Как составить эквивалентную схему треугольник

Содержание:

Преобразование схем электрических цепей:

При расчете электрических цепей часто возникает целесообразность преобразования схем этих цепей в более простые и удобные для расчета. Так, при одном или нескольких источниках электрической энергии в ряде случаев удается преобразовать электрическую схему в одноконтурную или в схему с двумя узлами, что весьма упрощает последующий расчет.

Описываемые ниже приемы преобразования схем электрических цепей применимы для цепей постоянного и переменного тока-, ради общности изложения они приводятся в комплексной записи.

Одним из основных видов преобразования электрических схем, часто применяемых на практике, является преобразование схемы со смешанным соединением элементов. Смешанное соединение элементов представляет собой сочетание более простых соединений — последовательного и параллельного, рассмотрению которых и посвящен данный параграф.

Последовательное соединение

На рис. 4-1 изображена ветвь электрической цепи, в которой последовательно включены комплексные сопротивленияПреобразование схем электрических цепей

Напряжения на отдельных участках цепи обозначены через Преобразование схем электрических цепей

По второму закону Кирхгофа

Преобразование схем электрических цепей

или, что то же,

Преобразование схем электрических цепей

Сумма комплексных сопротивлений всех последовательно соединенных участков цепи

Преобразование схем электрических цепей

называется эквивалентным комплексным сопротивлением.

Преобразование схем электрических цепей
Если мнимые части комплексов Преобразование схем электрических цепей

представляют собой сопротивления одинакового характера— индуктивного или емкостного (рис. 4-2), то эквивалентное комплексное сопротивление Z находится в результате

Преобразование схем электрических цепей

арифметического сложения в отдельности сопротивленийПреобразование схем электрических цепей индуктивностей Преобразование схем электрических цепей или величин Преобразование схем электрических цепейобратных емкостям:

Преобразование схем электрических цепей

или

Преобразование схем электрических цепей

где
Преобразование схем электрических цепей
Ток в цепи равен:

Преобразование схем электрических цепей
Напряжения на участках цепи, соединенных последовательно, относятся как комплексные сопротивления этих участков: напряжение на k-м участке равно произведению суммарного напряжения Преобразование схем электрических цепей на отношение комплексного сопротивления Преобразование схем электрических цепей участка к эквивалентному комплексному сопротивлению цепи:

Преобразование схем электрических цепей
Приведенные выше формулы справедливы при любых значенияхПреобразование схем электрических цепей

Параллельное соединение

На рис. 4-3 изображена схема электрической цепи с двумя узлами. Между этими узлами параллельно соединены ветви с комплексными проводимостями Преобразование схем электрических цепейПреобразование схем электрических цепей Напряжение на всех ветвях одинаковое, равное Преобразование схем электрических цепей

Преобразование схем электрических цепей
Токи в ветвях обозначены черезПреобразование схем электрических цепей

По первому закону Кирхгофа

Преобразование схем электрических цепей

или, что то же,

Преобразование схем электрических цепей

Сумма комплексных проводимостей всех ветвей, соединенных параллельно,

Преобразование схем электрических цепей

называется эквивалентной комплексной проводимостью.

Если мнимые части комплексов Преобразование схем электрических цепей представляют собой проводимости одинакового характера — емкостного или индуктивного (рис. 4-4), то эквивалентная

Преобразование схем электрических цепей
комплексная проводимость Y находится в результате арифметического сложения отдельных активных проводимостей Преобразование схем электрических цепей, емкостей Преобразование схем электрических цепей или величин Преобразование схем электрических цепей обратных индуктивностям:

Преобразование схем электрических цепей

или

Преобразование схем электрических цепей

где

Преобразование схем электрических цепей

Суммарный ток в цепи равен:

Преобразование схем электрических цепей

Токи в ветвях относятся, как их комплексные проводимости: ток в Преобразование схем электрических цепей ветви равен произведению суммарного тока всех ветвей на отношение комплексной проводимости Преобразование схем электрических цепейветви к эквивалентной комплексной проводимости:

Преобразование схем электрических цепей
Данным выражением особенно удобно пользоваться при n > 2. При этом значения Преобразование схем электрических цепей могут быть любыми.

В случае параллельного соединения двух ветвей (n = 2) обычно пользуются выражениями, в которые входят сопротивленияПреобразование схем электрических цепей ветвей; эквивалентное комплексное сопротивление равно: v 1    1    Z,Z2

Преобразование схем электрических цепей
Токи в параллельных ветвях:

Преобразование схем электрических цепей
t. e. ток одной из двух параллельных ветвей равен суммарному току, умноженному на сопротивление другой ветви и деленному на сумму сопротивлений обеих ветвей.
 

Смешанное соединение

Электрические схемы, имеющие смешанное соединение, могут быть преобразованы в более простую электрическую схему путем замены параллельных ветвей одной ветвью и соответственно последовательно соединенных участков цепи — одним участком.

Преобразование схем электрических цепей

На рис. 4-5 показан пример электрической цепи со смешанным соединением. Эта схема легко приводится к одноконтурной. Первоначально вычисляется эквивалентная комплексная проводимость параллельных ветвей; затем находится величина, обратная проводимости, т. е. общее комплексное сопротивление параллельных ветвей; найденное комплексное сопротивление суммируется с комплексным сопротивлением последовательно включенного участка. Полученное суммарное

комплексное сопротивление эквивалентно сопротивлению исходной цепи со смешанным соединением.

Расчетные выражения для рассматриваемого случая будут следующие:

Преобразование схем электрических цепей

Суммарное комплексное сопротивление всей цепи равно:

Преобразование схем электрических цепей

а суммарный ток
Преобразование схем электрических цепей
Токи в ветвях относятся, как комплексные проводимости ветвей:

Преобразование схем электрических цепей

Таким юбразом, многоконтурная электрическая схема со смешанным соединением приводится к одноконтурной,
Преобразование схем электрических цепей
имеющей суммарное комплексное сопротивление Z или соответственно суммарную комплексную проводимость Y. Распределение токов и напряжений в смешанной цепи подчиняется правилам, указанным в предыдущем параграфе.

Описанный выше порядок преобразования схемы и нахождения распределения токов принципиально применим и для так называемой цепной схемы, показанной на рис. 4-6. Просуммировав комплексные сопротивления Преобразование схем электрических цепей в последней ветви, найдем комплексную проводимость ветви, которую алгебраически сложим с Преобразование схем электрических цепей и получим суммарную комплексную проводимость двух последних ветвей; вычислив обратную величину, т. е. комплексное сопротивление, прибавим к ней Преобразование схем электрических цепейПродолжая

таким образом дальше, получим в итоге результирующее комплексное сопротивление цепи и соответственно суммарный токПреобразование схем электрических цепей который может быть путем последовательных вычислений распределен между всеми ветвями сложной цепи.

Однако такой способ расчета цепной схемы является достаточно трудоемким и утомительным. Более целесообразно в этом случае воспользоваться другим методом, который известен под названием метода подобия или единичного тока.

Задавшись током в последней ветви, равным единице Преобразование схем электрических цепей находим напряжение на комплексном сопротивлении Преобразование схем электрических цепейравное Преобразование схем электрических цепей При этом ток Преобразование схем электрических цепей  .

Следовательно,

Преобразование схем электрических цепей

Прибавив к напряжению наПреобразование схем электрических цепей падение напряжения от тока Преобразование схем электрических цепей в комплексном сопротивлении Преобразование схем электрических цепей получим напряжение наПреобразование схем электрических цепей Продолжая таким образом дальше, найдем в конечном итоге ток Преобразование схем электрических цепейи напряжение Преобразование схем электрических цепейВвиду того что ток Преобразование схем электрических цепей был произвольно выбран равным единице, полученное напряжение не будет равно заданному напряжению Преобразование схем электрических цепей на выводах цепи. Для нахождения действительного распределения токов в схеме необходимо все вычисленные значения токов умножить на отношение Преобразование схем электрических цепей
 

Эквивалентные участки цепи с последовательным и параллельным соединениями

Обозначим комплексное сопротивление участка цепи, состоящего из двух последовательно соединенных элементов, через Преобразование схем электрических цепей Комплексная проводимость данного участка цепи равна Преобразование схем электрических цепей причем активная и реактивная проводимости:

Преобразование схем электрических цепей

Если два элемента с проводимостями g и b, вычисленными по этим формулам, соединить параллельно, то суммарная комплексная проводимость будет равна Y и соответственно комплексное сопротивление будет равно Z,

Такие две цепи с последовательным и параллельным соединениями, имеющие одинаковые сопротивления на выводах, называются эквивалентными.

Ввиду того что реактивное сопротивление х, входящее в расчетные формулы, в общем случае зависит от частоты, условие эквивалентности этих цепей выполняется только при той частоте, для которой вычислено х.

Пусть, например, задана схема с последовательным соединением сопротивления Преобразование схем электрических цепей и индуктивности Преобразование схем электрических цепей(рис. 4-7, а). Преобразуем ее в схему с параллельным соединением элементов (рис. 4-7, б).

Активная и реактивная проводимости исходной цепи:

Преобразование схем электрических цепей

Из условия эквивалентности цепей следует, что параметры новой цепи будут:

Преобразование схем электрических цепей
Вычислив по этим формулам Преобразование схем электрических цепей получим схему цепи, эквивалентной исходной при данной частоте Преобразование схем электрических цепей При других значениях частоты Преобразование схем электрических цепейпараметры Преобразование схем электрических цепей будут иметь другие значения, следовательно эквивалентность цепей нарушится.

Преобразование схем электрических цепей

При Преобразование схем электрических цепей например, при достаточно высокой частоте:
Преобразование схем электрических цепей
Если исходной является схема рис. 4-7, б и заданными параметрами являются Преобразование схем электрических цепей то параметры эквивалентной цепи (рис. 4-7, а) определятся из выражений:

Преобразование схем электрических цепей

Из полученных выражений видно, что числовые значения Преобразование схем электрических цепейэквивалентной цепи зависят от частоты.

Условия эквивалентности для цепей с последовательным и параллельным соединением сопротивления и емкости имеют вид:
Преобразование схем электрических цепей
При достаточно высокой частоте Преобразование схем электрических цепей и тогда

Преобразование схем электрических цепей

Преобразование схем электрических цепей
 

Преобразование треугольника в эквивалентную звезду

Преобразованием треугольника в эквивалентную звезду называется такая замена части цепи, соединенной по схеме треугольником, цепью, соединенной по схеме звезды, при которой токи и напряжения в остальной части цепи

Преобразование схем электрических цепей
сохраняются неизменными. Иначе говоря, эквивалентность треугольника и звезды понимается в том смысле, что при одинаковых напряжениях между одноименными выводами токи, входящие в одноименные выводы, одинаковы. Это равносильно тому, что мощности в этих цепях одинаковы.

На рис. 4-8 показан случай, когда преобразование треугольника в эквивалентную звезду дает возможность преобразовать многоконтурную схему в одноконтурную.

Для вывода расчетных выражений, служащих для преобразования треугольника в эквивалентную звезду, ниже приняты следующие обозначения (рис. 4-9):

Выразим токи в ветвях треугольника через приходящие токи.

Преобразование схем электрических цепей
По второму закону Кирхгофа сумма напряжений в контуре треугольника равна нулю:

Преобразование схем электрических цепей

По первому закону Кирхгофа для узлов 2 и 1

Преобразование схем электрических цепей

Решение этих уравнений относительно Преобразование схем электрических цепейДает:

Преобразование схем электрических цепей
Напряжение между выводами 1 и 2 схемы рис. 4-9, а будет:

Преобразование схем электрических цепей

a в схеме рис. 4-9, б оно равно:
Преобразование схем электрических цепей
Для эквивалентности необходимо равенство напряжений Преобразование схем электрических цепей при всяких токах Преобразование схем электрических цепей
Преобразование схем электрических цепей

Это возможно при условии:

Преобразование схем электрических цепей

Третье выражение получается в результате круговой замены индексов.

Итак, комплексное сопротивление луча звезды равно произведению комплексных сопротивлений прилегающих сторон треугольника, деленному на сумму комплексных сопротивлений трех сторон треугольника.

Выше было получено выражение для тока в стороне 1—2 треугольника в зависимости от токов Преобразование схем электрических цепей Круговой заменой индексов можно получить токи в двух других сторонах треугольника:

Преобразование схем электрических цепей
 

Преобразование звезды в эквивалентный треугольник

В расчетах также возникает необходимость замены звезды эквивалентным треугольником. На рис. 4-10 показан, например, случай, когда такая замена позволяет

Преобразование схем электрических цепей
преобразовать сложную электрическую схему в одноконтурную.

При переходе от звезды к треугольнику заданными являются сопротивления звездыПреобразование схем электрических цепей Выражения для искомых сопротивлений треугольника находятся в результате совместного решения трех уравнений (4-1).

Деление третьего уравнения на первое, а затем на второе дает:

Преобразование схем электрических цепей

Выражая отсюда Преобразование схем электрических цепей и подставляя их в первое уравнение (4-1), получим:

Преобразование схем электрических цепей

откуда

Преобразование схем электрических цепей

Аналогично круговой заменой индексов получим:

Преобразование схем электрических цепей

И

Преобразование схем электрических цепей
Отедовательно, комплексное сопротивление стороны треугольника равно сумме комплексных сопротивлений прилегающих лучей звезды и произведения их, деленного на сопротивление третьего луча.

Токи в лучах звезды легко выражаются через токи в сторонах треугольника. С учетом положительных направлений на рис. 4-9 имеем:
Преобразование схем электрических цепей
 

Эквивалентные источники э. д. с. и тока

Два разнородных источника электрической энергии — источник э. д. с. и источник тока — считаются эквивалентными,, если при замене одного источника другим токи и напряжения во внешней электрической цепи, с которой эти источники соединяются, остаются неизменными. На рис. 4-11 изображены эквивалентные источники тока, посылающие во внешнюю цепь ток Преобразование схем электрических цепейи поддерживающие на своих выводах одинаковое напряжениеПреобразование схем электрических цепей

Условием эквивалентности источников, именуемым в дальнейшем правилом об эквивалентных источниках э.д.с. и тока, служит следующее соотношение между э. д. с. Ё источника э. д. с. и токомПреобразование схем электрических цепей

источника тока:

Преобразование схем электрических цепей

где Z — внутреннее комплексное сопротивление как источника э. д. с., так и источника тока.

Действительно, напряжение Преобразование схем электрических цепей на источнике э. д. с. получается в результате вычитания из э. д. с. Преобразование схем электрических цепей падения напряжения от тока Преобразование схем электрических цепей в комплексном сопротивлении Z источника (рис. 4-11, а).

Соответственно напряжение Преобразование схем электрических цепей на источнике тока при том же токе Преобразование схем электрических цепейпосылаемом во внешнюю цепь, равно падению напряжения от тока Преобразование схем электрических цепей в комплексном сопротивлении Z источника (рис. 4-11,6).

В обоих случаях напряжения на выводах обоих источников одинаковы:

Преобразование схем электрических цепей
т. е. получается условие (4-3), не зависящее от тока Преобразование схем электрических цепей нагрузки.

Преобразование схем электрических цепей

При отсоединении эквивалентных источников э. д. с.

и тока от внешней цепи Преобразование схем электрических цепей напряжение на выводах обоих источников равно Ё. Именно это обстоятельство и равенство внутренних комплексных сопротивлений обоих источников и обеспечивают их эквивалентность при любом режиме работы.

Следует заметить, что мощности, расходуемые во внутренних сопротивлениях эквивалентных источников э. д. с. и тока, неодинаковы. В первом случае полная мощность, расходуемая в источнике, равнаПреобразование схем электрических цепей во втором случае

Преобразование схем электрических цепей

Например, при отсоединении источников от внешней цепи в первом случае мощность в источнике не расходуется, а во втором случае она составляет Преобразование схем электрических цепей

Поэтому эквивалентность источников следует понимать только в смысле неизменности токов, напряжений и мощностей во внешней электрической цепи, присоединенной к источникам.

Если внутреннее сопротивление источника э. д. с. равно нулю, то непосредственное применение формулы (4-3) для нахождения эквивалентного источника тока по, заданной э. д. с. источника не представляется возможным. В таких случаях сопротивление внешней цепи, включенной последовательно с э. д. с., можно рассматривать в качестве внутреннего сопротивления источника, что позволит применить формулу (4-3).

В случае сложной электрической цепи замена источника э. д. с. эквивалентным источником тока или обратно может иногда упростить расчет.

Целесообразность такой замены проиллюстрирована, в частности, в следующем параграфе.
 

Преобразование схем с двумя узлами

Применим правило об эквивалентных источниках э. д. с. и тока к преобразованию схемы с параллельным соединением n ветвей, содержащих источники э. д. с. (рис. 4-12, а).

Преобразование схем электрических цепей
Заменяя заданные источники э. д. с. источниками тока, получаем схему рис. 4-12, б. Источники тока в совокупности образуют эквивалентный источник тока Преобразование схем электрических цепей(рис. 4-12, в), причем

Преобразование схем электрических цепей

и

Преобразование схем электрических цепей

Пользуясь этим соотношением, можно в конечном итоге перейти от схемы рис. 4-12, в к схеме рис. 4-12, s, являющейся эквивалентом исходной схемы рис. 4-21, а. Здесь
Преобразование схем электрических цепей
Таким образом, n параллельных ветвей с источниками э. д. с. между двумя узлами могут быть заменены одним источником тока (рис. 4-12, в) или источником э. д. с. (рис. 4-12, s).

Ток во внешней цепи (в ветви с сопротивлением Преобразование схем электрических цепей равен:

Преобразование схем электрических цепей
Напряжение между двумя узлами находится по формуле

Преобразование схем электрических цепей
Выведенные здесь выражения широко используются для расчета электрических цепей с двумя узлами, а также более сложных цепей, приводящихся к двум узлам.
 

Перенос источников в схеме

Расчет электрической цепи облегчается в ряде случаев в результате переноса в схеме источников э. д. с. или тока. Как это видно из уравнений Кирхгофа, токи в схеме определяются заданными величинами суммарных э. д. с. в контурах независимо от того, из каких отдельных слагающих они состоят. Поэтому изменение расположения в схеме источников э. д. с., при котором суммарные э. д. с. во всех контурах сохраняются неизменными, не влияет на токи в ветвях. Аналогично напряжения на ветвях определяются заданными суммарными токами источников тока в узлах, и поэтому изменение расположения в схеме источников тока, при котором их суммарные токи во всех узлах сохраняются неизменными, не влияет на напряжения в схеме.

Если, например, требуется исключить источник э. д. с. из какой-либо ветви, то в данную ветвь вводится компенсирующая э. д. с., причем точно такая же э. д. с. вводится одновременно во все остальные ветви, сходящиеся

Преобразование схем электрических цепей
в одном из узлов данной ветви. Компенсирующая и дополнительные э. д. с. имеют одинаковое направление по отношению к рассматриваемому узлу. В результате этого источник э. д. с. из ветви исключается и появляются источники э. д. с. в других ветвях схемы. Суммарные э. д. с. во всех контурах и соответственно токи в ветвях остаются прежними.

Итак, источник э. д. с. может быть перенесен из какой-либо ветви схемы во все другие ветви, присоединенные к узлу данной ветви, без изменения токов в схеме.

Справедливо и обратное положение: если во всех ветвях, кроме одной, сходящихся в узле, имеются одинаковые источники э. д. с. (рис. 4-13, а), направленные все к одному узлу или все от узла, то они могут быть заменены одним источником э. д. с. в ветви, в которой источник отсутствовал (рис. 4-13, б).

Это положение подтверждается тем, что суммарные э. д. с. в контурах схем на рис. 4-13, а и б одинаковы.

Имеется и другое доказательство данного положения: ввиду равенства э. д. с. всех источников вторые выводы

их могут быть объединены, как имеющие одинаковый потенциал. В результате такого объединения, показанного на рис. 4-13, а пунктиром, получается схема рис. 4-13, б.

Преобразование схем электрических цепей

В случае переноса источников тока они присоединяются к узлам схемы так, чтобы оставались неизменными их суммарные токи в узлах.

Так, например, несмотря на то, что источники тока размещены в схемах рис.

4-14, а и б различно, суммарные токи источников в узлах обеих схем одинаковы. Поэтому и напряжения между узлами не изменились.

Итак, источник тока может быть заменен источниками тока, подключенными. параллельно всем

ветвям, которые составляли контур с рассматриваемым источником.

• Перенос источников в схеме успешно сочетается на практике с различными методами преобразований и расчетов (см. пример 4-1).
Преобразование схем электрических цепей

Пример 4-1.

Вычислить ток в диагональной ветви Преобразование схем электрических цепеймостовой схемы рис. 4-15, а.

Дано:Преобразование схем электрических цепейПреобразование схем электрических цепей

Заданный источник тока может быть заменен двумя источниками, подключенными параллельно сопротивлениям Преобразование схем электрических цепей (рис. 4-15, б). Пользуясь условием эквивалентности источников э, д, с, и тока, получаем схему рис, 4-15, в с двумя узлами. По формуле (4-4) напряжение на ветви Преобразование схем электрических цепей равно Преобразование схем электрических цепей

В. Искомый ток

Преобразование схем электрических цепей

Преобразование симметричных схем

Схема электрической цепи, в которой имеется ось симметрии, называется симметричной. Например, схема рис. 4-16, а симметрична относительно вертикальной оси. В симметричных схемах легко выявляются точки или узлы с одинаковым потенциалом. В ветвях, присоединенных к таким узлам, токи равны нулю. Поэтому эти ветви

Преобразование схем электрических цепей
можно разрезать, не нарушая распределения токов и напряжений в схеме. Точки, имеющие одинаковый потенциал, могут быть объединены. Рассечение ветвей, по которым не проходит ток, и объединение точек равного потенциала упрощают схему и облегчают расчет.

Так, в симметричной схеме рис. 4-16, б токи в соединениях, пересекающих ось симметрии, отсутствуют. Разрезав схему по оси симметрии, получим с обеих сторон одноконтурную схему рис. 4-16, в, которая легко рассчитывается.

Допустим теперь, что полярность источников в симметричной схеме неодинакова (рис. 4-17, а). В этом случае (равенство э. д. с. источников и различие их полярности) токи в симметричных ветвях (например, Преобразование схем электрических цепей и напряжения между соответствующими парами выводов, симметрично расположенными относительно оси, равны и противоположны по знаку. Отсюда следует, что напряжения между всеми точками, лежащими на оси симметрии, равны нулю Преобразование схем электрических цепейПоэтому все точки схемы на оси симметрии могут быть замкнуты накоротко (рис. 4-17, б).

Преобразование схем электрических цепей
Таким образом, расчет сложных симметричных схем приводится к расчету более простых схем.

На рис. 4-18, а и б показана симметричная мостовая схема, имеющая две оси симметрии — вертикальную и

Преобразование схем электрических цепей
горизонтальную. В продольных ветвях ток отсутствует; потенциалы средних точек поперечных (перекрещенных) ветвей одинаковы.

Поэтому продольные ветви могут быть рассечены, а средние точки поперечных ветвей — объединены. В результате с обеих сторон получится одноконтурная схема (рис. 4-18, в), расчет которой крайне прост.

Если изменить полярность одного из источников (рис. 4-19, а), то роли продольных и поперечных ветвей поменяются и преобразованная часть схемы примет вид, показанный на рис. 4-19, б.

Преобразование схем электрических цепей
В разобранных выше примерах э. д. с. источников были равны. В случае неравенства э. д. с. источников преобразование симметричной схемы удобно сочетается с методом наложения (см. пример 7-5).

  • Установившиеся процессы в линейных электрических цепях
  • Методы расчета простых электрических цепей
  • Метод сигнальных графов
  • Электрическая ёмкость и ее расчет
  • Топологии электрических цепей
  • Уравнения электрического равновесия цепей
  • Линейные цепи при гармоническом воздействии
  • Нелинейные резистивные цепи

№7 Эквивалентное преобразование треугольника и звезды сопротивлений.

Пусть требуется рассчитать цепь, показанную на рис. 7.1, а.

Рис. 7.1 — Преобразования электрической цепи

Расчет можно осуществить одним из описанных выше методов. Но так как в цепи имеется только один источник питания, наиболее простым было бы использование закона Ома. Однако попытка определения общего сопротивления цепи оказывается безрезультатной, так как здесь мы не находим ни последовательно, ни параллельно соединенных сопротивлений. Решить задачу помогает преобразование треугольника сопротивлений в эквивалентную звезду.

Треугольник и звезда сопротивлений имеют вид, показанный на рис. 7.2.

Рис. 7.2 — Треугольник и звезда сопротивлений

Если при замене одной из этих схем другой не изменяются потенциалы одноименных точек и подтекающие к ним токи, то во внешней цепи также не произойдет никаких изменений. В этом случае говорят, что схемы эквивалентны.

Можно показать, что условием эквивалентности являются следующие уравнения:

а) при преобразовании треугольника в звезду:

б) при преобразовании звузды в треугольник:

Например, сопротивление звезды R1, присоединенное к узлу 1, получается перемножением сопротивлений R12 и R31 треугольника, присоединенных к этому же узлу, и делением полученного произведения на сумму всех сопротивлений треугольника.

При обратном преобразовании сопротивление треугольника R12, лежащее между узлами 1 и 2, равно сумме сопротивлений звезды R1 и R2, присоединенных к этим узлам, плюс их произведение, деленное на сопротивление третьего луча звезды R3.

Пример 1.3. Рассчитать токи в цепи, изображенной на рис. 1.12, а, при следующих числовых значениях ее параметров: Е = 660 В, R1 = 20 Ом, R2 = 30 Ом, R3 = 5 Ом, R4 = 20 Ом, R5 = 50 Ом.

а) Решение преобразованием треугольника в звезду.

Теперь общее сопротивление цепи легко находится:

Ток, протекающий по источнику (одинаковый в заданной и преобразованной схемах), равен:

Токи в паралельных ветвях:

Возвращаемся к исходной схеме (рис. 7.1, а):

Ток в пятой ветви находим из первого закона Кирхгофа: I5 = I1–I3 = 26–28 = –2 A. Знак минус говорит о том, что действительное направление тока I5 противоположно указанному на схеме.

б) Решение преобразованием звезды в треугольник.

Преобразуем звезду, образуемую в схеме на рис. 7.1, а сопротивлениями R1, R5 и R3, в эквивалентный треугольник (рис. 7.1, в).

Определяем сопротивления треугольника:

Теперь рассчитываем преобразованную цепь. Сначала находим эквивалентные сопротивления участков ac и cd:

Затем определяем общее сопротивление и токи:

Возвращаемся к исходной схеме:

Рекомендуем подставить в приведенные формулы числовые значения параметров цепи и сравнить результаты вычислений с полученными в примере 1.3а.

Преобразование треугольник/звезда: что за сценой?

Преобразования треугольник/звезда позволяют нам заменить часть схемы другой схемой, которая, хотя и эквивалентна в поведении, но может значительно упростить анализ общей схемы. Здесь мы узнаем, откуда берутся эти преобразования.

Зачем?

Когда мы начали изучать электронику, резисторы были соединены либо последовательно, либо параллельно, и мы научились заменять такие комбинации их эквивалентными сопротивлениями, часто с целью уменьшения всей сети сопротивлений до единственного эквивалентного сопротивления, видимого из источника питания. После этого появились схемы (рисунок 1), которые содержали резисторы, которые не были ни последовательными, ни параллельными, но их всё же можно было убрать, тщательно определяя и сокращая фрагменты схемы в правильном порядке. Обратите внимание, что R1 не параллелен и не последователен ни с R2 , ни с R3 , но путем объединения R2 последовательно с R4 , и объединяя R3 последовательно с R5 , мы можем затем объединить эти два эквивалентных сопротивления параллельно и, наконец, объединив результат последовательно с R1 , получить полное сопротивление, видимое источнику питания, которое, используя закон Ома, поможет получить общий ток источника питания.

Рисунок 1

Но теперь мы подошли к схемам (рисунок 2), где нет никаких пар резисторов, которые включены последовательно или параллельно, – похоже, мы зашли в тупик. Одним из способов анализа этой схемы является использование закона напряжений Кирхгофа (второй закон) и закона токов Кирхгофа (первый закон) для получения алгебраических уравнений, которые мы можем решить для напряжений и токов. Хотя этот подход будет работать всегда (для этой и большинства других типов схем), он может быть довольно громоздким. Мы могли бы смириться с этим как с ценой возможности анализа этих более сложных схем, но иногда мы можем избежать оплаты этого счета, изменяя или «преобразовывая» фрагменты схемы, чтобы превратить ее в нечто, что мы можем уменьшить, используя только правила последовательного/параллельного объединения.

Рисунок 2

Для простоты мы будем рассматривать только цепи постоянного тока с резисторами, но эти принципы применимы к любой линейной системе переменного или постоянного тока. Кроме того, чтобы сфокусировать обсуждение на преобразованиях, мы найдем только общий ток, поставляемый источником напряжения, что означает, что мы стремимся свести всю сеть резисторов в единое эквивалентное сопротивление.

Давайте рассмотрим эти две схемы немного подробнее (рисунок 3). Мы видим, что единственная разница между ними заключается в том, что находится внутри пунктирных окружностей. В каждом случае цепь в окружности имеет три контакта, которые пересекают окружность для взаимодействия с остальной частью схемы. В левой цепи (рисунок 3(a)) резисторы подключены к контактам в конфигурации «треугольник» (в англоязычной литературе, конфигурация «delta», «дельта», названная в честь заглавной греческой буквы Δ). А в правой цепи резисторы подключены в конфигурации «звезда» (в англоязычной литературе, конфигурация «wye», «уай», названная в честь заглавной английской буквы Y, хотя в схеме она перевернута).

Рисунок 3

Теперь представьте, что резисторы внутри пунктирной окружности в левой цепи помещены в черный ящик, этот ящик удален из схемы и заменен другим черным ящиком, который заставляет схему вести себя точно так же. Далее представьте, что, когда вы открываете, этот новый ящик он содержит три резистора, расположенных как в правой цепи. Кто бы ни придумал второй черный ящик, он очень тщательно выбрал значения резисторов так, чтобы эти два блока были неразличимы для остальной части схемы: мы знаем, как анализировать правую схему, и теперь мы знаем, что когда мы это делаем, результаты можно применить к левой схеме, потому что они эквивалентны. Вот зачем выполнять преобразования «треугольник→звезда» и «звезда→треугольник».

Основные соотношения

Чтобы определить уравнения, связывающие резисторы в цепи, соединенной треугольником, с резисторами в цепи, соединенной звездой, нам ничего не нужно, кроме наших надежных формул для последовательных/параллельных соединений (и немного алгебры). Идея заключается в выравнивании эквивалентных сопротивлений между соответствующими парами контактов при отключенном оставшемся контакте (рисунок 4)

Рисунок 4

Выполнив это для эквивалентного сопротивления между контактами B-C, мы получим:

[R_B + R_C = frac left( R_ + R_ right) > + R_ + R_>]

Если мы повторим этот процесс для каждой другой пары контактов по очереди, мы получим еще два аналогичных уравнения, и любое из них даст нам необходимую нам информацию (при условии, что мы распознаем задействованную симметрию).

Частный случай: симметричные схемы

Если сопротивления в каждом плече цепи, соединенной треугольником или звездой, равны, такая цепь считается «симметричной». Это означает, что

[R_Y = R_A = R_B = R_C]

Комбинация этого условия с соотношением из предыдущего раздела сразу приводит к уравнению преобразования для случая симметрии.

Это гораздо более значительный результат, чем может показаться на первый взгляд, и причина довольно проста – когда инженеры проектируют схемы с соединениями треугольник или звезда, они часто стараются сделать эти схемы симметричными. Хотя, конечно, это не всегда возможно, и поэтому мы должны иметь возможность разобраться с общим случаем, когда схема не симметрична.

Общий случай преобразования треугольник→звезда

Для преобразования треугольник/звезда нам дана известная схема, соединенная треугольником, и мы хотим найти значения для эквивалентной схемы, соединенной звездой, – поэтому мы пытаемся найти < RA , RB , RC > для заданных < RAB , RBC , RAC >.

Мы начнем с того, что запишем наши основные соотношения из первоначального вида в несколько более компактной форме, определив новую величину, RΔS , которая равна сумме сопротивлений всех резисторов в цепи, соединенной треугольником.

Затем мы делаем перестановку нашего соотношения для получения вида линейного алгебраического уравнения с неизвестными < RA , RB , RC >.

Поскольку у нас есть три неизвестных, нам нужно еще два уравнения. Они получаются из эквивалентных сопротивлений, видимых при рассмотрении двух других пар контактов. Выполнив это (или используя симметрию) мы получаем

Сложив эти два уравнения вместе и вычтя наше первое уравнение, мы получим

Мы можем решить систему уравнению для двух других неизвестных сопротивлений (или использовать симметрию), чтобы получить

Эти отношения могут быть обобщены очень компактно. Сопротивление, подключенное к каждому узлу в эквивалентной цепи, соединенной звездой, равно произведению сопротивлений, подключенных к соответствующему узлу в цепи, соединенной треугольником, деленному на сумму сопротивлений всех резисторов в треугольнике. Обычно это выражается формулой, такой как

  • RN – резистор, подключенный к контакту N в схеме «звезда»;
  • RN1 и RN2 – резисторы, подключенные к контакту N в схеме «треугольник»

Общий случай преобразования звезда→треугольник

Для преобразования звезда→треугольник нам дана известная схема, соединенная звездой, и мы хотим найти значения для эквивалентной схемы, соединенной треугольником. Следовательно, мы пытаемся найти < RAB , RBC , RAC > для заданных < RA , RB , RC >.

Это не так просто, как в случае преобразования треугольник→звезда потому, что неизвестные сопротивления перемножаются вместе, делая результирующие уравнения нелинейными. К счастью, мы можем обойти это неудобство, рассмотрев отношения сопротивлений резисторов в каждой цепи. Например, взяв отношение RA к RB , мы получаем

Другими словами, отношение сопротивлений резисторов, подключенных к любым двум контактам в схеме звезда, равно отношению сопротивлений резисторов, соединяющих те же самые два контакта с третьим контактом в схеме треугольник. Следовательно, два других соотношения будут следующими

Вооружившись этим, мы могли бы вернуться к нашим основным соотношениям и продолжить работу с ними, но в качестве отправной точки проще использовать одно из отношений из общего случая преобразования треугольник→звезда.

[R_ = R_A left( over R_> + over R_ > + 1 right)]

Два других выражения получаются аналогично (или согласно симметрии):

Эти выражения могут быть обобщены очень компактно. Сопротивление, подключенное между каждой парой узлов в эквивалентной схеме, соединенной треугольником, равно сумме сопротивлений двух резисторов, подключенных к соответствующим узлам в схеме, соединенной звездой, плюс произведение сопротивлений этих двух резисторов, деленное на сопротивление третьего резистора.

Общий способ выразить это состоит в том, чтобы поместить правую часть под общим знаменателем, а затем отметить, что числитель в каждом выражении является суммой произведений каждой пары сопротивлений в цепи, соединенной звездой, а знаменатель – это сопротивление, подключенное к третьему контакту.

[R_P = R_A R_B + R_B R_C + R_A R_C]

Пример

Давайте поработаем с задачей, показанной на рисунке 5. Прежде чем мы начнем, давайте определим ожидаемый ответ, чтобы у нас была хорошая проверка того, является ли наш окончательный ответ правильным. Для этого рассмотрим роль мостового резистора 150 Ом. Этот резистор служит для уменьшения общего сопротивления, обеспечивая путь между левой и правой сторонами цепи. Следовательно, самое высокое эффективное сопротивление будет иметь место, если этот резистор будет удален полностью, и в этом случае полное сопротивление будет равно параллельной комбинации левой и правой сторон, что приведет к

С другой стороны, наименьшее общее сопротивление было бы получено путем уменьшения мостового резистора до прямого короткого замыкания, и в этом случае общее сопротивление было бы равно параллельной комбинации двух верхних резисторов, включенной последовательно с параллельной комбинацией двух нижних резисторов, что приведет к

Теперь мы ЗНАЕМ, что наш ответ ДОЛЖЕН быть между этими двумя предельными значениями. Во многих случаях простой анализ границ, такой как этот, приводит к ответу, который «достаточно хорошо» подходит для данной цели, но давайте предположим, что это не так. Используя приведенные выше уравнения преобразования треугольник→звезда, мы сначала определяем сумму сопротивлений резисторов треугольника.

А затем находим значение R1 , перемножив сопротивления двух резисторов, которые подключены к верхнему контакту, и разделив это произведение на сумму всех трех сопротивлений.

Повторим это же для R2 .

Мы могли бы повторить это еще раз для R3 , но давайте, вместо этого, определим R3 , используя свойства отношений.

Теперь, когда у нас есть все сопротивления для эквивалентной схемы звезда, мы можем очень легко определить общее сопротивление.

Поскольку это значение находится между нашими минимальной и максимальной границами, мы полностью уверены, что это правильный ответ, или, даже если мы допустили ошибку, наш ответ довольно близок к правильному. Поэтому суммарный ток равен

Заключение

Теперь мы увидели, что преобразования треугольник/звезда полезны, и, что более важно, увидели, как их можно легко выполнить, используя не более чем концепцию эквивалентных сопротивлений с использованием последовательных/параллельных комбинаций резисторов. Это может хорошо вам помочь, поскольку дает вам возможность вывести эти формулы на лету, если когда-нибудь возникнет в них необходимость, и у вас не будет подходящего справочного материала. Но что еще более важно, это должно служить для более прочного закрепления фундаментальных понятий в наборе инструментов, который хранится у вас в голове, позволяя вам использовать в своей работе еще более эффективные навыки анализа цепей.

В конце мы должны принять к сведению распространенное заблуждение, заключающееся в том, что преобразования треугольник↔звезда являются ЕДИНСТВЕННЫМ способом анализа цепей, которые нельзя уменьшить другими способами. В действительности, хотя эти преобразования могут сделать нашу жизнь проще, они не обязательны, поскольку ЛЮБОЙ контур, который можно проанализировать с их помощью, также можно проанализировать с помощью правил Кирхгофа, либо напрямую, либо с помощью одного из более формализованных методов их применения, включая метод контурных токов или метод узловых напряжений, а также с методиками, такими как эквивалентная схема Тевенина.

Физический портал для школьников и абитуриентов

Вы здесь

Подготовка к олимпиаде. Методы расчета резисторных схем постоянного тока. 3. Преобразование и расчет цепей с помощью перехода «звезда» — «треугольник»

Методы расчета резисторных схем постоянного тока

3. Преобразование и расчет цепей с помощью перехода «звезда» — «треугольник»

Рассматриваемый метод основан на том, что сложную схему, имеющую три вывода (узла), можно заменить другой, с тем же числом выводов (узлов). Замену следует произвести так, чтобы сопротивление участка между двумя любыми выводами новой схемы было таким же, как у прежней. В результате получится цепь, сопротивление которой эквивалентно сопротивлению данной по условию. Общее сопротивление обеих цепей будет одинаковым. Однако, поскольку в результате такого преобразования изменяются токи внутри цепи, такую замену можно проводить только в тех случаях, когда не надо находить распределение токов.

Подобные преобразования широко известны для случая двух выводов. Так, например, два резистора сопротивлениями R1 и R2, включенные последовательно, можно заменить одним резистором сопротивлением R1 + R2. Если резисторы включены параллельно, то их можно заменить одним резистором сопротивлением

И в этих случаях распределение токов в цепи (или в части цепи) претерпевает изменения. Рассмотрим более сложное преобразование схем, имеющих три вывода (трехполюсников). Иначе это называется преобразованием «звезды» (рис. а) в «треугольник» (рис. б), и наоборот.

Сопротивления резисторов в схеме «звезда» обозначаются с индексом точки, с которой соединен этот резистор, например, резистор r1 соединен с точкой 1. В «треугольнике» индексы резисторов соответствуют точкам, между которыми они включены, например, резистор R13 подключен к точкам 1 и 3. Как отмечено выше, чтобы заменить одну из этих схем другой, нужно получить такие соотношения между их сопротивлениями, чтобы эквивалентные сопротивления между любыми точками были одинаковы для обеих схем (при условии сохранения числа этих точек). Так, в «звезде» сопротивление между точками 1 и 2 равно r1 + r2, в «треугольнике»

следовательно, для того чтобы сопротивления между точками 1 и 2 были одинаковы для обеих схем, необходимо, чтобы выполнялось следующее равенство:

Аналогично для точек 2 и 3 и для точек 1 и 3:

Сложим все эти уравнения и, поделив обе части на 2, получим:

Вычитая из этого уравнения поочередно предыдущие, получим:

Эти выражения легко запомнить:

знаменатель в каждой формуле есть сумма сопротивлений всех резисторов «треугольника», а в числителе дважды повторяется индекс, стоящий слева:

$r_1 rightarrow R_<12>R_<13>, r_2 rightarrow R_<12>R_<23>, r_3 rightarrow R_<13>R_<23>$.

Аналогично получают и формулы обратного преобразования:

Последние выражения также легко запомнить и проверить:

числитель у всех уравнений один и тот же, а в знаменателе стоит сопротивление резистора с индексом, которого не достает в левой части выражения.

Этот метод представляет собой наиболее универсальный подход к решению практически всех типов задач на разветвленные цепи.

Задача 27. Определите сопротивление цепи АВ (рис.), если R1 = R5 = 1 Ом, R2 = R6 = 2 Ом, R3 = R7 = 3 Ом, R4 = R8 = 4 Ом.

Решение. Преобразуем «треугольники» R1R2R8 и R4R5R6 в эквивалентные «звезды». Схема примет иной вид (рис.).

Сопротивления $r_1, r_2, …, r_6$ найдем по формулам:

Теперь нет никаких препятствий для расчета схемы, которая состоит из последовательно и параллельно соединенных резисторов (рис.). После простых расчетов получим

источники:

http://radioprog.ru/post/659

http://fizportal.ru/olympiads-method-1-12

Преобразование треугольника в звезду

Общие сведения

Электрическая цепь предназначена для обеспечения протекания по ней токов определённой величины. Она содержит источники и приёмники энергии, которые соединены проводниками. При изображении радиоэлементов используют их графические обозначения. Электрические же соединения обозначают прямыми линиями. Замкнутые проводники образовывают контуры. В их состав входят узлы (точки контакта трёх и более линий) и ветви (соединители).

Существует 2 способа обеспечения контакта между элементами:

  • параллельный — при таком включении в цепи не будет ни одного узла;
  • последовательный — входящие в цепь эквиваленты присоединены к одной точке, связанной или не имеющей контакта с другой.

В основе преобразований лежит приведение схемы к упрощённому виду без изменения величины тока или напряжения. Для этого выделяют один контур и заменяют его эквивалентным сопротивлением. При последовательном соединении импеданс просто складывают, а вот при параллельном используют формулу: 1/R = 1/R1 + 1/R2 +…1/Rn.

 треугольник звезда

Таким образом, путем замены пары элементов одним, схема последовательно упрощается до тех пор, пока в ней не окажется один резистор. А уже по его величине и рассчитывают ток цепи. Но в некоторых случаях существуют соединения, которые не поддаются методу упрощения. Если внимательно посмотреть на такую цепь, можно увидеть подключение, похожее на треугольник. В таком случае невозможно определить, какие элементы параллельные, а какие последовательные.

Чтобы найти эквивалентное сопротивление таких сложных соединений, используют преобразование треугольника в равнозначную звезду. По сути, при треугольном подключении 3 элемента образуют замкнутый контур. При этом между каждой парой резисторов имеется узел. Связь же звездой образуется при получении трёх лучевого соединения, в котором каждый элемент цепи подсоединён одним концом к общему узлу, а другой стороной контакта к остальной части схемы.

Преобразование в физике выполняют по строго установленным формулам.

Если его выполнить правильно, значения потенциалов в одноимённых точках треугольника и звёзды, а также подводящиеся к этим узлам токи, останутся одинаковыми. Это значит, что вся оставшаяся часть схемы «не заметит» выполненной замены.

Переход треугольник — звезда

Чтобы преобразовать треугольник в звезду, нужно применять особый подход. Закон Ома для такого случая применить невозможно, поэтому упрощения выполняют, руководствуясь правилами Киргофа. Их 2. Первое гласит, что в узле токи компенсируют друг друга, то есть их алгебраическая сумма равняется нулю. Второе же сообщает, что если сложить электродвижущую силу в любом замкнутом контуре цепи, она будет равна алгебраической сумме падений потенциала на импедансе этой части схемы.

Преобразование звезды в треугольник

В соответствии с этими законами, можно утверждать, что в узлах электрического заряда нет. Он не расходуется и не собирается. В количественном виде первое утверждение записывают так: I1 = I2 + I3, где с левой стороны стоит значение тока втекающего, а справа вытекающих. Второй закон описывается выражением: E1 — Е2 = -UR1 — UR2 или E1 = Е2 — UR1 — UR2.

Опираясь на эти правила, можно выполнить перевод схемы.

Сделать это удобно, руководствуясь следующим алгоритмом:

 треугольник сопротивлений

  1. Пусть имеется контур, образованный из резисторов Ra1, Rb1, Rc1, соединённых треугольником.
  2. Сумму всех сопротивлений можно обозначить символом RΔ. Её можно будет найти, сложив все импедансы: RΔ = Ra1 + Rb1 + Rc1.
  3. Для получения равенства с неизвестными нужно сделать перестановку в соотношении. Выражение примет вид: Ra2 + (RΔs)Rb2 + (RΔs)Rc2 = Ra1 * Rb1 + Rb1 * Rc1.
  4. Из эквивалентных уравнений можно вывести ещё 2 формулы, описывающие оставшиеся пары контактов. Беря во внимание симметрию, можно получить: Ra2 + (0)Rb2 + (RΔs)Rc2 = Ra1 * Rс1 + Rb1 * Rc1 и Ra2 + (RΔs)Rb2 + (0)Rc2 = Ra1 * Rc1 + Ra1 * Rb1.
  5. Нужно выполнить сложение последних двух уравнений, а после, отняв первое, получить равенство: 2 (RΔs) * Ra2 = 2 * Ra1 * Rc1. Отсюда: Ra2 = Ra1 * Rc1 / RΔs.
  6. По аналогии можно найти и оставшиеся эквиваленты: Rb2 = Ra1 * Rb1 / RΔs и Rc2 = Rc1 * Rb1 / RΔs.

Конечно же, при решении задачи о переводе из одного вида подключения в другое никто не расписывает промежуточные вычисления, а используют сразу конечную формулу: Rk = Rk1 * Rk2 / RΔs, где: Rk — сопротивление, подключённое к контакту в уже трансформированной схеме, а Rk1 и Rk2 — резисторы, стоящие в контуре типа треугольник.

Таким образом, сопротивление, соединённое с каждым узлом при переходе, можно найти из перемножения сопротивлений, подключённых к соответствующей точке в цепи, подключённой треугольником, и дальнейшему их делению на сумму всех резисторов в неизменном контуре.

Обратное преобразование

Чтобы получить нужную формулу, следует вести ряд обозначений. Токи, подходящие к узлам, можно обозначить как I1, I2, I3. Преобразование должно выполняться таким образом, чтобы при замене контура величины других токов и потенциалов не изменялись. Для этого следует выразить упорядоченное движение зарядов через напряжение точек и проводимость.

Преобразование звезды в треугольник что значит

В соответствии с первым правилом Кирхгофа, можно записать: I1 + I2 + I3 = 0. Равенство можно изменить так: (f1 — f0) * p1 + (f2 — f0) * p1 + (f2 — f0) * p1 = 0, где: f — потенциал в точке. В выражении легко выполнить простые преобразования и найти f0. Оно будет равно: f0 = (f1p1 + f2p2 + f3p3) / (p1 + p2 + p3). Полученную формулу возможно использовать для вывода тока. Для I1 будет верным уравнение: I1 = (f1 — f0) * p1 = (f1 * (p2 + p3) — f2 * p2 — f3p3) * p / (p1 + p2 + p3).

Движение заряда удобно обозначать не буквами, а цифрами. Например, число 12 будет показывать, что рассматривается связь первого и второго узла. Таким образом, в треугольнике I1 = I12 — I31 = (f1 — f2) * p12 — (f3 — f1) * p13 = f1* (p12 + p13) — f3p13 -f 2p12.

Учитывая, что ток I1 в схеме треугольник и звезда одинаков, при этом величины потенциалов не влияют на его значение, коэффициенты, стоящие возле f в правой и левой части, будут равны. Тогда можно записать следующие равенства: p12 = p1 * p2 / (p1 + p2 + p3); p13 = p1 * p3 / (p1 + p2 + p3); p23 = p2 * p2 / (p1 + p2 + p3). Как раз по этим формулам и возможно рассчитать проводимость треугольника через звезду.

Что значит треугольник в физике

Зная проводимость, можно определить импеданс, так как это величина обратна сопротивлению. Вывод формулы будет иметь следующий вид: R12 = (1/r1 + 1/r2 + 1/r3) / 1/r1 * r2. Для дальнейших расчётов многочлен (1/r1 + 1/r2 + 1/r3) удобно заменить одной буквой, например, s. Тогда: R12 = s / r3; R23 = s / r1; R13 = s / r2. Подставив последние выражения в формулу для нахождения s, можно будет получить отношение: m = (r12 * r23 * r31) / (r12 + r23 + r31).

Формулы для нахождения эквивалента при переходе примут вид:

  • R1 = (r12 * r31) / y;
  • R2 = (r23 * r12) / y;
  • R3 = (r13 * r23) / y.

Где: y = r12 + r23 + r31. Полезность преобразования в треугольник позволяет привести схему к набору простых последовательных соединений. Подключение двигателей по этой схеме позволяет добиться наибольшей отдачи мощности, например, при модернизации промышленных электросетей.

Решение примера

При знании формул решение задач на преобразование треугольника в звезду или обратно обычно не доставляет проблем. Нужно просто внимательно следить за подставляемыми величинами. Но перед тем как приступить непосредственно к расчёту эквивалентной схемы, следует оценить необходимость выполнения такого действия. Некоторые элементы могут быть соединены последовательно или параллельно, поэтому нужно будет начать с простых преобразований, а уже позже переходить к звезде или треугольнику.

Вот пример задания. Имеется трёхфазная цепь. Посчитать её эквивалентное сопротивление. Известно, что схема подключена к источнику напряжения 220 вольт, сопротивление: R1 = 10 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 50 Ом, R6 = 60 Ом, R7 = 70 Ом.

Звезда треугольник в физике

В этой схеме сопротивления R1 и R2 соединены последовательно. Что же касается остальных элементов, сказать, какой тип подключения у них по отношению друг к другу, нельзя. Но зато видно, что контур, состоящий из R5, R7, R4, является треугольником, то есть задача состоит в превращении его в эквивалентную трёхлучевую звезду.

Новые элементы можно обозначить как R57, R45, R47. Чтобы найти номиналы новых сопротивлений, нужно воспользоваться эквивалентными формулами. R57 = (R5 * R7) / R5 + R4 + R7 = 50 * 70 / 50 + 40 + 70 = 3500 / 160 = 21,8 Ом; R45 = (R4 * R5) / R5 + R4 + R7 = 40 * 50 / 50 + 40 + 70 = 2000 / 160 = 12,5 Ом; R47 = (R4 * R7) / R5 + R4 + R7 = 40 * 70 / 50 + 40 + 70 = 2800 / 160 = 17,5 Ом.

Теперь эквивалентный контур можно подставить в схему вместо треугольника. В результате цепь будет состоять из трёх последовательно соединённых резисторов R1, R2 и R45. Общий импеданс для них будет равен: Rx = R1 + R2 + R45 = 10 + 20 + 17,5 = 47,5 Ом. Аналогично можно вычислить параметр и для второго контура: Ry = R6 + R57 = 60 + 21,8 = 81,8 Ом. Останется найти сопротивление ветви, включающую R3 и R47, Rz = R3 + R47 = 30 + 17,5 = 47,5 Ом.

Теперь схема принимает довольно простой вид. Контур состоит из трёх включённых параллельно относительно друг друга резисторов Rx, Ry, Rz. Если использовать формулу нахождения эквивалента для такого типа включения, результирующее первое сопротивление будет равно: Rоб = Ry * Rz / (Ry + Rz) = 81,8 * 47,5 / (81,8 + 47,5) = 3885,5 / 129,3 = 30,05 Ом. Теперь схема уже стала одноконтурной и содержит соединение, которое будет называться последовательным.

Таким образом, эквивалентное сопротивление для схемы будет составлять: Rx + R об = 30,05 + 47,5 = 77,55 Ом. Задача решена.

Метод преобразования треугольника и звезды сопротивлений

Пассивные элементы в электрических
цепях соединяются не только последовательно
и параллельно. В ряде схем можно выделить
группы из трех элементов, образующих
треугольник или звезду сопротивлений,
которые не могут быть рассчитаны методом
свертывания.

При расчете подобных цепей сначала
проводят преобразование треугольника
сопротивлений в эквивалентную звезду

или наоборот, а потом к преобразованной
схеме применяют метод свертывания.

Рассмотрим схему измерителя величины
сопротивлений (рисунок 14а). В этой схеме
нет элементов, соединенных последовательно
или параллельно, но имеются замкнутые
контуры из трех сопротивлений (треугольники
сопротивлений).

К узловым точкам a,b,c
присоединен треугольник сопротивлений

и

.
Его можно заменить по определенным
правилам эквивалентной трехлучевой
звездой
, присоединенной к тем же
точкам a,b,c
(рисунок 14б).

Рисунок 14. Преобразование треугольника
и звезды сопротивлений

Преобразование треугольника сопротивлений в эквивалентную звезду

Замена треугольника сопротивлений
эквивалентной звездой и наоборот
осуществляется при условии, что такая
замена не изменит потенциалов узловых
точек a, b,
c и режим работы остальной
части схемы не изменится (не изменятся
токи, напряжения и мощности).

Рассмотрим схемы на рисунках 14в) и 14г).
Эти схемы должны быть эквивалентны
для всех случаев
, и в частности для
тока

При этом в схеме треугольника между
точками b и c
включены две параллельные ветви с
сопротивлениями

Общее сопротивление между этими точками:

В схеме звезды между точками b
и c включены последовательно
сопротивления

и

.

Поэтому:

.

Полагая

,
а затем

аналогично получим:


;

Решив эту систему из трех уравнений,
получим:

;

Преобразование звезды сопротивлений в эквивалентный треугольник

В той же исходной схеме заменим звезду,
образованную сопротивлениями



и

на треугольник проводимости (рисунок
15а).

Рисунок 15. Преобразование звезды
сопротивлений в эквивалентный треугольник


Задача

Определить токи в схеме, изображенной
на рисунке 15а), если


=
12 Ом,

=
18 Ом,

=
6 Ом,

=18
Ом,

=18
Ом,

=132
В.

Контрольные вопросы

  1. В чем состоит метод свертывания
    электрической цепи?

  2. Расскажите о преобразовании треугольника
    сопротивлений в эквивалентную звезду
    сопротивлений.

  3. Расскажите о преобразовании звезды
    сопротивлений в эквивалентный треугольник
    сопротивлений.

Электрический ток в различных средах

Основные
положения электронной теории

проводимости
металлов.

1. Во всех металлах имеются свободные
электроны, которые хаотически движутся
между положительными ионами, образующими
кристаллическую решетку.

2. Если электрон при хаотическом движении
пересекает поверхность металла, то со
стороны положительно заряженных ионов
на него действует сила притяжения,
которая втягивает электрон обратно в
металл.

Это означает, что потенциальная энергия
электрона в металле меньше, чем вне
металла
. Если потенциальную энергию
электрона вне металла принять за ноль,
то потенциальная энергия электрона
внутри металла будет отрицательной.
Изменение потенциальной энергии
электронов вдоль оси Х металла приведено
на рисунке 16.

Г
рафик
потенциальной энергии имеет вид ямы.
Поэтому его и называют потенциальной
ямой
. Глубиной потенциальной ямы

называется скачок потенциальной энергии
при переходе свободного электрона из
металла наружу.

3

Рисунок 16 Потенциальная

энергия электрона

. Для выхода из металла электрон за
счет своей кинетической энергии

должен совершить работу выхода

,
равную по величине глубине потенциальной
ямы.

где

заряд
электрона, а

скачок
потенциала при переходе через поверхность
металла.

Работа выхода зависит только от рода
металла и чистоты его поверхности
.
При нормальных условиях средняя
кинетическая энергия хаотического
движения электронов много меньше

и поэтому над поверхностью металлов
электронов очень мало. Однако при
нагревании средняя кинетическая энергия
электронов растет, и число электронов
над поверхностью металлов увеличивается.
Это явление называется термоэлектронной
эмиссией.

Контактная
разность потенциалов.

При соприкосновении двух металлов
возникает их электризация по двум
причинам:

1. Различие в работе выхода электронов
из этих металлов.

2. Неодинаковая плотность электронного
газа в этих металлах.

Рассмотрим влияние различия в работе
выхода (рисунок 17а). При переходе из
металла 1 в металл 2 электроны должны
совершать работу выхода, преодолевая
потенциальную ступеньку

(рисунок 17б). Переход электронов из
металла 2 в металл 1 происходит легко,
так как электронам не надо преодолевать
эту ступеньку.

П

Рисунок 17. Возникновение контактной
разности потенциалов за счет различия
в работе выхода соединяемых металлов

оэтому металл 1 заряжается отрицательно,
а металл 2 — положительно. Между металлами
возникает электрическое поле,
сосредоточенное в тонком переходном
слое. Оно тормозит переход электронов
из металла 2 в металл 1. В результате
наступает динамическое равновесие.
Разность потенциалов,

возникающая между

соприкасающимися металлами при
динамическом равновесии электронов,
называют контактной разностью
потенциалов
(рисунок 17в). Контактная
разность потенциалов, обусловленная
различием работы выхода, может достигать
нескольких вольт и практически не
зависит от температуры
.

Р
ассмотрим
влияние различия плотности электронного
газа (рисунок 18).

Пусть работа выхода из металлов 1 и 2
одинакова. Тогда за счет диффузии
электроны перейдут из металла 1 в металл
2. На границе создастся положительный
заряд в металле 1 и отрицательный заряд
в металле 2.

Рисунок 18. Возникновение контактной
разности потенциалов за счет различной
плотности электронного газа в соединяемых
металлах.

Электрическое поле этих зарядов тормозит
дальнейший переход электронов. В
результате наступает динамическое
равновесие
.

Контактная разность потенциалов в
данном случае не превышает сотых долей
вольта и возрастает с повышением
температуры.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как провести преобразование треугольника в звезду и обратно

Содержание

  • 1 Общие положения
  • 2 Типы соединений в электрических схемах
  • 3 От треугольника к звезде
  • 4 Если звёзды преобразовывают, то это кому-нибудь нужно
  • 5 Заключение
  • 6 Видео по теме

Расчёты электрических цепей, проводимые на стадии проектирования или при выполнении ремонтных работ, позволяют определить значения напряжений и величины токов на любых участках цепи. Существует несколько расчётных методов, опирающихся на закон Ома (ЗО) и правила Кирхгофа (ПК). Для упрощения вычислений на отдельных участках схем, имеющих структуру соединений отличную от параллельных или последовательных, часто применяется преобразование из «треугольника» в «звезду» и обратно.

Общие положения

Основным физическим законом, на котором базируются расчёты цепей различного типа сложности, является ЗО. Он был открыт немецким учёным Г. Омом (1789–1854) в 1827 г.

Математическое представление закона Ома

Математическое представление закона Ома

На основании открытия Ома и закона сохранения электрического заряда немецкий исследователь Г. К. Кирхгоф (1824–1887) сформулировал два полезных правила, которым часто присваивают статус законов, хотя это не вполне корректно, так как они являются следствием более фундаментальных явлений. Иногда эти правила называют уравнениями соединений.

Правила Кирхгофа

Правила Кирхгофа

На основании ПК для любой электрической схемы может быть составлена система математических уравнений, где в качестве неизвестных будут выступать токи I, в ветвях электрической цепи. Предполагается, что сопротивления (нагрузки) R и напряжение источника тока E известны.

Типы соединений в электрических схемах

Основные типы соединений элементов (потребителей) электрических цепей следующие:

  • Последовательное.
  • Параллельное.
  • Смешанное.

Первые два типа представлены на рисунке ниже.

Формулы для токов и напряжений при последовательном и параллельном соединениях

Формулы для токов и напряжений при последовательном и параллельном соединениях

Понятно, что смешанный тип соединения представляет собой комбинацию параллельных и последовательных участков.

Примеры смешанных соединений

Примеры смешанных соединений

Алгоритм расчёта токов на основе ЗО и ПК хорошо работает, когда вся электрическая схема состоит из участков смешанных соединений с разным количеством нагрузок (сопротивлений). Формулы для фрагментов схем, изображённых на рисунках 03 и 04, просты и удобны для анализа схем. Однако, некоторые схемные решения не всегда имеют такой вид. К таковым относятся, например, участки схем в виде треугольника и звезды.

Соединения треугольник и звезда

Соединения треугольник и звезда

Видно, что в этих конфигурациях при подключении компонентов не наблюдаются исключительно параллельные или последовательные цепочки. В англоязычной литературе вместо треугольника используется термин «дельта» и обозначение соответствующей греческой буквой Δ, а звезда обозначается английской буквой Y. В таких случаях очень удобным оказывается метод преобразования «электрического» треугольника в звезду (Δ в Y). Соответственно, возможно и обратное преобразование из звезды в эквивалентный ей треугольник (Y в Δ).

От треугольника к звезде

Чаще возникает потребность в преобразовании Δ в Y. Суть замены состоит в том, что потенциалы трёх точек А, В, С и токи, втекающие или вытекающие из них, должны остаться изначальными. Поэтому окружающая цепь не «почувствует» никаких изменений.

Уравнения для преобразований

Уравнения для преобразований

На рисунке выше приведены формулы, с помощью которых можно осуществить корректный переход (замену) треугольника сопротивлений в эквивалентную звезду (Δ в Y) или обратно Y в Δ. Для вывода формул составляется система уравнений на основе ПК, где в качестве неизвестных выступают сопротивления RA, RB, RC (случай Δ в Y). Решением системы уравнений будут значения сопротивлений звезды RA, RB, RC, выраженные через значения сопротивлений в треугольнике RAВ, RBС, RАС.

Если звёзды преобразовывают, то это кому-нибудь нужно

В качестве примера применения метода на рисунке ниже приведена мостовая схема с набором сопротивлений R1, R2, R3, R4, R5.

Исходная схема

Исходная схема

Для сопротивлений А, В, С можно применить, рассматриваемый метод, то есть, преобразование треугольника в эквивалентную звезду (Δ в Y).

Выбор треугольника АВС

Выбор треугольника АВС

С помощью формул вычисляются сопротивления звезды RA, RB, RC.

Вычисление сопротивлений звезды

Вычисление сопротивлений звезды

Таким образом, трансформировав треугольник в звезду, получим схему, изображённую на рисунке ниже.

Схема после преобразования

Схема после преобразования

После подстановки вместо RA, RB, RC их числовых значений, рассчитанных ранее, получается простая, эквивалентная схема, содержащая только последовательные и параллельные цепочки.

Окончательный результат

Окончательный результат

Заключение

Преобразование треугольник-звезда представляет собой математический алгоритм по замене отдельных участков цепей с помощью эквивалентных сопротивлений с целью упрощения схемы для проведения расчётов с последовательными и/или параллельными комбинациями резисторов. Этот метод, конечно, не является единственно возможным при анализе подобных электрических схем. Задача может решаться «в лоб» с помощью ПК или с привлечением методов контурных токов или узловых потенциалов.

Рассмотренные преобразования часто используют для расчётов мостовых схем, которые находят своё применение при измерении не только сопротивлений, но и ёмкостей и индуктивностей.

Видео по теме



Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти стажировку в москве студенту
  • Как найти синус 6пи
  • Как составить паны на жизнь
  • Как найти айфон офлайн с компьютера
  • Как составить к задаче краткую запись или схему

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии