос. Неорганические вещества какого класса способны вступать в реакции замещения с металлами, в результате чего выделяется водород?

Аналогичную реакцию дают кислоты, поэтому в этой реакции спирт проявляет кислотные свойства. Но это очень слабые свойства, так как растворы спиртов не изменяют окраску индикаторов и не реагируют с растворами щелочей.

Спирты реагируют с неорганическими кислотами:

В этой реакции отщепляется молекула воды, — значит, это реакция дегидратации. При записи таких реакций формулы исходных веществ записывайте так, чтобы функциональные группы были рядом, причём атомы водорода функциональных групп ОН «смотрели» друг на друга. Так, в результате реакции дегидратации, в которой участвуют две молекулы спирта, образуется простой эфир (дегидратация межмолекулярная):

Эта реакция происходит в присутствии концентрированной серной кислоты. Если смесь спирта и концентрированной серной кислоты нагреть сильнее, то молекула воды отщепляется от одной молекулы спирта (дегидратация внутримолекулярная):

Спирты, у которых ОН-группа соединена с первым (последним) атомом углерода углеродной цепочки (первичные спирты) легко окисляются нагретым оксидом меди CuO, превращаясь в альдегиды:

При составлении этой реакции рекомендуется выделить (подчеркнуть) те атомы, которые образуют воду, и записать новую формулу без этих атомов. Спирты горят, образуя, как и углеводороды, углекислый газ и воду.

Задание 22.3. Составьте уравнение реакции горения этилового спирта.

Таким образом, для спиртов характерны реакции:

  • замещения атома водорода ОН-группы;
  • дегидратации (отщепления воды);
  • окисления.

Все эти реакции идут с участием ОН-группы функциональной группы спиртов.

Задание 22.4. Составьте уравнения таких реакций для пропанола-1 (пропилового спирта). Уравнения реакций составляйте по аналогии с вышеперечисленными.

Получение и применение спиртов (на примере этилового спирта)

Этанол и другие спирты можно получить из алкенов.

Вопрос. При помощи какой реакции можно это осуществить (при затруднении см. урок 19.3)?

Задание 22.5. Составьте уравнение этой реакции.

Полученный таким способом спирт используют в технических целях: в качестве растворителя, для получения каучука, пластмасс и др. Кроме того, спирт используют как горючее.

Пищевой и медицинский спирты получают брожением глюкозы:

В лаборатории этиловый спирт можно получить гидролизом (взаимодействием с водой) хлорэтана:

Для того чтобы эта реакция стала необратимой, используют водный раствор щёлочи.

Задание 22.6. Составьте уравнения реакций:

  1. пропен + вода;
  2. 1-хлорпропан + NaOH (водный).

Назовите полученные вещества.

Многоатомные спирты

Многоатомные спирты содержат две и более гидроксогруппы в молекуле. При этом каждый атом углерода в молекулах спиртов может соединяться только с одной гидроксогруппой ОН, в противном случае образуются неустойчивые соединения:

Задание 22.7. Составьте формулы многоатомных спиртов, в молекуле которых:

  • два атома углерода и две гидроксогруппы;
  • три атома углерода и три гидроксогруппы.

У вас получились формулы простейших многоатомных спиртов:

Вопрос. Как в названии спирта обозначить число гидроксогрупп?

Названия по IUPAC этих спиртов составляют, используя уже известные правила, т. е. к названию углеводорода добавляют суффикс ОЛ, а перед ним указывают число ОН-групп при помощи префиксов ди- или три-. Например, этиленгликоль получит название: этандиол.

Задание 22.8. Назовите по правилам IUPAC глицерин.

Вопрос. Как вы считаете, какой из спиртов будет иметь большую температуру кипения — глицерин или пропанол-1? А растворимость в воде?

Многоатомные спирты за счёт многочисленных ОН-групп образуют многочисленные водородные связи и друг с другом, и с водой. Поэтому они имеют бОльшие температуры кипения и бОльшую растворимость в воде по сравнению с соответствующими одноатомными спиртами. Так, глицерин — бесцветная, густая жидкость, без запаха; он смешивается с водой в любых соотношениях и способен поглощать влагу из воздуха. Более того, безводный глицерин может отнимать воду из живых клеток кожи, вызывая ожоги. Растворы глицерина, наоборот, смягчают кожу.

Химические свойства глицерина и других многоатомных спиртов очень похожи на свойства одноатомных спиртов: они реагируют с натрием и НСl, образуют эфиры, могут окисляться. Например, глицерин реагирует с азотной кислотой:

Нитроглицерин входит в состав сильнейшей взрывчатой смеси динамита. Его раствор используется как лекарство.

Но в химических свойствах многоатомных спиртов есть и существенные отличия. Так, они могут растворять осадок гидроксида меди II, образуя ярко-синий раствор:

Реакция происходит при обычных условиях, причём полученное соединение очень прочное: не изменяет свой цвет даже при кипячении. Одноатомные спирты такую реакцию не дают.

Вывод. Реакция растворения голубого осадка гидроксида меди II с образованием ярко-синего раствора — это качественная реакция на многоатомные спирты.

Задание 22.9. Составьте уравнения реакций этиленгликоля:

  1. с азотной кислотой;
  2. с Сu(ОН)2.

Подсказка. При составлении уравнений этих реакций записывайте формулы многоатомных спиртов так, чтобы цепочки атомов углерода располагались вертикально, а группы ОН были рядом, причём атомы водорода функциональных групп ОН «смотрели» друг на друга.

Глицерин находит широкое применение в кожевенной промышленности (смягчает кожу), используется в медицине, входит в состав невысыхающих красок. Кроме того, глицерин, точнее, остаток его молекулы входит в состав любого жира. Поэтому глицерин часто получают из природных жиров (уравнение реакции в уроке 25).

Понятие о фенолах

К фенолам относятся вещества, в молекулах которых гидроксогруппа ОН непосредственно связана с бензольным кольцом:

В этой молекуле ОН-группа и бензольное кольцо взаимно влияют друг на друга. Поэтому фенол по свойствам отличается и от спиртов, и от бензола. Рассмотрим примеры такого влияния.

Бензольное кольцо влияет на ОН-группу, делая её более полярной, чем у спиртов. Поэтому фенол, в отличие от спиртов, реагирует с растворами щелочей:

или

В данной реакции фенол проявляет свойства кислоты. Отсюда его второе название — карболовая кислота («карболка»). Растворы фенола изменяют окраску индикатора.

Гидроксогруппа влияет на бензольное кольцо. Фенол очень легко вступает в реакции замещения, причём, как и для толуола, реакция происходит в положениях 2, 4, 6 по отношению к гидроксогруппе:

В отличие от спиртов и бензола фенол обесцвечивает бромную воду даже при нормальных условиях. Реакция протекает аналогично предыдущей.

Задание 22.9. Составьте уравнение реакции фенола с бромом и сравните эту реакцию с реакцией толуола с бромом.

Фенол легко окисляется на воздухе, при этом его белые кристаллы розовеют. Фенол сильно ядовит, так как изменяет структуру и свойства белков — основу всего живого. Кроме того, попадая в воду, он окисляется растворённым в ней кислородом. В результате содержание кислорода в водоёме уменьшается, и обитатели его погибают. Для того чтобы обнаружить фенол в водоёме и любом растворе, используют качественную реакцию с FeCl3: при добавлении этого реактива к смеси, содержащей фенол, появляется фиолетовое окрашивание.

Фенол получают из производных бензола и каменноугольной смолы. В любом случае вначале исходное вещество или смесь превращают в фенолят, а затем выделяют чистый фенол при помощи кислоты:

Фенол применяют для дезинфекции и получения красителей и полимеров.

Выводы

Спирты и фенолы — это производные углеводородов, содержащие функциональную группу ОН. Для таких веществ характерны реакции замещения атома водорода в гидроксогруппе.

Спирты за счёт функциональной группы ОН образуют простые и сложные эфиры (см. урок 25), а фенолы реагируют и за счёт функциональной группы ОН, и за счёт ароматического ядра.

Содержание:

Спирты:

Углеводороды образуют различные функциональные производные при замещении в молекуле одного или нескольких атомов водорода на функциональную группу Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты и фенолы относятся к монофункциональным гидроксилпроизвод-ным углеводородов.

Спиртами называют производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную группу —ОН.

Классификация спиртов

В зависимости от числа гидроксильных групп в молекуле спирты подразделяют на одноатомные, двухатомные, трехатомные, четырехатомные и т. д. (рис. 42). Например:

Спирты, содержащие несколько гидроксильных групп, объединяют общим названием многоатомные спирты.

В зависимости от строения углеродного скелета различают спирты насыщенные, ненасыщенные, ароматические (рис. 43).

Насыщенные спирты — производные алканов, например Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами Ненасыщенные спирты — производные ненасыщенных углеводородов, в молекулах которых содержатся кратные (двойные и тройные) связи между атомами углерода, например Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Некоторые одноатомные ненасыщенные спирты, содержащиеся в винограде, из которого производят вина, определяют характерный аромат ряда мускатных вин и рислингов. В процессе старения этих вин одноатомные спирты превращаются в двухатомные. По концентрации образовавшегося двухатомного спирта можно судить о степени старения вина.

К ароматическим относят спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, которые связаны друг с другом через атом углерода, например:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Если в молекулах органических соединений гидроксильные группы связаны непосредственно с атомом углерода бензольного кольца, например:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

то такие соединения относят к другому классу органических соединений фенолам.

В лепестках розы (рис. 44) содержится ароматический фенилэтиловый спирт, формула которого Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами Он является одним из основных компонентов розового масла и применяется в парфюмерии.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

В зависимости от типа атома углерода, с которым связана гидроксильная группа, спирты классифицируют как первичные, вторичные, третичные.

Гидроксильная группа в молекулах первичных спиртов связана с первичным атомом углерода, в молекулах вторичных спиртов — с вторичным атомом углерода и в молекулах третичных спиртов — с третичным атомом углерода. Например:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами
Спирты — производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную группу —ОН.

Спирты различают по числу гидроксильных групп (атомность спиртов), строению углеродного скелета, типу атома углерода, связанного с гидроксильной группой.

Насыщенные одноатомные спирты

Строение: Насыщенными одноатомными спиртами называют производные алканов, в молекулах которых один атом водорода замещен на гидроксильную группу и содержатся только Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами-связи.

В органической химии известно большое число насыщенных одноатомных спиртов, химический состав и строение которых выражается общей формулой Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами В общем виде формула насыщенных одноатомных спиртов записывается Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами где R — алкильная группа.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — общая формула, отражающая молекулярный состав насыщенных одноатомных спиртов.

Простейшим представителем данного класса спиртов является метанол Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами молекулярная, структурная и электронная формулы которого:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Шаростержневая и масштабная модели молекулы метанола представлены на рисунке 45.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Так как электронное строение алканов и соответствующих им алкильных групп вами уже изучено, то при изучении спиртов — производных алканов — будет рассматриваться только электронное строение функциональной группы спиртов Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами Именно эта группа определяет важнейшие химические и физические свойства спиртов. 

В состав функциональной группы спиртов входит атом кислорода, который обладает большой электроотрицательностью и в силу этого оттягивает к себе электронную плотность Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами-связей связанных с ним атомов водорода и углерода: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами По этой причине атом кислорода приобретает частичный отрицательный заряд, а атомы водорода и углерода — частичные положительные заряды: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерамиСвязи Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами полярны. Валентный угол СОН близок к 110°.

Номенклатура: По правилам номенклатуры ИЮПАК, названия насыщенных одноатомных спиртов образуются от названий соответствующих алканов с добавлением суффикса -ол. Например, Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — метанол, Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — этанол.

Систематическая номенклатура допускает употребление названий, связанных с названием алкильных групп, для низших членов ряда. Например,Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — метиловый спирт, Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами— этиловый спирт.

В таблице 22 приведены названия первых десяти представителей гомологического ряда спиртов, у которых функциональная группа —ОН находится у первичного атома углерода, по номенклатуре ИЮПАК и тривиальные.
Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

При названии спиртов с неразветвленной углеродной цепью, начиная с пропанола, цифрой указывается атом углерода, с которым связана гидроксильная группа. Нумерация углеродных атомов начинается с того конца, ближе к которому расположена гидроксильная группа. Названия спиртов образуют, добавляя суффикс -ол к названию соответствующего алкана, цифрой указывается положение гидроксильной группы в цепи. Например:
Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Для названий спиртов с разветвленной углеродной цепью выбирают самую длинную цепь, содержащую функциональную гидроксильную группу, и нумеруют с того конца, ближе к которому расположена гидроксильная группа. Названия спиртов образуют, добавляя суффикс -ол к назанию алкана, соответствующего самой длинной цепи, цифрой указываются атомы углерода, с которыми связана гидроксильная группа и заместители. Названия заместителей перечисляются в алфавитном порядке. Например:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Изомерия: Для насыщенных одноатомных спиртов характерна структурная изомерия. Структурная изомерия спиртов обусловлена изомерией углеродного скелета и изомерией положения гидроксильной группы. Первые два члена гомологического ряда — метанол Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами и этанол Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — не имеют изомеров спиртов. Начиная с пропанола, число структурных изомеров в гомологическом ряду спиртов быстро возрастает. Например, бутанолы существуют в виде четырех изомеров, гептанолы — восьми, а деканолы — пятисот семидесяти шести.

Рассмотрим примеры изомеров спиртов состава Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами В зависимости от строения углеродного скелета изомерами будут два спирта — производные бутана и 2-метилпропана:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

В зависимости от положения гидроксильной группы при том и другом углеродном скелете возможны еще два изомерных спирта:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Общее число структурных изомеров спиртов состава Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами (за исключением стереоизомеров) равно четырем.

Физические свойства: Первые представители класса насыщенных одноатомных спиртов Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами при комнатной температуре — жидкости. Высшие спирты (начиная с Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами) при комнатной температуре — твердые вещества. Следовательно, среди спиртов данного класса при нормальных условиях отсутствуют газообразные вещества.

Низшие спирты обладают характерным алкогольным запахом, запах спиртов, стоящих в середине гомологического ряда, сильный и часто неприятный, а высшие спирты (более Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами) практически не имеют запаха.

Низшие спирты (Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами) смешиваются с водой в любых соотношениях, средние — ограниченно. Следовательно, с увеличением относительной молекулярной массы растворимость спиртов в воде падает. В большинстве же органических растворителей все спирты растворимы.

Спирты обладают аномально высокими температурами кипения по сравнению с представителями алканов с приблизительно такой же относительной молекулярной массой. Например, температура кипения этанола 78,3 °С, а пропана -42,2 °С. В таблице 23 приводятся температуры кипения, плавления и агрегатное состояние некоторых спиртов.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Причиной отсутствия газообразных спиртов при нормальных условиях, а также более высоких температур кипения спиртов по сравнению с алканами с одинаковой относительной молекулярной массой являются межмолекулярные водородные связи, характерные для спиртов. Как отмечалось, связь Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами в молекуле спирта сильно поляризована: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами На атоме водорода возникает частичный положительный заряд. В силу этого такой атом водорода может притягиваться неподеленной парой электронов атома кислорода другой молекулы спирта. Между молекулами спирта возникает межмолекулярная водородная связь. Таким образом, молекулы спиртов находятся в ассоциированном состоянии, как бы с увеличенной относительной молекулярной массой. Несмотря на то что энергии межмолекулярных водородных связей спиртов невелики, водородные связи обусловливают значительную ассоциацию молекул спиртов, что и ведет к росту теплоты испарения, а следовательно, и температуры кипения. Графически водородную связь принято обозначать тремя точками. Схема образования водородной связи между молекулами спирта показана на рисунке 46, а.
Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Образованием межмолекулярных водородных связей между молекулами спиртов и полярными молекулами воды (рис. 46, б) объясняется хорошая растворимость низших спиртов, в отличие от углеводородов, которые из-за малой полярности связей С—Н не образуют с водой водородных связей. С увеличением длины цепи алкильных групп растворимость спиртов понижается, и октанол уже не смешивается с водой.

Насыщенными одноатомными спиртами называют производные алканов, в молекулах которых один атом водорода замещен на гидроксильную группу.

Общая формула насыщенных одноатомных спиртов Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Структурная изомерия спиртов обусловлена строением углеродного скелета и различным положением гидроксильной группы при одинаковой углеродной цепи.

На физические свойства спиртов большое влияние оказывает водородная связь между молекулами спиртов или молекулами спиртов и воды в их растворах.
 

Химические свойства спиртов

Характерные реакции спиртов определяются наличием в составе их молекул гидроксильиой группы, атом кислорода которой смещает электронную плотность как от атома водорода, так и от атома углерода. Такая поляризация может способствовать разрыву связей Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами. Атом водорода в гидроксильной группе за счет сильной поляризации связи Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами становится более подвижным, способным отщепляться в виде протона. В этом случае спирты проявляют кислотные свойства. В то же время наличие в молекуле спирта атома кислорода, имеющего две неподеленные пары электронов, обусловливает проявление спиртами свойств оснований. Следовательно, спирты можно рассматривать как амфотерные соединения, которые могут проявлять как свойства кислот, так и свойства оснований. Спирты являются слабыми кислотами и в то же время основаниями средней силы.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Рассмотрим важнейшие химические свойства спиртов на примере алифатических насыщенных одноатомных спиртов.

Взаимодействие со щелочными металлами: При взаимодействии щелочных металлов Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами со спиртами (рис. 47) происходит разрыв Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами и замещение атомов водорода на атомы металла с образованием соединений алкоксидов (алкоголятов) и водорода:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты — очень слабые электролиты, слабее даже, чем вода. Поэтому алкокеиды (алкоголяты) легко разлагаются водой:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

При взаимодействии с металлами у спиртов проявляются кислотные свойства, но к классу кислот спирты не относят, так как степень их диссоциации незначительна. Поэтому спирты с водными растворами щелочей взаимодействуют обратимо.

Взаимодействие с карбоновыми и кислородсодержащими минеральными кислотами с образованием сложных эфиров.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

В реакции с карбоновыми кислотами от молекулы спирта отщепляется атом водорода, а от молекулы карбоновой кислоты — гидроксильная группа с образованием молекулы воды. Реакция обратима, но равновесие смещается вправо в присутствии концентрированной серной кислоты и при выводе воды из зоны реакции:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

В реакциях с кислородсодержащими минеральными кислотами спирты образуют сложные эфиры этих кислот:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Взаимодействие с галогеноводородами с образованием галогеналканов

В реакции с галогеноводородами в молекуле спирта происходит разрыв связи Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами В результате реакции образуется галогеналкан. Уравнение реакции в общем виде выглядит так:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Данная реакция обратима. В этой реакции проявляются слабые основные свойства спирта.

При взаимодействии этанола с бромоводородом образуется бромэтан — тяжелая жидкость:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Внутримолекулярная дегидратация с образованием алкена

Первичные спирты дегидратируются под действием катализатора — концентрированной серной кислоты — при высоких температурах (выше 140 °С) с образованием алкена:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Реакция дегидратации обусловлена отщеплением водорода в виде протона и гидроксильной группы от соседних атомов углерода.

Например, в результате внутримолекулярного отщепления молекулы воды от молекулы этанола (под действием катализатора — концентрированной серной кислоты) образуется этен: 

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами
 

Реакции окисления

Спирты горят на воздухе или в кислороде некоптящим пламенем с выделением большого количества теплоты (рис. 48):

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

С более слабым, чем кислород, окислителем, например с оксидом меди(II), происходит частичное окисление спиртов, при этом первичные спирты окисляются до альдегидов.

Если в пробирку с этанолом опустить раскаленную скрученную в спираль медную проволоку, покрытую черным налетом оксида меди(II), то черный налет на проволоке исчезает. Спираль приобретает розово-красный цвет, при этом чувствуется неприятный запах образовавшегося альдегида:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Под действием таких окислителей, как подкисленный раствор перманганата калия или дихромата калия, первичные спирты окисляются до карбоновых кислот.

Кислотно-основные свойства насыщенных одноатомных спиртов обусловлены наличием в их молекулах функциональной гидроксильной группы.

Спирты взаимодействуют со щелочными металлами, галогеноводородами, карбоновыми и минеральными кислотами; вступают в реакции дегидратации и окисления.
 

Получение и применение спиртов

Получение: Для промышленного получения спиртов используют ненасыщенные углеводороды, извлекаемые из нефтепродуктов, или галогеналканы.

Познакомимся с основными общими промышленными и лабораторными способами получения насыщенных одноатомных спиртов и специфическими способами получения этанола и метанола.

1) Одним из наиболее важных общих промышленных способов получения спиртов является гидратация алкенов.

Этанол получают гидратацией этена водяными парами при повышенной температуре (280—300 °С), повышенном давлении (7—8 мПа) и в присутствии катализатора Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирт, полученный из этена, называют синтетическим.

2) В пищевой промышленности этанол получают характерным только для него способом при спиртовом брожении глюкозы под действием ферментов, выделяемых некоторыми видами дрожжевых грибков:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Брожению подвергают виноградный сок, содержащий глюкозу, а также картофельный крахмал, который превращается в глюкозу под действием особого фермента. Этанол, полученный при ферментативном расщеплении различных пищевых продуктов, используют в основном для изготовления спиртных напитков.

В промышленности этанол производят гидролизным способом из древесных опилок, отходов целлюлозно-бумажной промышленности и т. д. Содержащуюся в древесине целлюлозу подвергают гидролизу с образованием глюкозы, которую далее подвергают брожению, и получают этанол, называемый гидролизным спиртом.

3) В промышленности метанол получают характерным только для него способом при взаимодействии водорода с угарным газом (СО) при повышенном давлении и высокой температуре в присутствии катализатора:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Смесь угарного газа и водорода, взятых в количественном соотношении 1 : 2, называют синтез-газом.

Историческое название метанола — древесный спирт. Оно указывает на старый способ получения спирта — сухую перегонку древесины твердых пород дерева (нагревание древесины без доступа воздуха).

Для получения спиртов в лаборатории используют галогеналканы.

При гидролизе моногалогеналканов с галогеном при первичном атоме углерода в водных растворах щелочей при нагревании образуются первичные спирты:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Гидролиз галогеналканов, проводимый в присутствии щелочи, является практически необратимым процессом и используется как общий метод получения первичных насыщенных спиртов в лаборатории.

Применение: Спирты находят широкое применение. В химической промышленности спирты — исходные вещества для разнообразных синтезов. Во многих производствах спирты применяют в качестве растворителей. Рассмотрим несколько примеров промышленного использования важнейших насыщенных одноатомных спиртов.

Метанол (метиловый спирт) Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами используется в промышленном органическом синтезе при получении формальдегида, применяемого в производстве пластмасс, для синтеза некоторых лекарственных веществ.

Метанол — прекрасный растворитель для многих органических и неорганических веществ.

Необходимо знать, что метанол — сильнейший яд. Употребление даже нескольких граммов метанола приводит к слепоте, а затем и смерти. Вот поэтому на банках, в которых хранится этот спирт, используемый для технических нужд, имеется надпись: «Метанол — яд». Это должно служить серьезным предостережением при работе с ним.

Этанол (этиловый спирт) Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами используется во многих отраслях промышленности: лакокрасочной, фармацевтической, взрывчатых веществ, бытовой химии, кондитерской и т. д. (рис. 49).
Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами
Этанол является исходным веществом в промышленном органическом синтезе (диэтиловый эфир, этилацетат и другие эфиры и т. д.), окислением этанола получают пищевую уксусную кислоту.

Спирт-ректификат, получаемый в промышленности, представляет собой смесь этанола (массовая доля 95,6 %) и воды (массовая доля 4,4 %). Безводный спирт называют абсолютным спиртом.

Следует помнить, что этанол — своего рода наркотик, возбуждающе действующий на организм человека. Даже небольшие дозы снижают остроту зрения, замедляют реакции и уменьшают способность здраво рассуждать. Длительное употребление спирта вызывает тяжелые заболевания нервной и сердечно-сосудистой систем, разрушение печени и приводит к преждевременной смерти.

В этанол, применяемый для технических целей, специально добавляют небольшие количества трудноотделяемых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют денатуратом. Употребление денатурата смертельно опасно.

Другие (низшие) спирты используются в качестве растворителей при изготовлении различных лаков и красок на предприятиях лакокрасочной промышленности, одним из которых является ОАО «Лакокраска» в Лиде.

Высшие спирты (Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами и более) используют во многих областях производства. Например, спирты состава Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами используются для изготовления медицинских препаратов, Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — парфюмерно-косметической продукции, Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — антикоррозийной смазки.

Ненасыщенный аллиловый спирт Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами применяется в производстве глицерина, аллиловых эфиров, использующихся в фармацевтической и парфюмерной промышленности.

В промышленном масштабе этанол получают гидратацией этена, гидролизным способом, в процессе спиртового брожения глюкозы.

Метанол в промышленных масштабах в основном получают из синтез-газа.

В лаборатории первичные насыщенные одноатомные спирты получают в процессе щелочного гидролиза моногалогеналканов.

Спирты используют для синтеза многих органических веществ.
 

Решение расчетных задач

В параграфе рассмотрены образцы решения задач таких типов, как расчеты по химическим уравнениям, если одно из реагирующих веществ взято в избытке, и определение молекулярных формул органических веществ на основании качественного и количественного состава.

Пример 1.

Определите массу бромэтана, полученного в реакции, для которой был взят этанол массой 5,98 г и бромоводород объемом (н. у.) Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Решение

1. Общие формулы, используемые при расчетах:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

2. Значения молярных масс веществ, молярный объем:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

3. Определяем химические количества спирта и бромоводорода, взятых для реакции:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

4.  На основе анализа уравнения реакции определяем, какое из веществ взято в избытке, а затем рассчитываем химическое количество и массу продукта реакции:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Следовательно, спирт взят в избытке. Расчеты продукта реакции проводятся исходя из данных о химическом количестве хлороводорода:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Ответ: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Пример 2.

Массовая доля углерода в насыщенном одноатомном спирте равна 0,6. Определите молекулярную формулу спирта. Составьте структурные формулы возможных изомеров и назовите их по номенклатуре ИЮПАК.

Решение

1. Для решения задачи используем общую формулу Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами и общую формулу насыщенных одноатомных спиртов Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами Расчеты проводим, исходя из массы углерода в спирте химическим количеством 1 моль и массы спирта химическим количеством 1 моль.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

2. Определяем формулу искомого спирта.

Общая формула Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами следовательно, при Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами молекулярная формула спирта — Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Изомеры:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Ответ: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Пример 3.

В результате ряда последовательных реакций из алкана массой 69,6 г получен первичный насыщенный одноатомный спирт массой 88,8 г с тем же числом атомов углерода в молекуле, что и у алкана (алкан Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами галогеналкан Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами насыщенный одноатомный спирт). Определите молекулярную формулу спирта и составьте формулы структурных изомеров.

Решение

1. Из алкана химическим количеством 1 моль получают спирт химическим количеством 1 моль:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

2. Разница масс взятого и полученного веществ равна 19,2 г (88,8 — 69,6). Разница молярных масс спирта и алкана равна 16, что хорошо видно при анализе общих формул алканов и насыщенных одноатомных спиртов:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — общая формула насыщенных одноатомных спиртов;

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами — общая формула алканов.

3. Используя общую формулу Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами определяем химическое количество полученного спирта:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

4. Зная химическое количество и массу спирта, определяем его молярную массу и молекулярную формулу:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Решая уравнение Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Следовательно, молекулярная формула спирта — Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами а структурные формулы возможных изомеров:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Ответ: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами
 

Пример 4.

При гидратации алкена массой 22,68 г получили вторичный насыщенный одноатомный спирт массой 32,40 г. Определите молекулярную формулу спирта, составьте структурную формулу и назовите спирт по номенклатуре ИЮПАК.

Решение

1. Анализ уравнения реакции гидратации, записанного в общем виде, показывает, что для гидратации алкена химическим количеством 1 моль требуется вода химическим количеством 1 моль. Следовательно, разница масс алкена и спирта и есть масса присоединенной воды:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

2. Определяем химическое количество воды и спирта, далее молярную массу и молекулярную формулу спирта:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Следовательно, Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Решая уравнение Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами получим: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Молекулярная формула спирта — Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами структурная формула — Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами пропанол-2.

Ответ: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами
 

Пример 5.

Определите молекулярную формулу органического вещества, относительная плотность паров которого по гелию равна 22, если при сгорании его массой 19,36 г образовались углекислый газ объемом (н. у.) 2Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами и вода массой 23,76 г.

Решение

1. Определяем молярную массу неизвестного вещества, его химическое количество, а также химические количества образовавшихся оксида углерода (IV) и воды:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

2. Проанализируем схему реакции горения вещества, предположив, что сожгли углеводород химическим количеством 1 моль. На основе данных о продуктах реакции рассчитаем количественный состав вещества:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Формула вещества — Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

3. Молярная масса вещества Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами равна 72 г/моль, а молярная масса искомого вещества — 88 г/моль, разница молярных масс — 16 г/моль. Следовательно, в состав неизвестного вещества входил атомарный кислород химическим количеством 1 моль. Молекулярная формула вещества — Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Ответ: Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами
 

Многоатомные спирты

Строение: Производные углеводородов, в молекулах которых два и более атомов водорода у соседних атомов углерода замещены на гидроксильные группы, называют многоатомными спиртами.

Гидроксильные группы во всех устойчивых многоатомных спиртах связаны с соседними атомами углерода.

Простейшим представителем двухатомных спиртов (гликолей) является этиленгликоль, структурная формула которого:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Шаростержневая модель молекулы этиленгликоля приведена на рисунке 50, а.

Простейшим представителем трехатомных спиртов (глицеринов) является глицерин (от греч. glykeros — сладкий), структурная формула которого:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Шаростержневая модель молекулы глицерина приведена на рисунке 50, б.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

На примере этих двух спиртов вы познакомитесь с основными характеристиками многоатомных спиртов.

Номенклатура: По номенклатуре ИЮНАК двухатомный спирт Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами и трехатомный спирт Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами называют этанциол-1,2 и про-яянтриол-1,2,3. Правилами ИЮПАК допускаются названия этиленгликоль и глицерин.

Физические свойства: Этиленгликоль и глицерин — бесцветные вязкие жидкости, тяжелее воды, неограниченно растворимы в воде, хорошо растворяются в этаноле. Эти свойства присущи и другим многоатомным спиртам.

Этиленгликоль ядовит, его водные растворы не кристаллизуются при низких температурах, что позволяет применять его как компонент незамерзающих жидкостей — антифризов. Глицерин имеет сладковатый вкус, гигроскопичен, нелетуч.

Впервые глицерин был получен из оливкового масла шведским химиком и фармацевтом К. Шееле в 1783 г.

Хорошая растворимость этиленгликоля и глицерина в воде объясняется наличием межмолекулярных водородных связей между молекулами спиртов и воды. Число таких связей больше, чем у одноатомных спиртов, из-за большего числа гидроксильных групп в молекулах.

Температуры кипения этих спиртов по сравнению с одноатомными спиртами с таким же числом атомов угелерода в молекуле намного выше:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Причиной более высоких температур кипения многоатомных спиртов является большее число межмолекулярных водородных связей между молекулами спиртов за счет большего числа гидроксильных групп в составе молекул.

Химические свойства: Для этиленгликоля и глицерина характерны все реакции одноатомных спиртов, обусловленные наличием функциональной группы —ОН, и особые свойства, обусловленные одновременным присутствием в молекуле нескольких гидроксильных групп.

1) Взаимодействие со щелочными металлами. Многоатомные спирты реагируют с активными металлами с образованием соединений, которые по аналогии с алкоголятами называют гликолятами и глицератами. Названия «гликоляты» и «глицераты» допускаются в номенклатуре ИЮНАК.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

В реакциях могут участвовать одна или более гидроксильных групп. Многоатомные спирты, как и одноатомные, проявляют кислотные свойства в реакциях со щелочными металлами.

2) Взаимодействие с основаниями. В отличие от одноатомных спиртов, этиленгликоль и глицерин реагируют не только со щелочными металлами, но и с нерастворимыми гидроксидами тяжелых металлов. Такие реакции возможны для многоатомных спиртов, потому что из-за взаимного влияния гидроксильных групп в молекуле их кислотность выше, чем у одноатомных спиртов.

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Если в стакан с раствором щелочи добавить несколько капель раствора сульфата меди(II) и к образовавшемуся гидроксиду меди(II) прилить многоатомный спирт, например глицерин, то образуется прозрачный раствор ярко-синего цвета (рис. 51). Цвет раствора обусловлен образованием комплексного соединения меди.

Реакция со свежеприготовленным гидроксидом меди(II) является качественной реакцией на многоатомные спирты с гидроксильными группами, находящимися у соседних атомов углерода. Из-за сложности строения образовавшегося глицерата меди уравнение реакции не приводится.

3) Образование сложных эфиров. Для многоатомных спиртов, как и для одноатомных, характерно образование сложных эфиров при взаимодействии с кислородсодержащими минеральными кислотами и карбоновыми кислотами. В частности, в реакции глицерина с избытком азотной кислоты в присутствии каталитических количеств серной кислоты образуется глицеринтринитрат, известный под названием нитроглицерин:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Название «нитроглицерин» относится к тривиальным названиям, оно не отражает строение вещества. Известно, что в химии к нитросоединениям относят вещества, в которых группа —Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами непосредственно связана с атомом углерода.

Реакцию глицерина с карбоновыми кислотами е образованием сложных эфиров вы будете рассматривать при изучении темы «Жиры».

Получение: Двухатомные и трехатомные спирты можно получать теми же способами, что и одноатомные спирты. В качестве исходных веществ используются алкены и галогеналканы.

Лабораторные способы: Общим способом получения гликолей является окисление алкенов раствором перманганата калия в слабощелочной или нейтральной среде:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Этиленмиколь также получают гидролизом соответствующего дигалогеналкана:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Промышленные способы. Глицерин получают в процессе гидролиза жиров и синтетическим способом из пропена, образующегося при крекинге нефтепродуктов.

Этиленгликоль в промышленных масштабах получают гидратацией эпоксида Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами который получают при окислении этилена в присутствии катализатора — серебра:

Спирты в химии - свойства, формула, получение, номенклатура и определение с примерами

Применение: Этиленгликоль используют для синтеза полимерных материалов, синтетических волокон, например лавсана; в качестве антифризов (от анти — против и англ. freeze — морозить, замерзать) — жидкостей, добавляемых в воду, чтобы понизить температуру замерзания. Антифризы заливаются в системы охлаждения, в частности автомобильных двигателей. Температура замерзания антифриза с объемной долей этиленгликоля 52,5 % равна -40 °С. Этиленгликоль применяют для получения пластификаторов (смягчителей), используемых в лакокрасочной промышленности.

Применение глицерина основано на его гигроскопичности. Его используют для приготовления мазей, в кожевенном производстве — для предохранения кож от высыхания, в текстильной промышленности — для отделки тканей с целью придания им мягкости и эластичности и др. Глицерин применяют при изготовлении косметики, где он играет роль смягчающего и успокаивающего средства; как добавку к зубной пасте, клеям, чтобы предохранить их от быстрого высыхания; для приготовления антифризов.

Незамерзание клеточной жидкости иногда объясняют усиленной выработкой глицерина в растительных клетках.

Большое количество глицерина идет на получение нитроглицерина, который служит сырьем при производстве бездымных порохов и динамита.

Нитроглицерин токсичен, но в малых дозах используется как лечебное средство, так как расширяет кровеносные сосуды сердечной мышцы и тем самым улучшает кровоснабжение сердца.

Многоатомными спиртами называют производные углеводородов, в молекулах которых содержится несколько гидроксильных групп, связанных с соседними атомами углерода.

Многоатомные спирты взаимодействуют с активными металлами, щелочами, гидроксидами тяжелых металлов, кислородсодержащими неорганическими кислотами и карбоновыми кислотами.

Реакция с гидроксидом меди(II) используется для качественного обнаружения многоатомных спиртов.

Этиленгликоль применяют для получения синтетического волокна лавсан, в качестве антифриза; глицерин используется во многих отраслях промышленности.

  • Фенолы в химии
  • Альдегиды в химии
  • Карбоновые кислоты в химии
  • Сложные эфиры в химии
  • Теория химического строения органических соединений А. М. Бутлерова
  • Насыщенные углеводороды
  • Ненасыщенные углеводороды
  • Ароматические углеводороды


CharChem
:

Система описания химических формул для WEB.

Химические формулы для «чайников»

Научно-популярная статья о химических формулах.
Обсуждаются структурные развёрнутые, упрощенные и скелетные формулы. А так же истинные и рациональные формулы.

Изначально сайт был задуман, как ресурс для профессиональных химиков.
Но в реальности из поисковых систем происходит очень много обращений от людей, только начинающих изучать химию.
Специально для них создан этот раздел, чтобы в доступной форме рассказать о том, как составляются химические формулы.

Содержание

Структурные формулы — это просто!

Я думаю, что знакомство с формулами лучше всего начать со структурных формул органических веществ.
Считается, что они сложны для понимания, поэтому в школе их изучают в выпускных классах.
Но я уверен, что через 10 минут вы разберетесь, как легко составлять структурные формулы.

Перед нами структурная формула метана — самого простого органического вещества.

H-C-H;H|#2|H

Что мы видим? В центре латинская буква C, а от неё четыре палочки, на концах которых четыре латинских буквы H.
C означает углерод, а H — водород. Это два самых важных элемента, которые входят в состав любых органических веществ.
А что означают палочки? Это химические связи. В них кроется практически весь секрет органической химии.
Фокус в том, что валентность углерода равна 4. Поэтому у каждой буквы C должно быть 4 палочки.
А валентность водорода равна 1, поэтому у него палочка должна быть только одна.
По-моему, палочки отлично демонстрируют такие «страшные» понятия, как химические связи и валентность.

Структурные формулы могут слегка менять свой внешний вид.
В них главное — количество элементов и наличие нужных связей.
Например, формула метана может иметь и такой вид:

H-C-H; H|#2|H =
$slope(45)H/C/H;H#CH$slope() = HC/H; H/#CH =
C<_(x-1.5,y1)H><_(x-.5,y1)H><_(x.5,y1)H>_(x1.5,y1)H

Все эти картинки означают одно и то же. И считаются одинаковыми формулами.

В общем, структурные формулы не являются какими-то жесткими конструкциями.
Если вдруг Вам захотелось бы сделать модель молекулы из подручных материалов,
то для этого лучше всего подошли бы шарики, соединённые пружинками или резинками.
Под шариками я конечно подразумеваю атомы, а резинки — химические связи.

Но в химии приняты не только структурные формулы. И здесь мы познакомимся с некоторыми из них.
Достаточно распространены так называемые истинные формулы.
Для метана истинная формула записывается так:

CH4

Палочки исчезли, а вместо четырёх букв H осталась одна, но с маленькой цифрой 4, которая указывает количество атомов.
Иногда такие формулы называют брутто-формулами.
Мне почему-то такое название нравится больше, поэтому я буду чаще пользоваться именно таким термином.

Обе формулы — структурная и истинная — означают одно и то же вещество.
Структурная конечно более понятна, но брутто-формула проще записывается.

Стоит упомянуть, что метан — это природный газ, который знаком всем, у кого есть газовая плита.
Но не будем на нём долго задерживаться. Пора посмотреть, какие ещё бывают варианты органических структур.

Углеводороды

Прежде, чем мы начнём знакомство с многочисленными органическими соединениями, хочу напомнить —
мы здесь изучаем химические формулы. А все упоминаемые вещества служат для иллюстрации.

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Этан H-C-C-H; H|#2|H; H|#3|H CH3-CH3
Пропан H-C-C-C-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH3
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Пентан H-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H CH3-CH2-CH2-CH2-CH3
Гексан H-C-C-C-C-C-C-H;H|#2|H;H|#3|H;H|#4|H;H|#5|H;H|#6|H;H|#7|H

CH3-CH2-CH2-CH2-CH2-CH3

или то же самое, но короче:

CH3-(CH2)4-CH3

C6H14

Здесь представлены органические вещества, называемые углеводородами.
Название означает, что они состоят только из углерода и водорода.
Эти вещества в различной мере входят в состав нефти. И это далеко не полный список.
Но сначала смотрим ту колонку, которая называется Развёрнутая структурная формула.
Мы видим уже знакомые буквы C и H, соединённые химическими связями — палочками.
Главное правило по-прежнему в силе: у каждой буквы C четыре палочки, а у каждой H — одна.
Что здесь нового? Появились химические связи между атомами углерода.
И в результате оказалось, что молекулы органических веществ могут строиться при помощи таких цепочек,
где звеньями являются атомы углерода с прилипшими к ними водородами.

Теперь посмотрим на колонку, где представлены упрощённые структурные формулы.
Несложно догадаться, что они призваны экономить время людей, которые постоянно пишут формулы.
Особенно, если эти формулы достаточно большие.
Правила здесь довольно простые — убираем палочки между углеродом и водородом и пишем число атомов водорода в виде числа.
Таким образом, звенья цепочки становятся видны гораздо более отчётливо. По-научному они называются функциональные группы.
Можно даже довольно быстро понять некоторые более хитрые закономерности.
Например, группа на конце цепочки записывается CH3,
а в середине цепочки — CH2.
А для ещё большей экономии повторяющиеся группы можно объединить в скобочках, подписав количество повторов.
Это показано в последней строке таблицы для формулы гексана: CH3-(CH2)4-CH3.

Некоторые функциональные группы получают собственные названия и даже специальные обозначения.
Например, группа CH3 называется метильная группа (от названия метана)
и имеет собственное обозначение: Me. Если Вам попадётся, к примеру, такая формула: {Me}-CH2-{Me},
то ничего страшного тут нет. Это то же самое, что CH3-CH2-CH3, то есть — пропан.

Двойные и тройные связи

Итак, за короткое время мы уже разобрались, что такое структурные формулы и выяснили, что они бывают развёрнутые и упрощённые.
Но пока что мы познакомились только с одинарными химическими связями.
Но на самом деле существуют двойные и даже тройные связи. Посмотрим на следующую таблицу.

Вещество Развёрнутая формула Упрощённая формула Брутто-фломула
Этен
(Этилен)
$slope(55)HC<`/H>_(x1,N2)C<H>/H CH2=CH2
Пропен
(Пропилен)
$slope(45)HC-C/C/H; H#-3H;H/#2-#3H CH2=CH-CH3
Бутен
(Бутилен)
HC<`/H>=C<|H>-C<`|H><|H>-C-H; H|#-3|H CH2=CH-CH2-CH3
Этин
(Ацетилен)
H-C%C-H CH%CH
Пропин
(Метилацетилен)
H-C%C-C-H; H|#-3|H CH%C-CH3
Бутин
(Этилацетилен)
H-C%C-C<`|H><|H>-C-H; H|#-3|H CH%C-CH2-CH3

Представленные здесь вещества тоже относятся к углеводородам.
Если хорошенько присмотреться, то можно увидеть определённое сходство с веществами из первой таблицы.
Названия формируются заменой буквы в конце названия: этан — этен — этин или
пропан — пропен — пропин. Сходство не ограничивается названиями.
Главное — одинаковое количество атомов углерода. А значит — одинаковое количество звеньев в цепи.
Различие кроется в наличии двойных и тройных связей.
Углеводороды в первой таблице называются предельными.
Это означает, что к ним больше ничего нельзя добавить.
А во второй таблице представлены непредельные углеводороды.
То есть, при определённых условиях к ним можно добавить по парочке атомов водорода.

Кроме того, появились дополнительные названия. Тут тоже нет ничего страшного.
Верхние названия, которые без скобок — это научные названия.
А в скобках даны традиционные названия, которые тоже довольно часто употребляются как в научной литературе, так и в быту.

Циклические углеводороды

Продолжим знакомство с формулами углеводородов. Они ещё не раскрыли нам всех своих секретов.
Оказывается, что цепочки могут быть замкнутыми. То есть, атомы углерода соединяются друг с другом циклически.

Вещество Развёрнутая формула Упрощённая формула Брутто-формула
Циклопропан $slope(60)H`/C`/C:a`/H; H#CC:bH; H-#a-#b-H H2C_(x1.4)CH2_q3CH2_q3
Циклобутан H|C|C|H; H|C|C|H; H-#2-#6-H; H-#3-#7-H H2C-CH2`|CH2`-H2C_#1
Циклопентан C_(x1.1)C@:H2()<_(a24)H><_(a84)H>@()_qC@H2()_qC@H2()_qC@H2()_q@H2() H2C_(x1.4)CH2_qCH2_qCH2_qH2C_q
Циклогексан CC@:H2()<_(a-30)H><_(a-90)H>@()|C@H2()`/C@H2()`C@H2()`|C@H2()/@H2() $L(1.3)CH2CH2|CH2`/CH2`H2C`|H2C/

Изомеры

До сих пор мы не особенно обращали внимания на последнюю колонку, где выведены брутто-формулы.
Но может возникнуть вполне законный вопрос: зачем вообще нужны структурные формулы?
Ведь брутто-формулы гораздо проще записывать. Может быть, достаточно было бы пользоваться только ими?
Но оказывается, что без структурных формул обойтись не получится.
Например, если сравнить брутто-формулы из двух предыдущих таблиц, то мы увидим,
что циклопропан имеет абсолютно тот же состав, что и пропен (C3H6).
А брутто-формула циклобутана совпадает с бутеном (C4H8).
Но это разные вещества! И разница заключается в структуре.
То есть, имеет большое значение, в каком порядке элементы соединены друг с другом.
А значит, именно структурные формулы позволяют точно описать нужное вещество.

В химии существует такое понятие как изомеры.
Так называют разные вещества, которые имеют одинаковый состав. Это не редкость.
И в этом нет ничего странного. Ведь бывают же совершенно разные слова, состоящие из одинаковых букв.

Классическими изомерами среди углеводородов можно назвать бутан и изобутан. Посмотрим на их формулы:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Брутто-формула
Бутан H-C-C-C-C-H; H|#2|H; H|#3|H; H|#4|H; H|#5|H CH3-CH2-CH2-CH3
Метилпропан
(Изобутан)
HCC/C/H; H|#2`/H; H|#4H; H|#3|C|H; H/#-3H CH3-CH<|CH3>-CH3

Изобутан является изомером бутана. Обратите внимание, что брутто-формулы одинаковы.
Но хотя они близки по свойствам, это разные вещества.

Как видно, разнообразие углеводородов не перестаёт удивлять.
Оказывается, они могут состоять не только из линейных цепочек, но могут образовывать разветвлённые структуры.
И чем длиннее исходная цепочка, тем больше вариантов.
Если у бутана возможны только два изомера, то у пентана их уже три:

Вещество Упрощённая формула Брутто-формула
Пентан CH3-CH2-CH2-CH2-CH3
2-метилбутан
(Изопентан)
CH3-CH<`|CH3>-CH2-CH3
2,2-диметилпропан
(Неопентан)
CH3-C<`|CH3><|CH3>-CH3

А у вещества декан, имеющего формулу C10H22, существует 75 изомеров.
Но мы не будем их здесь рассматривать.

Обратите внимание, что научное название зависит от числа звеньев в прямой цепочке,
а традиционное название просто учитывает количество атомов углерода в молекуле.
Так получилось из-за того, что химики, которые только начинали исследовать углеводороды,
первым делом научились определять состав веществ.
То есть, сначала люди смогли получить лишь брутто-формулы.
А из них невозможно понять, какова длина самой длинной цепочки. Поэтому названия учитывали общее число атомов углерода.
Затем наука дошла до того, что люди смогли исследовать структуру молекул, придумали структурные формулы
и переименовали уже известные вещества в соответствии с новыми знаниями.
Но старые названия уже успели прижиться и существуют до сих пор.

Бензол и скелетные формулы

Думаю, что пора познакомиться ещё с одним весьма примечательным представителем углеводородов.
Это вещество называется бензол. Вот его формулы:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H H_(y.5)C\CH|CH`//C<_(y.5)H>`HC`||HC/ \|`//«||/

Чем же этот бензол так примечателен? Дело в том, что это шестиугольное колечко входит в состав огромного
числа органических веществ.
И вот на примере бензола предлагаю ознакомиться с ещё одним очень важным способом записи структурных формул — скелетными формулами.
Как видно из таблицы, скелетная формула бензола представляет собой правильный шестиугольник без каких-либо букв,
зато изображения химических связей выглядят одинаково.
В общем, правила составления скелетных формул отличаются от уже знакомых нам развёрнутых всего двумя особенностями:

  • Буквы C не пишутся. Предполагается, что каждый угол изображаемой геометрической фигуры содержит атом углерода.
  • Буквы H тоже не пишутся. Если в углу сходятся меньше четырёх линий, то это означает, что все оставшиеся заняты водородом.

Конечно, скелетные формулы не так просты, как развёрнутые, но зато их гораздо легче записывать.
Поэтому в органической химии это самый популярный вид формул. И мне кажется, Вам тоже будет несложно к ним привыкнуть.

Давайте посмотрим, как выглядят формулы других веществ, производных от бензола.

Вещество Развёрнутая формула Скелетная формула Смешанный вариант Брутто-формула
Нафталин C/C<`|H>\C</H>|C<H>`//C<|H>`C`|`\C<`|H>`/C<`H>||C<`/H>C/`/|H /\|`//«|`\`/||// C10H8
Толуол H|C|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H; H-#2-H |\|`//«||/ CH3|\|`//«||/
Кумол HCC/C/H; H|#2|H; H|#4|H; H|#3|CC|C<H>`//C<|H>`C<`/H>`||C<`H>//H </>|\|`//«||/ H3C</CH3>|\|`//«||/

Как видите, появился ещё и смешанный вариант. Опять какой-то новый вид формул? На этот раз уже нет.
Просто иногда внутри одной формулы удобно сочетать различные способы.

А вот скелетная формула углеводорода, который называется коронен. Причём, другие варианты здесь уже использовать нет смысла.

|/`/|«/|`|«|/`/«||/\/\|||`/|`//«/`\`|/`/«||/

Впечатляет? Но это далеко не самая сложная структура для органического вещества.
Так что теперь Вы понимаете, почему скелетные формулы так популярны….

Скелетные формулы существуют не только для циклических молекул.
Понятно, что метан и этан имеют слишком мало узлов, поэтому для них не стоит пытаться использовать скелетные формулы.
А вот какая-нибудь длинная молекула изображается довольно легко.
Только не в виде прямой цепочки, а при помощи ломаной линии, ведь атомы углерода изображаются углами.

Бутан Бутен Изобутан Гексан
// /// |`|0/ ///

Трехмерные изображения

Иногда плоского изображения становится недостаточно.
Поэтому для изображения трехмерных структурных формул используют особое изображение для химических связей:

{A}<`wB><|wB>/wB Такая химическая связь означает, что А находится в плоскости листа, а В расположено ближе к наблюдателю.
{A}<`dB><|dB>/dB а здесь В расположено от наблюдателя дальше, чем плоскость листа. То есть, А ближе, чем В

В качестве примера посмотрим на формулы уже известных нам углеводородов:

Метан Пропан Циклопропан Циклопентан
H|C<`/H><_(A65,w+)H>_(A20,d+)H $slope(45)H|C<_(A170,d+)H><`/wH>C<`/wH><dH>/C<wH><_(A10,d+)H>`|H C_(x1.3)C_q3C_q3; H_(A-20,w-)#1_(A110,d+)H; H_(A-160,w-)#2_(A80,d+)H; H_(A65,w-)#3_(A-65,d+)H _(x1,y.5,W+)_(x1.5)_(x.5,y-1.5,W-)_(x-1.3,y1.1)_#1; $slope(60)H#1`/H; H#2`/H; H_(A140)#3H; H|#4-H; H#5_(y1.2)H

Конечно, здесь потребуется включать воображение, чтобы представить трёхмерную структуру.
Но зато теперь Вы не растеряетесь, увидев подобную запись.

Формулы с окружностью

Думаю, что стоит упомянуть ещё одну интересную конструкцию, которая нередко встречается при изображении циклических структур.
Вот перед Вами несколько скелетных формул уже известного нам бензола:

/\|`//«|| <-> /=`//`-`\ <-> //||`/`\`| <-> /|`/«|_o <-> H|</H>|<H>`/<|H>`<`/H>`|<`H>/_o

Само собой, все они означают одно и то же. Но первые три отличаются только поворотом вокруг собственного центра.
Тут нет ничего необычного, ведь молекулы не стоят на одном месте.
А вот дальше мы видим кружок вместо трёх двойных связей.
Причём, я намеренно изобразил все атомы водорода в последней формуле.
Чтобы было хорошо видно, что каждый угол фактически лишился одной чёрточки. Их заменил кружок.
Он как бы означает, что все двойные связи равномерно распределены внутри кольца.

Формулы бензола, где используется чередование одинарных и двойных связей называются формулами Кекуле в честь немецкого учёного,
который внёс значительный вклад в исследование структуры бензола.

На самом деле, среди химиков нет единого мнения по поводу того, насколько правильно использование формул с кружком.
Некоторые авторы категорически против. Но есть масса публикаций, где такая запись широко употребляется.
Моя задача состоит в том, чтобы Вы узнали о существовании подобных формул и не удивлялись, увидев их.

Вот пара примеров записи уже для уже знакомых нам веществ:

Нафталин: /|`/«|_o«/|/_o Толуол: `/`-`/-_o-CH3

Знакомство с кислородом. Спирты

До сих пор мы знакомились со структурными формулами углеводородов, которые состоят только из углерода и водорода.
Думаю, пора познакомиться с новым элементом — кислородом. Он обозначается латинской буквой O.
Его валентнсть равна 2. То есть, каждая буква O в структурных формулах должна снабжаться двумя палочками.

Кислород — очень распространённый элемент на нашей планете.
Он входит в состав большого количества органических и неорганических веществ.
Но мы начнём знакомство с группы веществ, называемых спиртами:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метанол
(метиловый спирт)
H-C-O-H; H|#C|H CH3-OH OH
Этанол
(этиловый спирт)
H-C-C-O-H; H|#2|H; H|#3|H CH3-CH2-OH /OH
1-Пропанол
(пропиловый спирт)
H-C-C-C-O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-OH //OH
2-Пропанол
(изопропиловый спирт)
H-C-C-C-H; H|#2|H; H|#3|O|H; H|#4|H CH3-CH<|OH>-CH3 <|OH>/

Не правда ли, что в этом есть что-то знакомое? Метан — метанол, этан — этанол, пропан — пропанол.
Да, можно сказать, что спирт получается из углеводорода, если заменить один атом -H на группу -O-H
(или -OH в упрощенных структурных формулах).
Химики называют её: гидроксильная группа, по латинским названиям водорода и кислорода.
А иногда она даже называется спиртовой группой.

Все спирты можно описать в виде обобщённой формулы {R}-OH,
где OH — гидроксильная группа, а R — остальная часть молекулы органического вещества.

Конечно же стоит упомянуть, что этанол — это тот самый спирт, который входит в состав алкогольных напитков.
Другие представленные здесь спирты по запаху, цвету и даже вкусу довольно похожи на этиловый спирт.
Но они очень вредны для здоровья человка. Например, один глоток метанола может оставить человека слепым на всю жизнь.
А если выпить больше, то это можеть оказаться фатальным для жизни.

Ещё здесь из четырёх спиртов есть два изомера: 1-пропанол и 2-пропанол.
У них одинаковые брутто-формулы, хотя вещества это разные.
Их молекулы отличаются номером углеродного атома, к которому крепится группа OH.
Возможно, Вы спросите, почему у 1-пропанола гидроксильная группа присоединена к третьему, а не к первому атому углерода?
Тут следует вспомнить, что молекулы не находятся в одном положении. Они постоянно крутятся. И вполне могут развернуться как угодно:

CH3-CH2-CH2-OH = $slope(45)CH3CH2CH2OH = CH3|CH2|CH2|OH = HO/CH2/CH2/CH3 =
HO-CH2-CH2-CH3; @:Cx(n,t)#&n_(y.7,N0)$itemColor1(gray)»&t»@(2,1); @Cx(3,2); @Cx(4,3)

Поэтому первый номер — тот, который ближе к гидроксильной группе.

Все спирты, с которыми мы уже успели познакомиться, имеют в своём составе одну гидроксильную группу.
Химики называют их одноатомные спирты. Но существуют вещества с различным количеством гидроксильных групп.
Они соответственно называются двухатомные спирты, трёхатомные спирты и так далее…
В качестве примера трёхатомного спирта можно привести достаточно известное вещество — глицерин:

Развёрнутая формула Упрощённая формула Скелетная формула Брутто-формула
H-C-C-C-H; $slope(45)H`/O|#2|H; H`/O|#3|H; H`/O|#4|H OH|CH2-CH<`|OH>-CH2`|OH HO/<`|OH>/OH

Ну и чтобы завершить знакомство со спиртами, приведу ещё формулу другого известного вещества — холестерина.
Далеко не все знают, что он является одноатомным спиртом!

|`/`\`|<`|w>«/|<`/w$color(red)HO$color()>/`|0/`|/<`|w>|_q_q_q<-dH>:a_q|0<|dH>`/<`|wH>`|dH;
#a_(A-72)<_(A-120,d+)>-/-/<->`

Гидроксильную группу в нём я обозначил красным цветом.

Карбоновые кислоты

Любой винодел знает, что вино должно храниться без доступа воздуха. Иначе оно скиснет.
Но химики знают причину — если к спирту присоединить ещё один атом кислорода, то получится кислота.

Посмотрим на формулы кислот, которые получаются из уже знакомых нам спиртов:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Метановая кислота
(муравьиная кислота)
H/C`|O|OH HCOOH O//OH
Этановая кислота
(уксусная кислота)
H-C-C<//O>O-H; H|#C|H CH3-COOH /`|O|OH
Пропановая кислота
(метилуксусная кислота)
H-C-C-C<//O>O-H; H|#2|H; H|#3|H CH3-CH2-COOH /`|O|OH
Бутановая кислота
(масляная кислота)
H-C-C-C-C<//O>O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-COOH //`|O|OH
Обобщённая формула {R}-C<//O>O-H {R}-COOH или {R}-CO2H {R}/`|O|OH

Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH),
которая и придаёт таким веществам кислотные свойства.

Все, кто пробовал уксус, знают что он весьма кислый. Причиной этого является наличие в нём уксусной кислоты.
Обычно столовый уксус содержит от 3 до 15% уксусной кислоты, а остальное (по большей части) — вода.
Употребление в пищу уксусной кислоты в неразбавленном виде представляет опасность для жизни.

Карбоновые кислоты могут иметь несколько карбоксильных групп.
В этом случае они называются: двухосновная, трёхосновная и т.д…

В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

Щавелевая кислота Молочная кислота Яблочная кислота Лимонная кислота
HOOC-COOH H3C<|OH>/COOH HOOC/<`|OH>COOH HOOC/<`|COOH><|OH>/COOH
двухосновная карбоновая кислота оксикарбоновая кислота Двухосновная оксикарбоновая кислота Трёхосновная оксикарбоновая кислота

Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся.
Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов.
Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

Радикалы

Радикалы — это ещё одно понятие, которое оказало влияние на химические формулы.
Само слово наверняка всем известно, но в химии радикалы не имеют ничего общего с политиками, бунтовщиками и прочими гражданами с активной позицией.
Здесь это всего лишь фрагменты молекул. И сейчас мы разберёмся, в чём их особенность и познакомимся с новым способом записи химических формул.

Выше по тексту уже несколько раз упоминались обобщённые формулы: спирты — {R}-OH и
карбоновые кислоты — {R}-COOH. Напомню, что -OH и -COOH — это функциональные группы.
А вот R — это и есть радикал. Не зря он изображается в виде буквы R.

Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода.
Ну а если отнять два атома водорода, то получится двухвалентный радикал.

Радикалы в химии получили собственные названия.
Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов.
И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
Всё это демонстрируется в следующей таблице.

Название Структурная формула Обозначение Краткая формула Пример спирта
Метил CH3-{} Me CH3 {Me}-OH CH3OH
Этил CH3-CH2-{} Et C2H5 {Et}-OH C2H5OH
Пропил CH3-CH2-CH2-{} Pr C3H7 {Pr}-OH C3H7OH
Изопропил H3CCH(*`/H3C*)-{} i-Pr C3H7 {i-Pr}-OH (CH3)2CHOH
Фенил `/`=`//-\-{} Ph C6H5 {Ph}-OH C6H5OH

Думаю, что здесь всё понятно. Хочу только обратить внимание на колонку, где приводятся примеры спиртов.
Некоторые радикалы записываются в виде, напоминающем брутто-формулу, но функциональная группа записывается отдельно.
Например, CH3-CH2-OH превращается в C2H5OH.
А для разветвлённых цепочек вроде изопропила применяются конструкции со скобочками.

Существует ещё такое явление, как свободные радикалы.
Это радикалы, которые по каким-то причинам отделились от функциональных групп.
При этом нарушается одно из тех правил, с которых мы начали изучение формул:
число химических связей уже не соответствует валентности одного из атомов.
Ну или можно сказать, что одна из связей становится незакрытой с одного конца.
Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

Знакомство с азотом. Амины

Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот.
Он обозначается латинской буквой N и имеет валентность, равную трём.

Посмотрим, какие вещества получаются, если к знакомым нам углеводородам присоединить азот:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Аминометан
(метиламин)
H-C-N</H>H;H|#C|H CH3-NH2 NH2
Аминоэтан
(этиламин)
H-C-C-N</H>H;H|#C|H;H|#3|H CH3-CH2-NH2 /NH2
Диметиламин H-C-N<`|H>-C-H; H|#-3|H; H|#2|H $L(1.3)H/N<_(A80,w+)CH3>dCH3 /N<_(y-.5)H>
Аминобензол
(Анилин)
HN</H>|C\C</H>|C<H>`//C<|H>`C<`/H>`||C<`H>/ NH2|C\CH|CH`//C<_(y.5)H>`HC`||HC/ NH2||`/«|/_o
Триэтиламин $slope(45)H-C-C/NC-C-H;H|#2|H; H|#3|H; H|#5|H;H|#6|H; #N`|C<`-H><-H>`|C<`-H><-H>`|H CH3-CH2-N<`|CH2-CH3>-CH2-CH3 /N<`|/>|

Как Вы уже наверное догадались из названий, все эти вещества объединяются под общим названием амины.
Функциональная группа {}-NH2 называется аминогруппой.
Вот несколько обобщающих формул аминов:

По числу замещённых атомов водорода По числу аминогрупп в молекуле
Первичный амин {R}-NH2 Моноамин {R}-NH2
Вторичный амин {R1}-NH-{R2} Диамин H2N-{R}-NH2
Третичный амин {R1}-N<`|{R3}>-{R2} Триамин H2N-{R}(*`|NH2*)-NH2

В общем, никаких особых новшеств здесь нет.
Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии,
используя какой-нибудь учебник или интернет.
Но мне бы хотелось ещё рассказать о формулах в неорганической химии.
Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

Рациональные формулы

Не следует делать вывод о том, что неорганическая химия проще, чем органическая.
Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды.
Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева.
А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

Так вот, ничего этого я рассказывать не буду. Тема моей статьи — химические формулы.
А с ними как раз всё относительно просто.
Наиболее часто в неорганической химии употребляются рациональные формулы.
И мы сейчас разберёмся, чем же они отличаются от уже знакомых нам.

Для начала, познакомимся с ещё одним элементом — кальцием. Это тоже весьма распространённый элемент.
Обозначается он Ca и имеет валентность, равную двум.
Посмотрим, какие соединения он образует с известными нам углеродом, кислородом и водородом.

Вещество Структурная формула Рациональная формула Брутто-формула
Оксид кальция Ca=O CaO
Гидроксид кальция H-O-Ca-O-H Ca(OH)2
Карбонат кальция $slope(45)Ca`/OC|O`|/O`#1 CaCO3
Гидрокарбонат кальция HO/`|O|O/CaO/`|O|OH Ca(HCO3)2
Угольная кислота H|OC|O`|/O`|H H2CO3

При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой.
Но пока что не очень понятно, как они получаются.
Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

Кальций в чистом виде — это мягкий белый металл. В природе он не встречается.
Но его вполне возможно купить в магазине химреактивов. Он обычно хранится в специальных баночках без доступа воздуха.
Потому что на воздухе он вступает в реакцию с кислородом. Собственно, поэтому он и не встречается в природе.
Итак, реакция кальция с кислородом:

2Ca + O2 -> 2CaO

Цифра 2 перед формулой вещества означает, что в реакции участвуют 2 молекулы.
Из кальция и кислорода получается оксид кальция.
Это вещество тоже не встречается в природе потому что он вступает в реакцию с водой:

CaO + H2O -> Ca(OH2)

Получается гидроксид кальция. Если присмотреться к его структурной формуле (в предыдущей таблице), то видно,
что она образована одним атомом кальция и двумя гидроксильными группами, с которыми мы уже знакомы.
Таковы законы химии: если гидроксильная группа присоединяется к органическому веществу, получается спирт,
а если к металлу — то гидроксид.

Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа.
Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов,
при пожарах и извержениях вулканов.
Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

CO2 + H2O <=> H2CO3

Знак <=> говорит о том, что реакция может проходить в обе стороны при одинаковых условиях.

Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой
и превращается в малорастворимый карбонат кальция:

Ca(OH)2 + H2CO3 -> CaCO3″|v» + 2H2O

Стрелка вниз означает, что в результате реакции вещество выпадает в осадок.
При дальнейшем контакте карбоната кальция с углекислым газом в присутствии воды происходит обратимая
реакция образования кислой соли — гидрокарбоната кальция, который хорошо растворим в воде

CaCO3 + CO2 + H2O <=> Ca(HCO3)2

Этот процесс влияет на жесткость воды.
При повышении температуры гидрокарбонат обратно превращается в карбонат.
Поэтому в регионах с жесткой водой в чайниках образуется накипь.

Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы.
Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д…
Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

Этот небольшой рассказ о круговороте кальция в природе должен пояснить, для чего нужны рациональные формулы.
Так вот, рациональные формулы записываются так, чтобы были видны функциональные группы. В нашем случае это:

OH Гидроксильная группа
CO3 Карбонат — соль угольной кислоты
HCO3 Гидрокарбонат — кислая соль угольной кислоты

Кроме того, отдельные элементы — Ca, H, O(в оксидах) — тоже являются самостоятельными группами.

Ионы

Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо.
А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

В общем, природа химических связей обычно заключается в том, что одни элементы отдают электроны, а другие их получают.
Электроны — это частицы с отрицательным зарядом. Элемент с полным набором электронов имеет нулевой заряд.
Если он отдал электрон, то его заряд становится положительным, а если принял — то отрицатеньным.
Например, водород имеет всего один электрон, который он достаточно легко отдаёт, превращаясь в положительный ион.
Для этого существует специальная запись в химических формулах:

H2O <=> H^+ + OH^-

Здесь мы видим, что в результате электролитической диссоциации вода распадается на положительно заряженный
ион водорода и отрицательно заряженную группу OH.
Ион OH^- называется гидроксид-ион.
Не следует его путать с гидроксильной группой, которая является не ионом, а частью какой-то молекулы.
Знак + или — в верхнем правом углу демонстрирует заряд иона.
А вот угольная кислота никогда не существует в виде самостоятельного вещества.
Фактически, она является смесью ионов водорода и карбонат-ионов (или гидрокарбонат-ионов):

H2CO3 = H^+ + HCO3^- <=> 2H^+ + CO3^2-

Карбонат-ион имеет заряд 2-. Это означает, что к нему присоединились два электрона.

Отрицательно заряженные ионы называются анионы. Обычно к ним относятся кислотные остатки.
Положительно заряженные ионы — катионы. Чаще всего это водород и металлы.

И вот здесь наверное можно полностью понять смысл рациональных формул. В них сначала записывается катион, а за ним — анион.
Даже если формула не содержит никаких зарядов.

Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами.
Вот скелетная формула гидрокарбонат-аниона:

O^-|O`|/OH

Здесь заряд указан непосредственно возле атома кислорода, который получил лишний электрон, и поэтому лишился одной чёрточки.
Проще говоря, каждый лишний электрон уменьшает количество химических связей, изображаемых в структурной формуле.
С другой стороны, если у какого-то узла структурной формулы стоит знак +, то у него появляется дополнительная палочка.
Как всегда, подобный факт нужно продемонстрировать на примере.
Но среди знакомых нам веществ не встречается ни одного катиона, который состоял бы из нескольких атомов.
А таким веществом является аммиак. Его водный раствор часто называется нашатырный спирт и входит в состав любой аптечки.
Аммиак является соединением водорода и азота и имеет рациональную формулу NH3.
Рассмотрим химическую реакцию, которая происходит при растворении аммиака в воде:

NH3 + H2O <=> NH4^+ + OH^-

То же самое, но с использованием структурных формул:

H|N<`/H>H + H-O-H <=> H|N^+<_(A75,w+)H><_(A15,d+)H>`/H + O`^-# -H

В правой части мы видим два иона.
Они образовались в результате того, что один атом водорода переместился из молекулы воды в молекулу аммиака.
Но этот атом переместился без своего электрона. Анион нам уже знаком — это гидроксид-ион.
А катион называется аммоний. Он проявляет свойства, схожие с металлами.
Например, он может объединиться с кислотным остатком.
Вещество, образованное соединением аммония с карбонат-анионом называется карбонат аммония:
(NH4)2CO3.
Вот уравнение реакции взаимодействия аммония с карбонат-анионом, записанное в виде структурных формул:

2H|N^+<`/H><_(A75,w+)H>_(A15,d+)H + O^-C|O`|/O^- <=>
H|N^+<`/H><_(A75,w+)H>_(A15,d+)H`|0O^-C|O`|/O^-|0H_(A-15,d-)N^+<_(A105,w+)H><H>`|H

Но в таком виде уравнение реакции дано в демонстрационных целях.
Обычно уравнения используют рациональные формулы:

2NH4^+ + CO3^2- <=> (NH4)2CO3

Система Хилла

Итак, можно считать, что мы уже изучили структурные и рациональные формулы.
Но есть ещё один вопрос, который стоит рассмотреть подробнее.
Чем же всё-таки отличаются брутто-формулы от рациональных?
Мы знаем почему рациональная формула угольной кислоты записывается H2CO3, а не как-то иначе.
(Сначала идут два катиона водорода, а за ними карбонат-анион).
Но почему брутто-формула записывается CH2O3 ?

В принципе, рациональная формула угольной кислоты вполне может считаться истинной формулой,
ведь в ней нет повторяющихся элементов. В отличие от NH4OH или
Ca(OH)2.
Но к брутто-формулам очень часто применяется дополнительное правило, определяющее порядок следования элементов.
Правило довольно простое: сначала ставится углерод, затем водород, а дальше остальные элементы в алфавитном порядке.
Вот и выходит CH2O3 — углерод, водород, кислород.
Это называется системой Хилла. Она используется практически во всех химических справочниках. И в этой статье тоже.

Вместо заключения мне хотелось бы рассказать о системе CharChem.
Она разработана для того, чтобы все те формулы, которые мы тут обсуждали,
можно было легко вставить в текст.
Собственно, все формулы в этой статье нарисованы при помощи CharChem.

Зачем вообще нужна какая-то система для вывода формул?
Всё дело в том, что стандартный способ отображения информации в интернет-браузерах — это язык гипертекстовой разметки (HTML).
Он ориентирован на обработку текстовой информации.

Рациональные и брутто-формулы вполне можно изобразить при помощи текста.
Даже некоторые упрощённые структурные формулы тоже могут быть записаны текстом,
например спирт CH3-CH2-OH.
Хотя для этого пришлось бы в HTML использовать такую запись:
CH<sub>3</sub>-CH<sub>2</sub>-OH.
Это конечно создаёт некоторые трудности, но с ними можно смириться. Но как изобразить структурную формулу?
В принципе, можно использовать моноширинный шрифт:

    H H
    | |
  H-C-C-O-H
    | |
    H H

Выглядит конечно не очень красиво, но тоже осуществимо.

Настоящая проблема возникает при попытке изобразить бензольные кольца и при использовании скелетных формул.
Здесь не остаётся иного пути, кроме подключения растрового изображения.
Растры хранятся в отдельных файлах. Браузеры могут подключать изображения в формате gif, png или jpeg.
Для создания таких файлов требуется графический редактор. Например, Фотошоп.
Но я более 10 лет знаком с Фотошопом и могу сказать точно, что он очень плохо подходит для изображения химических формул.
Гораздо лучше с этой задачей справляются
молекулярные редакторы.
Но при большом количестве формул, каждая из которых хранится в отдельном файле, довольно легко в них запутаться.
Например, число формул в этой статье равно .
Из них выведены виде графических изображений (остальные при помощи средств HTML).

Система CharChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
Кроме того, брутто-формулы в этой статье вычисляются автоматически.
Потому что CharChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф),
а затем с этой структурой можно выполнять различные действия.
Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу,
проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

Таким образом, для подготовки этой статьи я пользовался только текстовым редактором.
Причём, мне не пришлось думать, какая из формул будет графической, а какая — текстовой.

Вот несколько примеров, раскрывающих секрет подготовки текста статьи:

Текстовое описание CharChem Выводимый результат Сгенерированная брутто-формула
(NH4)2CO3 (NH4)2CO3
H-C-C-O-H; H|#2|H; H|#3|H H-C-C-O-H; H|#2|H; H|#3|H
CH3|\|`//«||/ CH3|\|`//«||/

Описания из левого столбца автоматически превращаются в формулы во втором столбце.
В первой строчке описание рациональной формулы очень похоже на отображаемый результат.
Разница только в том, что числовые коэффициенты выводятся подстрочником.
Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом ;
Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия,
которые потребовались бы для изображения формулы карандашом на бумаге.
В третьей строке демонстрируется использование наклонных линий при помощи символов и /.
Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

Здесь есть гораздо более подробная документация по использованию системы CharChem.

На этом разрешите закончить статью и пожелать удачи в изучении химии.

Краткий толковый словарь использованных в статье терминов

Углеводороды
Вещества, состоящие из углерода и водорода. Отличаются друг от друга структурой молекул.
Структурные формулы
схематические изображения молекул, где атомы обозначаются латинскими буквами, а химические связи — чёрточками.
Структурные формулы бывают развёрнутыми, упрощёнными и скелетными.
Развёрнутые структурные формулы
— такие структурные формулы, где каждый атом представлен в виде отдельного узла.
Упрощённые структурные формулы
— такие структурные формулы, где атомы водорода записаны рядом с тем элементом,
с которым они связаны. А если к одному атому крепится больше одного водорода, то количество записывается в виде числа.
Так же можно сказать, что в качестве узлов в упрощённых формулах выступают группы.
Скелетные формулы
— структурные формулы, где атомы углерода изображаются в виде пустых узлов.
Число атомов водорода, связанных с каждым атомом углерода равно 4 минус число связей, которые сходятся в узле.
Для узлов, образованных не углеродом, применяются правила упрощённых формул.
Брутто-формула
(она же истинная формула) — список всех химических элементов,
которые входят в состав молекулы, с указанием количества атомов в виде числа (если атом один, то единица не пишется)
Система Хилла
— правило, определяющее порядок следования атомов в брутто-формуле:
первым ставится углерод, затем водород, а далее остальные элементы в алфавитном порядке.
Это а система используется очень часто. И все брутто-формулы в этой статье записаны по системе Хилла.
Функциональные группы
Устойчивые сочетания атомов, которые сохраняются в процессе химических реакций.
Часто функциональные группы имеют собственные названия, влияют на химические свойства и научное название вещества

План урока:

Формула и строение спиртов

Классификация спиртов

Номенклатура спиртов

Изомерия спиртов

Методы получения спиртов

Физические свойства

Химические свойства

Применение спиртов

Формула и строение спиртов

Спирты из-за наличия функциональной группы -ОН можно рассматривать как производное воды Н-О-Н. Геометрическое строение воды и спиртов схоже. Угол связи R-O-H равен 109˚, при этом гидроксильный кислород находится в состоянии sp3-гибридизации.

1 stroenie spirtov
Строение молекулы спирта

У спиртов особенное электронное строение. Алкоголи – дипольные молекулы, которые содержат связи C-H, C-O, O-H. Атом кислорода имеет частично отрицательный заряд, а атомы углерода и водорода – частично положительный. Связь О-Н имеет большую полярность, по сравнению со связью С-О. Это явление связано с разностью электроотрицательности кислорода и водорода. Но полярность связей недостаточна для диссоциации и образования ионов Н+. Поэтому можно сделать вывод, что спирты – неэлектролиты.

2 formula spirtov
Формула спиртов: CnH2n+1OH

Классификация спиртов

В классификации спиртов заключены особенности строения молекул. По числу гидроксильных групп различают одноатомные, двухатомные, трехатомные и многоатомные спирты.

3 spirty po chislu gidroksilnyh grupp

Также спирты классифицируют в зависимости от положения гидроксильной группы на первичные, вторичные и третичные.

4 spirty po polozheniu

Номенклатура спиртов

Для спиртов свойственно несколько типов номенклатуры.

  • Тривиальная (историческая) номенклатура. Для простых спиртовых соединений свойственны упрощенные названия. В этом случае название радикала переводят в прилагательное с помощью окончания «овый» и добавляют слово «спирт». Например, CH3-CH2-CH2-OH – пропановый спирт.

У первых двух представителей гомологического ряда есть особенные исторические названия. Метанол – древесный спирт, а этанол – винный. Такие названия обусловлены историческим методом получения. Опьяняющие свойства этанола были известны не менее чем за 8000 лет до н.э.

  • Систематическая номенклатура спиртов. Как правило, в химии используют именно этот вид номенклатуры. В одноатомных спиртах к названию радикала добавляется суффикс «ол», в двухатомных – «диол», в трехатомных – «триол». Положение гидроксигруппы обозначается наименьшим значением, если в составе спирта отсутствует карбонильная и/или карбоксильная группа.

5 tablica spirty

Алгоритм названия спиртов

Систематическая номенклатура подчиняется определенному алгоритму.

  • Выбор главной цепи в соединении.
  • Нумерация начинается с того конца, к которому ближе функциональная группа.
  • Название углеводородного радикала.
  • Прибавление окончания «ол» и указание номера атома углерода, с которым связана гидроксогруппа.

6 formula spirta

Изомерия спиртов

Для спиртов свойственно несколько видов изомерии – изомерия углеродного скелета, положения заместителя и межклассовая (с простыми эфирами). Изомерия углеродного скелета начинается с бутанола.

7 izomeria spirtov
Типы изомерии спиртов

Способы получения спиртов

Существует несколько реакций получения спиртов.

8 gidroliz i gidratacia

Реакция проходит по правилу Марковникова, т.е. атом водорода присоединяется к более гидрированному атому углерода, а гидроксильная группа – к менее. Например, в молекуле CH3-CH2-CH=CH2 атом водорода Н+ примыкает к атому углерода, стоящему в СН2 у кратной связи, а гидроксильная группа ОН – к СН.

9 vosstanovlenie aldegidov

Физические свойства

Физические свойства определяются особенностями строения молекулы спирта. Алкоголи – бесцветные жидкости с характерным запахом. Температуры плавления и кипения спиртов выше, чем у соответствующих представителей других классов веществ. По гомологическому ряду они увеличиваются.

Все алкоголи имеют плотность ниже единицы, т.е. они плавают на поверхности воды. Спирты растворимы в большинстве органических растворителях.

Особенность алкоголей заключается в том, что в гомологическом ряде нет газов. Агрегатное состояние спиртов – жидкое или твердое. Это связано с тем, что атом кислорода в гидроксильной группе обладает частично отрицательным зарядом, а атом водорода – частично положительным. Кислород притягивает положительно заряженные атомы и образует с ними водородные связи. Большое количество таких связей обеспечивает «прилипание» молекул спирта между собой и обуславливает особенное строение.

10 priznaki spirtov

Из этилового спирта изготавливают алкогольные напитки. Несмотря на относительную безопасность употребления этанола, его систематическое употребление пагубно влияет на организм:

  • 100 мл пива – гибель 3000 клеток головного мозга,
  • 100 мл вина – гибель 5000 клеток головного мозга,
  • 100 мл водки – гибель 7500 клеток головного мозга.

В алкогольные напитки вместо этанола могут добавлять метанол, который опасен для жизни. Эти два спирта отличаются по характеру пламени:

  • метиловый горит зеленым пламенем,
  • этиловый – синим.

Но при наличии примесей в метаноле, зеленое пламя может и не появиться.

Химические свойства

Реакции замещения

  • Замещение водорода в гидроксильной группе
  • Взаимодействие с активными металлами (например, с натрием)

Реакция проводится в безводной среде. В воде алкоголяты металлов полностью гидролизуются.

2CH3-CH2-O[H] + 2Na → 2CH3-CH2-ONa + H2

  • Взаимодействие с кислотами (этерификация)

CH3-O[H + HO]-NO2→ CH3-O-NO2 + H2O

  • Замещение гидроксигруппы
  • Взаимодействие с галогеноводородами при нагревании

CH3-CH2-[OH + H]Br→ CH3-CH2-Br + H2O

  • Взаимодействие с аммиаком

Реакция идет при пропускании смеси паров спирта с аммиаком при 300˚С над оксидом алюминия.

CH3-CH2-[OH +H]-NH2→CH3-CH2-NH2 + H2O

При избытке в спирте алкильных радикалов в молекуле аммиака могут замещаться два или три атома водорода.

2CH3-CH2-[OH + H]-NH2 → C2H5-NH-C2H5 + 2H2O

Реакции отщепления

  • Дегидратация
  • Межмолекулярная дегидратация в присутствии концентрированной серной кислоты и при 140˚С

CH3-CH2-O[H + НО]-СН2-СН3→С2Н5-О-С2Н5 + Н2О

CH3-O[H + HO]-CH2-CH3→ CH3-O-C2H5 + H2O

  • Внутримолекулярная дегидратация в присутствии концентрированной серной кислоты и при 170˚С

OH]-CH2-CH2-[H →CH2=CH2 + H2O

Для метанола не характерна внутримолекулярная дегидратация. Реакция вторичных и третичных спиртов проходит по правилу Зайцева. Т.е. при отщеплении воды от спирта атом водорода отрывается от соседнего менее гидрированного атома углерода. Например, в молекуле CH3-CH2-CH(OH)-CHатом водорода Н+ отщепляется от атома углерода в СН3, находящегося вблизи гидроксильной группы.

CH3-CH(OH)-CH2-CH3→CH3-CH=CH-CH3 + H2O

  • Дегидрирование в присутствии катализатора меди и под действием нагревания

11 uravnenie degidrirovania

Реакции окисления

  • Полное окисление (горение)

CH3-CH2-OH + 3О2→ 2СО2 + 3Н2О

Неполное окисление

12 pervichnyi spirt

Качественная реакция на многоатомные спирты

Качественная реакция – химическое превращение, которое сопровождается характерными признаками. С ее помощью можно распознать определенное вещество.Строение многоатомных спиртов, т.е. присутствие в молекуле нескольких гидроксильных групп, обуславливает образование при взаимодействии со свежеполученным осадком гидроксида меди (II) растворимых в воде комплексов василькового цвета.

13 stroenie odnoatomnyh spirtov

Строение одноатомных спиртов такая качественная реакция не подтверждает.

Применение спиртов

Метанол, или древесный спирт, опасен для употребления. Он был получен путем перегонки твердых древесных пород. Этот одноатомный спирт недобросовестные производители алкогольных напитков применяют вместо этанола, что провоцирует гибель потребителей. Древесный спирт в организме под влиянием фермента алкогольдегидрогеназы преобразуется в формальдегид и муравьиную кислоту, которые провоцируют слепоту. 50 мл метанола – смертельная доза. Метанол непросто отличить от этанола, т.к. они имеют схожий запах и вид.

14 metanol
Применение метилового спирта

Области применения этилового спирта разнообразны. Этиловый спирт используют в получении синтетического каучука, лекарственных препаратов и применяют как растворитель. Этанол используется в изготовлении алкоголя. При попадании в организм он снижает болевые ощущения, уменьшает торможения в коре головного мозга, ускоряет мочеобразование, провоцирует расширение кровеносных сосудов. При больших количествах этанола происходит его окисление до ацетальдегида, что вызывает тяжелые отравления.

При систематическом употреблении алкоголя снижается работоспособность головного мозга, а клетки печени погибают. Дети и подростки, употребляющие алкоголь, подвержены инфекционным заболеваниям. Продолжительность жизни пьющих людей меньше на 10-12 лет по сравнению с людьми, ведущих здоровый образ жизни.

15 etanol
Применение этилового спирта.

Практическое применение трехатомный спирт глицерин нашел в косметической, медицинской и пищевой промышленности. Он смягчает и успокаивает кожу. Также глицерин входит в состав зубной пасты, что предотвращает ее высыхание.

16 glicerin
Применение глицерина

Многоатомный спирт глицерин также применяют в промышленной отрасли для предотвращения кристаллизации продуктов. Его используют как увлажнитель для табака. Он входит в состав клеев и предохраняет их от слишком быстрого высыхания.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти денег на мечту
  • Как найти iban сбербанк онлайн
  • Как найти споры грибов
  • Как найти всех насекомых нэнси дрю
  • Как dr dre нашел eminem

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии