Числовые, буквенные выражения и выражения с переменными: определения, примеры
В математике принято использовать свои обозначения. Запись условий задач с их помощью приводит к появлению так называемых математических выражений. Можно говорить про числовые, буквенные выражения и математические выражения с переменными. Для удобства и одни, и вторые и третьи называются просто выражениями. В этой статье мы дадим определения и по порядку рассмотрим каждый тип математических выражений.
Числовые выражения
С самый первых уроков математики школьники начинают знакомство с числовыми выражениями. Выражение содержит числа, и действия над этими числами. Возьмем простейшие примеры для счета: 5 + 2 ; 3 — 8 ; 1 + 1 . Все это — числовые выражения. Если выполнить действия, указанные в выражении, то получится его значение.
Конечно, числовые выражения содержат не только знаки «плюс» и «минус». Они могут включать деление и умножение, содержать скобки, степени, корни, логарифмы и состоять из нескольких действий.
Учитывая все сказанное, дадим определение. Что такое числовое выражение?
Определение. Числовое выражение
Числовые выражения — это комбинация чисел, арифметических действий, знаков дробных черт, корней, логарифмов, тригонометрических и других функций, а также скобок и иных математических символов.
Числовым выражением считается только та комбинация, которая составлена с учетом математических правил.
Поясним данное определение.
Во-первых, числа. Математическое выражение может содержать любые числа. Это значит, что в математическом выражении можно встретить:
- натуральные числа: 6 , 173 , 9 ,
- целые числа: 18 , 0 , 64 ,
- рациональные числа:
обыкновенные дроби 1 3 , 3 4 ,
смешанные числа 6 1 8 , 89 5 7 ,
периодические и непериодические десятичные дроби 9 , 78 , 8 , 556 - иррациональные числа: π , e ,
- комплексные числа: i = — 1 .
Во-вторых, арифметические действия. то известные нам еще из курса начальной школы сложение, умножение, вычитание и деление. Знаки » + » , » — » , » · » и » ÷ » могут присутствовать в выражении не один раз. Вот пример такого числового выражения: 12 + 4 — 3 + 3 ÷ 1 · 8 · 6 ÷ 2 .
деление в выражениях может присутствовать как в виде знака, так и в виде дробной черты.
Скобки в числовых выражениях
- указывают порядок выполнения действий: 5 — 2 , 5 + 5 * 0 , 25 ;
- используются для записи отрицательных чисел: 5 + ( — 2 ) ;
- отделяют аргумент функции: sin π 2 — π 3 ;
- отделяют показатель степени: 2 — 1 , 3 2
Есть и специальные значения для записи скобок. Например, запись 1 , 75 + 2 означает, что к целой части числа 1 , 75 прибавляется число 2 .
Согласно определению, числовые выражения могут содержать степени, корни, логарифмы, тригонометрические и обратные тригонометрическим функции. Приведем пример такого числового выражения:
В качестве примера использования в числовых выражениях специальных знаков, можно привести знак модуля.
— 2 2 5 · 6 + — 5 — 8 · 2
Буквенные выражения
После знакомства с числовыми выражениями можно вводить понятие буквенных выражений. Интуитивно понятно, что в них вместо чисел используются буквы. Но обо всем по порядку.
Запишем числовое выражение, но вместо одного числа оставим пустой квадратик.
В квадратик мы можем вписать любое число. Например, 2 , или 1032 .
Если условится записывать вместо числа в квадратике букву a , означающую данное число, то мы получим буквенное выражение:
Определение. Буквенное выражение
Выражение, в котором буквы заменяняют некоторые цифры, называется буквенным выражением. Буквенное выражение должно содержать по крайней мере одну букву.
Принципиальная разница числового и буквенного выражений в том, что первое не может содержать букв. В буквенных выражениях чаще всего используются маленькие буквы латинского алфавита a , b , c . . или маленькие греческие буквы α , β , γ . . и т.д.
Приведем пример сложного буквенного выражения.
x 3 + 2 — 4 · x 5 + 4 x y + 8 y 2 3 8 — 4 x 2 · a r c cos α + 1 3 x 2 + 2 y — 1
Выражения с переменными
В рассмотренных выше буквенных выражениях буква обозначала какое-то конкретное числовое значение. Величина, которая может принимать ряд различных значений, называется переменной. Выражение с такой величиной, соответственно, называются выражением с переменной.
Определение. Выражения с переменными
Выражение с переменной — выражение, в котором все или некоторые буквы обозначают величины, принимающие различные значения.
Пусть переменная x принимает натуральные значения из интервала от 0 до 10 . Тогда выражения x 2 — 1 есть выражение с переменной, а x — переменная в этом выражении.
В выражении может быть не одна, а несколько переменных. Например, при переменных x и y выражение x 3 · y + y 2 2 — 1 представляет собой выражение с двумя переменными.
Вообще буквенные выражения и выражения с переменными позволяют посмотреть на задачу вне контекста конкретных чисел, то есть более широко. Они широко используются в математическом анализе для формулировок и доказательств.
Внешний вид буквенного выражения не позволяет узнать, являются входящие в него буквы переменными, или нет. Для этого нужно знать условия конкретной задачи, описываемой выражением. Вне контекста ничто не мешает считать входящие в выражение буквы переменными. Таким образом, разница между понятиями «буквенное выражение» и «выражение с переменными» нивелируется.
Числовые и буквенные выражения
О чем эта статья:
Числовые выражения: что это
Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.
Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.
Например:
Это простые числовые выражения.
Более сложные числовые выражения состоят из нескольких чисел и знаков арифметических действий:
Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.
Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.
11 — значение числового выражения 5 + 6.
48 — значение числового выражения 6 * 8.
При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:
Сначала выполняется действие, записанное в скобках.
Затем выполняются действия деления и умножения слева направо.
В последнюю очередь выполняются действия сложения и вычитания слева направо.
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Пример 1. Найдите значение числового выражения: 3 * (2 + — 4
Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)
(6 + 7) * (13 + 2) = 195
Часто бывает нужно сравнить два числовых выражения.
Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.
Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2
Сначала находим значение первого выражения:
Затем находим значение второго выражения:
Сравниваем получившиеся результаты:
Пример 2. Сравните следующие числовые выражения:
5 * (12 — 2) — 7 и (115 + 9) — (7 — 3)
Находим значение первого выражения, соблюдая порядок выполнения арифметических действий:
5 * (12 — 2) — 7 = 43
Затем находим значение:
Сравниваем полученные результаты:
Буквенные выражения
Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.
В буквенном выражение есть цифры, знаки арифметических действия и буквы.
Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.
Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.
У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:
Сначала следует прочитать его полностью.
Затем оно записывается.
Третьим шагом идет подстановка значения неизвестного в выражение.
А затем производится вычисление, согласно очередности выполнения арифметических действий.
Пример 1. Найдите значение выражения при x = 4: 5 + x.
- Читаем: найдите сумму числа 5 и x.
- Подставляем вместо неизвестного x число 4.
- Вычисляем: 5 + 4 = 9.
Пример 2. Найдите значение выражения: (4 + a) * (2 + x) при а = 2 и х = 5.
Читаем: найдите произведение суммы числа 4 и а и суммы числа 2 и x.
Подставляем вместо неизвестного a число 2.
Вычисляем 4 + 2 = 6.
Подставляем вместо неизвестного x число 5.
Вычисляем 2 + 5 = 7.
Находим произведение 6 * 7 = 42.
Записываем результат: (4 + 2) * (2 + 5) = 42.
Выражения с переменными
Переменная — буквенное обозначение элемента, который может принимать любое числовое значение.
Например, в выражении x + a — 8
Если вместо переменных подставить числа, то буквенное выражение x + a — 8 станет числовым выражением. Вот так:
подставляем вместо переменной x число 5, а вместо переменной a — число 10, получаем 5 + 10 — 8.
Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.
После подстановки значения переменных находим значение x + a — 8 = 5 + 10 — 8 = 7.
Часто можно встретить буквенные выражения, записанные следующим образом:
Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.
5x — это произведение числа 5 и переменной x.
4a — это произведение числа 4 и переменной a.
Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.
Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.
Общие сведения об уравнениях
Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.
С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.
В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Что такое уравнение?
Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .
А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.
Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.
Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет
Говорят, что число 2 является корнем или решением уравнения 3 + x = 5
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.
Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.
Выразить одно через другое
Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.
Рассмотрим следующее выражение:
Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10
Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.
Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.
Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:
Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.
При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.
Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:
2 есть 10 − 8
То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:
Число 2 есть разность числа 10 и числа 8
Число 2 есть разница между числом 10 и числом 8.
Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.
Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:
Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2
Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:
В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:
Пример 2. Рассмотрим равенство 8 − 2 = 6
Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:
Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6
Пример 3. Рассмотрим равенство 3 × 2 = 6
Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2
Вернем получившееся равенство в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3
Пример 4. Рассмотрим равенство
Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5
Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:
Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3
Правила нахождения неизвестных
Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.
Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.
В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.
Чтобы выразить число 2, мы поступили следующим образом:
То есть из суммы 10 вычли слагаемое 8.
Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x
В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого
Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8
А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:
Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x
Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:
В результате получается верное числовое равенство. Значит уравнение решено правильно.
Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.
В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2
Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.
В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность
Чтобы выразить число 8, мы поступили следующим образом:
То есть сложили разность 6 и вычитаемое 2.
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x
В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого
Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:
Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.
А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2
Если вычислить правую часть, то можно узнать чему равна переменная x
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного вычитаемого
Для нахождения неизвестного вычитаемого предусмотрено следующее правило:
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.
А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6
Вычисляем правую часть и находим значение x
Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.
В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение
Чтобы выразить число 3 мы поступили следующим образом:
То есть разделили произведение 6 на множитель 2.
Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного множимого.
Для нахождения неизвестного множимого предусмотрено следующее правило:
Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.
Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.
А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.
Вычисление правой части позволяет нам найти значение переменной x
Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:
Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.
Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.
А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.
Вычисление правой части равенства позволяет узнать чему равно x
Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:
Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.
Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9
Отсюда .
Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3
Отсюда .
Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.
Чтобы выразить число 15 мы поступили следующим образом:
То есть умножили частное 3 на делитель 5.
Теперь представим, что в равенстве вместо числа 15 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного делимого.
Для нахождения неизвестного делимого предусмотрено следующее правило:
Чтобы найти неизвестное делимое, нужно частное умножить на делитель.
Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.
А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Теперь представим, что в равенстве вместо числа 5 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного делителя.
Для нахождения неизвестного делителя предусмотрено следующее правило:
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.
А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Итак, для нахождения неизвестных мы изучили следующие правила:
- Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
- Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
- Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
- Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Компоненты
Компонентами мы будем называть числа и переменные, входящие в равенство
Так, компонентами сложения являются слагаемые и сумма
Компонентами вычитания являются уменьшаемое, вычитаемое и разность
Компонентами умножения являются множимое, множитель и произведение
Компонентами деления являются делимое, делитель и частное
В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.
Пример 1. Найти корень уравнения 45 + x = 60
45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:
Вычислим правую часть, получим значение x равное 15
Значит корень уравнения 45 + x = 60 равен 15.
Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.
Пример 2. Решить уравнение
Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x
В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.
При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:
Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:
Вычислим правую часть получившегося уравнения:
Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение
При этом переменная x является не просто множителем, а неизвестным множителем
Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:
Вычислим правую часть, получим значение переменной x
Для проверки найденный корень отправим в исходное уравнение и подставим вместо x
Получили верное числовое равенство. Значит уравнение решено правильно.
Пример 3. Решить уравнение 3x + 9x + 16x = 56
Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.
Приведем подобные слагаемые в левой части данного уравнения:
Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:
Отсюда x равен 2
Равносильные уравнения
В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.
Уравнения называют равносильными, если их корни совпадают.
Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства
Согласно порядку действий, в первую очередь выполняется умножение:
Подставим корень 2 во второе уравнение 28x = 56
Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.
Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.
Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.
Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение
Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.
Пример 1. Решить уравнение
Вычтем из обеих частей уравнения число 10
Приведем подобные слагаемые в обеих частях:
Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.
Отсюда .
Вернемся к исходному уравнению и подставим вместо x найденное значение 2
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2
Пример 2. Решить уравнение 4(x + 3) = 16
Раскроем скобки в левой части равенства:
Вычтем из обеих частей уравнения число 12
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 4x , а в правой части число 4
Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4
Отсюда
Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1
Пример 3. Решить уравнение
Раскроем скобки в левой части равенства:
Прибавим к обеим частям уравнения число 8
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 2x , а в правой части число 9
В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Рассмотрим следующее уравнение:
Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство
Получается верное равенство. Значит число 2 действительно является корнем уравнения .
Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.
Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:
Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.
На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.
Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x
Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.
Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.
Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.
Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.
Пример 1. Решить уравнение
При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:
Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8
Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:
В результате останется простейшее уравнение
Ну и нетрудно догадаться, что корень этого уравнения равен 4
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получается верное числовое равенство. Значит уравнение решено правильно.
При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.
Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:
От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:
Пример 2. Решить уравнение
Умнóжим обе части уравнения на 15
В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5
Перепишем то, что у нас осталось:
Раскроем скобки в правой части уравнения:
Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях, получим
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 5
Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на 3
В левой части можно сократить две тройки, а правая часть будет равна 18
Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 9
Получается верное числовое равенство. Значит уравнение решено правильно.
Пример 4. Решить уравнение
Умнóжим обе части уравнения на 6
В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:
Сократим в обеих частях уравнениях то, что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки в обеих частях уравнения:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:
Приведем подобные слагаемые в обеих частях:
Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получилось верное числовое равенство. Значит уравнение решено правильно.
Пример 5. Решить уравнение
Раскроем скобки в обеих частях уравнения там, где это можно:
Умнóжим обе части уравнения на 15
Раскроем скобки в обеих частях уравнения:
Сократим в обеих частях уравнения, то что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки там, где это можно:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:
Приведем подобные слагаемые в обеих частях уравнения:
Найдём значение x
В получившемся ответе можно выделить целую часть:
Вернемся к исходному уравнению и подставим вместо x найденное значение
Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B
Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B
Найдем значение выражения, находящегося в переменной А.
Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно
Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.
Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.
Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x
Подставим найденное значение 2 вместо x в исходное уравнение:
Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:
Выполним сокращение в каждом слагаемом:
Перепишем то, что у нас осталось:
Решим это уравнение, пользуясь известными тождественными преобразованиями:
Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.
Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7
Этим методом мы тоже будем пользоваться часто.
Умножение на минус единицу
Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.
Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .
Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.
Рассмотрим уравнение . Чему равен корень этого уравнения?
Прибавим к обеим частям уравнения число 5
Приведем подобные слагаемые:
А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x
То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:
Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .
или разделить обе части уравнения на −1 , что еще проще
Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице
Получилось верное числовое равенство. Значит уравнение решено верно.
Теперь попробуем умножить обе части уравнения на минус единицу:
После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10
Корень этого уравнения, как и уравнения равен 5
Значит уравнения и равносильны.
Пример 2. Решить уравнение
В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
Так, умножение уравнения на −1 можно записать подробно следующим образом:
либо можно просто поменять знаки всех компонентов:
Получится то же самое, но разница будет в том, что мы сэкономим себе время.
Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3
Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:
Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:
Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:
Приравнивание к нулю
Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.
В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x
Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:
Приведем подобные слагаемые в левой части:
Прибавим к обеим частям 77 , и разделим обе части на 7
Альтернатива правилам нахождения неизвестных
Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.
К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2
Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5
Уравнения вида мы решали выражая неизвестное слагаемое:
Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:
Далее разделить обе части на 2
В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .
Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:
В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:
Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.
Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.
Когда корней несколько
Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .
В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).
То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.
Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:
Пример 2. Решить уравнение
Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).
Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:
Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:
Когда корней бесконечно много
Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.
Пример 1. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x
Пример 2. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x
Когда корней нет
Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид
Пусть
Пример 2. Решить уравнение
Раскроем скобки в левой части равенства:
Приведем подобные слагаемые:
Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .
Буквенные уравнения
Уравнение может содержать не только числа с переменными, но и буквы.
Например, формула нахождения скорости является буквенным уравнением:
Данное уравнение описывает скорость движения тела при равноускоренном движении.
Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении левую и правую часть поменяем местами:
У нас получилась формула нахождения расстояния, которую мы изучали ранее.
Попробуем из уравнения определить время. Для этого нужно выразить переменную t .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении v × t = s обе части разделим на v
В левой части переменные v сократим на v и перепишем то, что у нас осталось:
У нас получилась формула определения времени, которую мы изучали ранее.
Предположим, что скорость поезда равна 50 км/ч
А расстояние равно 100 км
Тогда буквенное уравнение примет следующий вид
Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t
либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t
Затем разделить обе части на 50
Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x
Вычтем из обеих частей уравнения a
Разделим обе части уравнения на b
Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.
Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:
Видим, что второе решение намного проще и короче.
Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.
Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x
Раскроем скобки в обеих частях уравнения
Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.
В левой части вынесем за скобки множитель x
Разделим обе части на выражение a − b
В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x
Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.
Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:
Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:
Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.
Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:
Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x
Приведем левую часть уравнения к общему знаменателю:
Умнóжим обе части на a
В левой части x вынесем за скобки
Разделим обе части на выражение (1 − a)
Линейные уравнения с одним неизвестным
Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.
Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».
Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.
Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.
Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».
Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.
Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.
Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.
Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.
Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a
Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .
Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.
В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.
http://skysmart.ru/articles/mathematic/chislovye-i-bukvennye-vyrazheniya
Содержание:
Выражения и уравнения
Вы уже знаете, что такое буквенные выражения, и умеете их упрощать с помощью законов сложения и умножения. Например,
Пример:
Есть ли коэффициент в выражении ? Да. Он равен 1, поскольку
Вспомним, что преобразование выражения со скобками в выражение без скобок называется раскрытием скобок. Например:
Обратным действием в этом примере является вынесение общего множителя за скобки.
Слагаемые, содержащие одинаковые буквенные множители, называют подобными слагаемыми. С помощью вынесения общего множителя за скобки сводят подобные слагаемые:
Правила раскрытия скобок
Правила раскрытия скобок
- Если перед скобками стоит знак
, то при раскрытии скобок знаки слагаемых в скобках сохраняют;
- Если перед скобками стоит знак
, то при раскрытии скобок знаки слагаемых в скобках изменяют на противоположные.
Пример:
Упростите выражение: 1) ; 2)
Решение:
1. Перед скобками стоит знак , поэтому при раскрытии скобок знаки всех слагаемых сохраняются:
2. Перед скобками стоит знак , поэтому при раскрытии скобок знаки всех слагаемых изменяются на противоположные:
Для раскрытия скобок используют распределительное свойство умножения: . Если
, то знаки слагаемых
и
не изменяют. Если
, то знаки слагаемых
и
изменяют на противоположные.
Пример:
Упростите выражение: 1) 2)
Решение:
1. Множитель перед скобками является положительным, поэтому при раскрытии скобок знаки всех слагаемых сохраняем:
2. Множитель перед скобками является отрицательным, поэтому при раскрытии скобок знаки всех слагаемых изменяем на противоположные:
- Слово «сумма» происходит от латинского summа, что значит «итог», «общее количество».
- Слово «плюс» происходит от латинского plus, что значит «больше», а слово «минус» — от латинского minus, что значит «меньше». Знаки
и
используют для обозначения действий сложения и вычитания. Эти знаки ввёл чешский учёный И. Видман в 1489 г в книге «Быстрый и приятный счёт для всех торговцев»(рис. 138).
Уравнения. Основные свойства уравнений
Вы уже знаете, что такое уравнение, корень уравнения. Вспомним основные формулировки.
Определение:
Уравнением называется равенство, содержащее неизвестное, значение которого нужно найти.
Неизвестное число в уравнении обозначают буквой или
, или
и т.п. Например, запись
является
уравнением, где — неизвестное и является искомым.
Определение:
Значение неизвестного, обращающее уравнение в верное числовое равенство, называется корнем уравнения.
Так, корнем уравнения является число
, поскольку
.
Уравнение может иметь больше одного корня. Например, уравнение имеет бесконечно много корней, так как любое число обращает уравнение в верное числовое равенство. С уравнениями, имеющими два, три или более корней, вы ознакомитесь позднее.
Уравнение может не иметь корней. Например, уравнение не имеет корней, так как не существует числа, которое в произведении с числом
даёт число
.
Определение:
Решить уравнение — значит найти все его корни или установить, что уравнение не имеет ни одного корня.
В 5 классе вы находили корень уравнения как неизвестный компонент арифметического действия. При решении более сложных уравнений опираются на свойства равенств. Рассмотрим основные из них.
Посмотрите на рисунок 139. Вы видите, что на левой чаше весов находится арбуз неизвестной массы, а на правой — гири массой 5 кг и 3 кг. Если на обе чаши весов положить по гире массой 3 кг, то весы останутся в равновесии (рис. 140). Понятно, что, сняв эти гири или поставив навесы одинаковые гири другой массы, снова получим равновесие на весах. Этот пример иллюстрирует следующее свойство равенств.
Определение: Если к обеим частям равенства прибавить (из обеих частей равенства вычесть) одно и то же число, то равенство не изменится.
Пример:
Решите уравнение: 1) .
Решение:
К левой и правой частям уравнения прибавим число 12 и упростим полученное равенство:
Решая уравнение, в левой его части «уединили неизвестное». Такой же результат получим, если число 12 перенесём из левой части в правую, изменив при этом его знак.
Определение:
Слагаемое можно переносить из одной части уравнения в другую, изменяя знак этого слагаемого на противоположный.
Пример:
Можно ли переносить в другую часть уравнения слагаемое, содержащее неизвестное? Да.
Посмотрите на рисунок 141. Вы видите, что масса пакета муки равна 2 кг. Понятно, что масса трёх таких пакетов втрое больше (рис. 142). Этот пример иллюстрирует другое свойство равенств.
Определение: Если обе части равенства умножить (разделить) на одно и то же число, отличное от нуля, то равенство не изменится. Данное свойство используют для решения уравнений. Рассмотрим пример.
Пример:
Решите уравнение
Решение:
Чтобы избавиться от дробного коэффициента, умножим на 3 обе части уравнения:
Основные свойства уравнений
Основные свойства уравнений
- Корни уравнения не изменятся, если к обеим частям уравнения прибавить (из обеих частей уравнения вычесть) одно и то же число.
- Корни уравнения не изменятся, если обе части уравнения умножить (разделить) на одно и то же число, отличное от нуля.
Считают, что язык алгебры — это уравнения. «Чтобы решить вопросы. относящиеся к числам или к абстрактным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», — писал великий И. Ньютон (1643-1727) в своём учебнике по алгебре, названном «Общая арифметика».
Применение уравнений к решению задач
В 5 классе с помощью уравнений вы решали задачи на нахождение суммы двух величин или их разности.
В 6 классе будем рассматривать особый вид задач — на равенство двух величин. В таких задачах тоже сравнивают две величины, например, количество книг на первой и второй полках. Значения же выражений с этими двумя величинами приравнивают.
Пример:
На первой полке книг в 3 раза больше, чем на второй. Если с первой полки переставить на вторую 12 книг, то на обеих полках их станет поровну. Сколько книг на каждой полке?
Решение:
Составим краткую запись задачи в виде таблицы 23
Пусть — количество книг на второй полке, тогда
— количество книг на первой полке. Если с первой полки переставить на вторую 12 книг, то на первой полке их станет
, а на второй —
. По условию, это количество книг одинаково. Составим уравнение:
. Решим уравнение:
. Тогда
. Следовательно, на первой полке 36 книг, а на второй — 12 книг.
Первым произведением, содержащим исследование алгебраических вопросов, считают трактат «Арифметика» Диофанта (середина IV в.). Из 13 книг, составляющих полное собрание трудов Диофанта, до нас дошло только 6. В них предложено решение сложных алгебраических задач. Основная часть трактата — сборник задач (в первых шести книгах их 189) с решениями и удачно подобранными иллюстрациями к способам решения.
Перпендикулярные и параллельные прямые
Вы знаете, что прямая — это геометрическая фигура. Две прямые могут по-разному размещаться на плоскости. В 6 классе вы узнаете о перпендикулярных и параллельных прямых.
Перпендикулярные прямые
Посмотрите па перекрёсток дорог на рисунке 143. Вы видите, что дороги напоминают пересекающиеся прямые, которые образуют четыре прямых угла. В этом случае говорят, что прямые пересекаются под прямым углом. В тетради по математике клеточки образуются перпендикулярными прямыми.
Определение:
Две прямые на плоскости называются перпендикулярными, если они пересекаются под прямым углом.
На рисунке 144 изображены прямые и
, которые пересекаются в точке О под прямым углом, то есть являются перпендикулярными.
Записывают:
, а на рисунке обозначают знаком прямого угла
(см. рис. 145). Говорят: «Прямая
перпендикулярна прямой
».
Если прямая перпендикулярна прямой
, то и прямая
перпендикулярна прямой
. Иначе говорят: прямые
и
— взаимно перпендикулярны.
Пример:
Бывают ли перпендикулярными отрезки? лучи? Да, если они являются частями соответствующих перпендикулярных прямых (рис. 145—146).
Для построения перпендикулярных прямых используют транспортир или угольник. На рисунке 147 вы видите, как строили прямую , перпендикулярную прямой
, с помощью транспортира, а на рисунке рис. 148 — с помощью угольника.
- Заказать решение задач по высшей математике
Параллельные прямые
Посмотрите на рисунок 149. Вы видите рельсы трамвайных путей, напоминающие прямые, которые лежат в одной плоскости и не пересекаются. Это пример параллельных прямых. Вокруг нас много других примеров параллельных прямых. Так, в тетради в клеточку горизонтальные линии параллельны. То же самое можно сказать и про вертикальные линии. Противоположные края парты, противоположные стороны оконной рамы, троллейбусные штанги также параллельны.
Определение:
Две прямые на плоскости называются параллельными, если они не пересекаются.
На рисунке 150 изображены параллельные прямые и
.
Записывают:
. Говорят: «Прямая
параллельна прямой
».
Если прямая параллельна прямой
, то и прямая
параллельна прямой
. Однако для параллельных прямых термин «взаимно параллельные» не применяют.
Пример:
Бывают ли параллельными лучи? отрезки? Да, если они являются частями соответствующих параллельных прямых.
На рисунке 151 вы видите, как с помощью линейки и угольника через точку провели прямую
, параллельную прямой
.
Название «перпендикулярный» происходит от латинского слова «perpendicufaris», которое означает «отвесный». Знак предложил Пьер Еригон (1580—1643) — французский математик и астроном.
Название «параллельный» происходит от греческого слова «раralelos» — «идущий рядом». Символ параллельности известен с античных времён Его использовали Герои и Папп Александрийский. Сначала символ был похож на нынешний знак равенства, но с появлением последнего, чтобы избежать путаницы, символ был повёрнут вертикально Уильямом Отредом в 1677 году
Координатная плоскость
Вы уже знаете, что такое координатная прямая (рис. 162). На ней точка — начало отсчёта, стрелка показывает направление возрастания чисел, а цена деления составляет одну единицу.
Однако на практике часто приходится пользоваться ориентирами не только вдоль прямой, но и на плоскости.
Вы знаете, что в игре «Морской бой» положение корабля определяют с помощью «координат» из цифр и «координат» из букв (рис. 163). В зависимости от выбранной буквы передвигаются на определённое количество клеточек вправо или влево, а цифра указывает, на сколько клеточек нужно сместиться вверх или вниз. Итак, место корабля на поле боя определяют двумя « координатами».
Чтобы определить место в зале кинотеатра, также нужно знать две «координаты»: номер ряда и номер кресла в этом ряду (рис. 164). Причём порядок «координат» в такой паре является строго определённым. Действительно, например, пары чисел 3 и 12 и 12 и 3 направят нас в совершенно разные места зала: в 3-й ряд на 12-е место или в 12-й ряд на 3-е место. В отличие от предыдущего примера, для ориентирования в зале кинотеатра порядок координат не меняют, поскольку неудобно сначала искать номер места в ряду, а лишь затем — сам ряд.
Итак, чтобы охарактеризовать размещение точки на плоскости, нужно задать две координатные прямые с равными единичными отрезками, одна из которых задаёт направление вправо-влево, а вторая — вверх-вниз. Для этого координатные прямые изображают перпендикулярно друг к другу и так, чтобы начала отсчёта на них совпадали (рис. 165). Одну из этих прямых (как правило, горизонтальную) считают первой, а другую — второй. Такая пара координатных прямых образует прямоугольную систему координат.
Первую координатную прямую называют осью абсцисс. Её обозначают . Вторую координатную прямую называют осью ординат. Её обозначают
. Общее начало отсчёта координатных прямых называют началом координат (рис. 166).
Плоскость с заданной на ней системой координат называют координатной плоскостью.
Каждой точке на плоскости можно поставить в соответствие пару чисел, взятых в определённом порядке, и наоборот, каждой паре чисел соответствует единственная точка координатной плоскости. Такая упорядоченная пара чисел называется координатами точки в данной системе координат. Координату по оси абсцисс называется абсциссой точки, а координату по оси ординат — ординатой точки.
Кратко записывают:
. Читают: «Точка
с координатами
и
», «Точка
с координатами 3 и 2» или «3 — абсцисса точки
, 2 — её ордината».
Пример:
На координатной плоскости постройте точку: 1) ; 2)
.
Решение:
Введём прямоугольную систему координат на плоскости (рис. 167).
1. У точки абсцисса равна 3, а ордината — 2. На оси абсцисс отметим точку, соответствующую числу 3, а на оси ординат — точку, соответствующую числу 2. Через точки, построенные на осях координат, проведём две прямые, параллельные осям (рис. 167). Точка пересечения построенных прямых— искомая точка
.
2. Поскольку ордината точки равна 0, то эта точка лежит на оси абсцисс и соответствует числу 5 на этой оси.
Обратите внимание:
Пример:
Как определить координаты точки, построенной на координатной плоскости, например, точки на рисунке 168? Для этого нужно через эту точку провести прямые, параллельные осям координат. Прямая, параллельная оси ординат, пересекает ось абсцисс в точке, которая соответствует числу
. Значит, первой координатой этой точки
является число
. Прямая, параллельная оси абсцисс, пересекает ось ординат в точке, которая соответствует числу -4. Значит, другой координатой точки
является число
. Тогда точка
имеет координаты
и
, то есть
.
Координатные оси разбивают координатную плоскость на четыре части. Их называют координатными четвертями и обозначают так: I четверть, II четверть, III четверть, IV четверть (рис. 169).
Точки I четверти имеют положительную абсциссу и положительную ординату. И наоборот, если абсцисса и ордината точки положительные, то она лежит в I четверти, как, например, точка . Аналогично рассуждая, можно выяснить, что точки II четверти имеют отрицательную абсциссу и положительную ординату, точки III четверти — отрицательную абсциссу и отрицательную ординату, а точки IV четверти — положительную абсциссу и отрицательную ординату.
На рисунке 170 показаны знаки координат точек, лежащих в соответствующих четвертях.
Положение любой точки на поверхности Земли определяется двумя координатами: географической широтой и географической долготой.
Географические координаты ввёл древнегреческий учёный Гиппарх во И в. до н.э. Географические координаты применяют для определения положения точек земной поверхности относительно экватора и начального (нулевого) меридиана. Например, Киев имеет следующие географические координаты: восточной долготы,
северной широты.
Графики зависимостей между величинами
Вы знаете, что стоимость товара зависит от его количества: чем большее количество товара покупают, тем большей будет его стоимость. Например, если цена одного килограмма конфет составляет 35 грн, то за 2 кг нужно заплатить 70 грн, за 3 кг — 105 грн и т.п. Вы знаете, что такое соответствие можно наглядно отобразить на диаграмме (рис. 174). Однако по диаграмме трудно определить, сколько стоит 2,5 кг конфет или иное их количество. Изобразим данные о стоимости конфет не в виде столбиков, а вертикальными отрезками в системе координат (рис. 175). Поскольку величины «масса конфет» и «стоимость покупки» являются прямо пропорциональными, то верхние концы столбиков диаграммы можно соединить отрезками. Получим линию, показывающую, как изменяется стоимость покупки в зависимости от массы конфет. Такая линия называется графиком зависимости величины «стоимость покупки» от величины «масса конфет».
Обратите внимание:
все точки графика зависимости прямо пропорциональных величин лежат на одной прямой.
Вы знаете, что расстояние и время на его преодоление являются прямо пропорциональными величинами. Поэтому все точки графика движения лежат на одной прямой.
Пример:
Поезд Харьков — Львов выходит из Харькова около и прибывает во Львов около
. Скорость поезда составляет
, на маршруте он делает 5 остановок, запланированных через каждые 3 часа. На рисунке 176 показан график движения этого поезда.
1) В котором часу новых суток поезд делает первую остановку? Какая это станция?
2) Что показывает число на оси абсцисс? А число
?
3) На каких расстояниях от первой остановки поезд останавливается на других станциях?
4) Что показывает число на оси ординат? А число
?
5) Каковы координаты конечных точек маршрута?
Решение:
По условию задачи, движение поезда начинается в , а заканчивается в
следующего дня.
1. Начало новых суток поезд встречает недалеко от станции Лубны, а первую остановку делает в именно на этой станции.
2. Поскольку движение поезда началось в предыдущие сутки, то по оси абсцисс время его отправления из Харькова можно выразить отрицательным числом . Действительно, в
предыдущих суток до начала новых суток должно пройти именно
. Аналогично, времени остановки поезда в Полтаве на оси абсцисс соответствует отрицательное число
.
3. Остановки запланированы через каждые . Поскольку скорость поезда составляет
, то за
он преодолевает
. Следовательно, поезд останавливается на таких расстояниях от Полтавы:
.
4. При помощи отрицательных чисел и
на оси ординат показано, что в
предыдущих суток поезд находился на расстоянии 300 км. не доезжая до станции Лубны, а в
предыдущих суток — на расстоянии
, не доезжая до этой станции.
5. Конечные результаты точки маршрута поезда имеют координаты .
Пример:
Обязательно ли выбирать конечные точки маршрута для построения графика движения? Нет. График можно построить по любым двум его точкам. Но концы маршрута нужно отметить обязательно.
Обратите внимание:
график движения является прямой (или её частью), поэтому такой график можно построить по любым двум его точкам.
С помощью графиков можно решать целый класс задач. Рассмотрим задачу.
Пример:
Из пунктов и
, расстояние между которыми составляет 420 км. навстречу друг другу выехали два автомобиля. Красный автомобиль выехал в 6 ч из пункта
и прибыл в пункт
в 15 ч. Синий автомобиль выехал в 5 ч из пункта
и прибыл в пункт
в 11 ч. В котором часу встретятся автомобили?
Решение:
Построим в прямоугольной системе координат графики движения автомобилей (рис. 177). Красный отрезок — график движения красного автомобиля, синий — синего автомобиля. Точке пересечения этих отрезков соответствует время — 9 ч. Итак, автомобили встречаются в 9 ч.
- Линейное уравнение с одной переменной
- Целые выражения
- Одночлены
- Многочлены
- Обыкновенные дроби
- Отношения и пропорции
- Рациональные числа и действия над ними
- Делимость натуральных чисел
Правила составления уравнений в математике
Составить уравнение — значит выразить в математической форме связь между данными (известными) задачи и искомыми (неизвестными) ее величинами. Иногда эта связь, настолько явно содержится в формулировке задачи, что составление уравнения есть просто дословный пересказ задачи, на языке математических знаков.
Пример 1
Петров получил за работу на 160 руб. больше, чем половина суммы, которую получил Иванов. Вместе они получили 1120 руб. Сколько получили за работу Петров и Иванов?
Обозначим через х заработок Иванова. Половина его заработка есть 0,5x ; месячной заработок Петрова 0,5x + 160 вместе они зарабатывают 1120 руб.; математическая запись последней фразы будет
( 0,5x + 160 ) + x = 1120.
Уравнение составлено. Решая его по раз установленным правилам, находим, заработок Иванова х = 640руб.; заработок же Петрова 0,5x + 160 = 480 (руб.).
Чаще, однако, случается, что связь между данными и искомыми величинами не указывается в задаче прямо; ее нужно установить, исходя из условий задачи. В практических задачах так и бывает почти всегда. Только что приведенный пример носит надуманный характер; в жизни почти никогда подобных задач не встречается.
Для составления уравнения поэтому нельзя дать вполне исчерпывающих указаний. Однако на первых порах полезно руководствоваться следующим. Примем за значение искомой величины (или нескольких величин) какое-нибудь наугад взятое число (или несколько чисел) и поставим себе задачу проверить, угадали ли мы правильное решение задачи или нет. Если мы сумели провести эту проверку и обнаружить либо то, что догадка наша верна, либо то, что она неверна (скорее всего случится, конечно, второе), то мы немедленно можем составить нужное уравнение (или несколько уравнений). Именно, запишем те самые действия, которые мы производили для проверки, только вместо наугад взятого числа введем буквенной знак неизвестной величины. Мы получим требуемое уравнение.
Пример 1
Кусок сплава меди и цинка объемом в 1 дм 3 весит 8,14 кг. Сколько меди содержится в сплаве? (уд. вес меди 8,9 кг/дм 3 ; цинка — 7,0 кг/дм 3 ).
Возьмем наугад число, выражающее искомый объем меди, например 0,3 дм 3 . Проверим, удачно ли мы взяли это число. Так как 1 кг/дм 3 меди весит 8,9 кг, то 0,3 дм 3 весят 8,9 * 0,3 = 2,67 (кг). Объем цинка в сплаве есть 1 — 0,3 = 0,7 (дм 3 ). Вес его 7,0 * 0,7 = 4,9 (кг). Общий вес цинка и меди 2,67+ +4,9 = 7,57 (кг). Между тем вес нашего куска, по условию задачи, 8,14 кг. Догадка наша несостоятельна. Но зато мы немедленно получим уравнение решение которого даст правильный ответ. Вместо наугад взятого числа 0,3 дм 3 обозначим объем меди (в дм 3 ) через х. Вместо произведения 8,9 * 0,3 = 2,67 берем произведшие 8,9 x. Это — вес меди в сплаве. Вместо 1 – 0,3 = 0,7 берем 1 — х; это — объем цинка. Вместо 7,0 * 0,7 = 4,9 берем 7,0 (1 — x); это — вес цинка. Вместо 2,67 + 4,9 берем 8,9х + 7,0 (1 — х); это — общий вес цинка и меди. По условию он равен 8,14 кг; значит, 8,9х +7,0 (1 — x) = 8,14.
Решение этого уравнения дает x = 0,6. Проверку наугад взятого решения можно делать различными способами; соответственно этому можно получить для одной и той же задачи различные виды уравнения; все они, однако, дадут для искомой величины одно и, то же решение, такие уравнения называются равносильными друг другу.
Разумеется, после получения навыков в составлении уравнений нет нужды производить проверку наугад взятого числа: можно для значения искомой величины брать не число, а какую-нибудь букву (х, у и т. д.) и поступать так, как если бы эта буква (неизвестное) была тем числом, проверить которое мы собираемся.
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Общие сведения об уравнениях
Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.
С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.
В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.
Что такое уравнение?
Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.
Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .
А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.
Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.
Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет
Говорят, что число 2 является корнем или решением уравнения 3 + x = 5
Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.
Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.
Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.
Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.
Выразить одно через другое
Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.
Рассмотрим следующее выражение:
Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10
Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.
Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.
Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:
Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.
При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.
Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:
2 есть 10 − 8
То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:
Число 2 есть разность числа 10 и числа 8
Число 2 есть разница между числом 10 и числом 8.
Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.
Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:
Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2
Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:
В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:
Пример 2. Рассмотрим равенство 8 − 2 = 6
Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:
Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6
Пример 3. Рассмотрим равенство 3 × 2 = 6
Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2
Вернем получившееся равенство в первоначальное состояние:
Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3
Пример 4. Рассмотрим равенство
Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5
Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:
Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3
Правила нахождения неизвестных
Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.
Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.
В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.
Чтобы выразить число 2, мы поступили следующим образом:
То есть из суммы 10 вычли слагаемое 8.
Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x
В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого
Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8
А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:
Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x
Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:
В результате получается верное числовое равенство. Значит уравнение решено правильно.
Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.
В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2
Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.
В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность
Чтобы выразить число 8, мы поступили следующим образом:
То есть сложили разность 6 и вычитаемое 2.
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x
В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого
Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:
Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.
А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2
Если вычислить правую часть, то можно узнать чему равна переменная x
Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного вычитаемого
Для нахождения неизвестного вычитаемого предусмотрено следующее правило:
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.
А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6
Вычисляем правую часть и находим значение x
Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.
В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение
Чтобы выразить число 3 мы поступили следующим образом:
То есть разделили произведение 6 на множитель 2.
Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного множимого.
Для нахождения неизвестного множимого предусмотрено следующее правило:
Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.
Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.
А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.
Вычисление правой части позволяет нам найти значение переменной x
Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:
Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.
Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.
А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.
Вычисление правой части равенства позволяет узнать чему равно x
Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:
Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.
Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9
Отсюда .
Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3
Отсюда .
Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.
Чтобы выразить число 15 мы поступили следующим образом:
То есть умножили частное 3 на делитель 5.
Теперь представим, что в равенстве вместо числа 15 располагается переменная x
В этом случае переменная x берет на себя роль неизвестного делимого.
Для нахождения неизвестного делимого предусмотрено следующее правило:
Чтобы найти неизвестное делимое, нужно частное умножить на делитель.
Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.
А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Теперь представим, что в равенстве вместо числа 5 располагается переменная x .
В этом случае переменная x берет на себя роль неизвестного делителя.
Для нахождения неизвестного делителя предусмотрено следующее правило:
Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.
А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3
Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .
Итак, для нахождения неизвестных мы изучили следующие правила:
- Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
- Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
- Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
- Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
- Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
- Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
- Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Компоненты
Компонентами мы будем называть числа и переменные, входящие в равенство
Так, компонентами сложения являются слагаемые и сумма
Компонентами вычитания являются уменьшаемое, вычитаемое и разность
Компонентами умножения являются множимое, множитель и произведение
Компонентами деления являются делимое, делитель и частное
В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.
Пример 1. Найти корень уравнения 45 + x = 60
45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:
Вычислим правую часть, получим значение x равное 15
Значит корень уравнения 45 + x = 60 равен 15.
Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.
Пример 2. Решить уравнение
Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x
В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.
При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:
Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:
Вычислим правую часть получившегося уравнения:
Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение
При этом переменная x является не просто множителем, а неизвестным множителем
Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:
Вычислим правую часть, получим значение переменной x
Для проверки найденный корень отправим в исходное уравнение и подставим вместо x
Получили верное числовое равенство. Значит уравнение решено правильно.
Пример 3. Решить уравнение 3x + 9x + 16x = 56
Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.
Приведем подобные слагаемые в левой части данного уравнения:
Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:
Отсюда x равен 2
Равносильные уравнения
В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.
Уравнения называют равносильными, если их корни совпадают.
Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства
Согласно порядку действий, в первую очередь выполняется умножение:
Подставим корень 2 во второе уравнение 28x = 56
Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.
Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.
Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.
Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение
Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.
Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.
Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.
Пример 1. Решить уравнение
Вычтем из обеих частей уравнения число 10
Приведем подобные слагаемые в обеих частях:
Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.
Отсюда .
Вернемся к исходному уравнению и подставим вместо x найденное значение 2
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение
. Корень этого уравнения, как и уравнения
так же равен 2
Пример 2. Решить уравнение 4(x + 3) = 16
Раскроем скобки в левой части равенства:
Вычтем из обеих частей уравнения число 12
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 4x , а в правой части число 4
Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4
Отсюда
Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1
Пример 3. Решить уравнение
Раскроем скобки в левой части равенства:
Прибавим к обеим частям уравнения число 8
Приведем подобные слагаемые в обеих частях уравнения:
В левой части останется 2x , а в правой части число 9
В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5
Получили верное числовое равенство. Значит уравнение решено правильно.
Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение
. Корень этого уравнения, как и уравнения
так же равен 4,5
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.
Рассмотрим следующее уравнение:
Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство
Получается верное равенство. Значит число 2 действительно является корнем уравнения .
Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.
Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:
Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.
На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.
Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x
Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.
Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.
Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса
Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:
Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.
Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.
Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.
Пример 1. Решить уравнение
При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.
В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:
Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8
Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:
В результате останется простейшее уравнение
Ну и нетрудно догадаться, что корень этого уравнения равен 4
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получается верное числовое равенство. Значит уравнение решено правильно.
При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения
равен 4. Значит эти уравнения равносильны.
Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:
От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:
Пример 2. Решить уравнение
Умнóжим обе части уравнения на 15
В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5
Перепишем то, что у нас осталось:
Раскроем скобки в правой части уравнения:
Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:
Приведем подобные слагаемые в обеих частях, получим
Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 5
Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на 3
В левой части можно сократить две тройки, а правая часть будет равна 18
Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:
Отсюда
Вернемся к исходному уравнению и подставим вместо x найденное значение 9
Получается верное числовое равенство. Значит уравнение решено правильно.
Пример 4. Решить уравнение
Умнóжим обе части уравнения на 6
В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:
Сократим в обеих частях уравнениях то, что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки в обеих частях уравнения:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:
Приведем подобные слагаемые в обеих частях:
Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7
Вернемся к исходному уравнению и подставим вместо x найденное значение 4
Получилось верное числовое равенство. Значит уравнение решено правильно.
Пример 5. Решить уравнение
Раскроем скобки в обеих частях уравнения там, где это можно:
Умнóжим обе части уравнения на 15
Раскроем скобки в обеих частях уравнения:
Сократим в обеих частях уравнения, то что можно сократить:
Перепишем то, что у нас осталось:
Раскроем скобки там, где это можно:
Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:
Приведем подобные слагаемые в обеих частях уравнения:
Найдём значение x
В получившемся ответе можно выделить целую часть:
Вернемся к исходному уравнению и подставим вместо x найденное значение
Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B
Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B
Найдем значение выражения, находящегося в переменной А.
Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно
, то уравнение будет решено верно
Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.
Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.
Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x
Подставим найденное значение 2 вместо x в исходное уравнение:
Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:
Выполним сокращение в каждом слагаемом:
Перепишем то, что у нас осталось:
Решим это уравнение, пользуясь известными тождественными преобразованиями:
Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.
Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7
Этим методом мы тоже будем пользоваться часто.
Умножение на минус единицу
Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.
Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .
Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.
Рассмотрим уравнение . Чему равен корень этого уравнения?
Прибавим к обеим частям уравнения число 5
Приведем подобные слагаемые:
А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x
То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:
Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .
или разделить обе части уравнения на −1 , что еще проще
Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице
Получилось верное числовое равенство. Значит уравнение решено верно.
Теперь попробуем умножить обе части уравнения на минус единицу:
После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10
Корень этого уравнения, как и уравнения равен 5
Значит уравнения и
равносильны.
Пример 2. Решить уравнение
В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .
Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.
Так, умножение уравнения на −1 можно записать подробно следующим образом:
либо можно просто поменять знаки всех компонентов:
Получится то же самое, но разница будет в том, что мы сэкономим себе время.
Итак, умножив обе части уравнения на −1 , мы получили уравнение
. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3
Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.
Пример 3. Решить уравнение
Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:
Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:
Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:
Приравнивание к нулю
Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.
А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.
В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x
Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:
Приведем подобные слагаемые в левой части:
Прибавим к обеим частям 77 , и разделим обе части на 7
Альтернатива правилам нахождения неизвестных
Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.
К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2
Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5
Уравнения вида мы решали выражая неизвестное слагаемое:
Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:
Далее разделить обе части на 2
В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .
Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:
В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:
Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.
Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.
Когда корней несколько
Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .
В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).
То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.
Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:
Пример 2. Решить уравнение
Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).
Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:
Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:
Когда корней бесконечно много
Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.
Пример 1. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x
Пример 2. Решить уравнение
Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x
Когда корней нет
Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть
. Тогда уравнение примет следующий вид
Пусть
Пример 2. Решить уравнение
Раскроем скобки в левой части равенства:
Приведем подобные слагаемые:
Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .
Буквенные уравнения
Уравнение может содержать не только числа с переменными, но и буквы.
Например, формула нахождения скорости является буквенным уравнением:
Данное уравнение описывает скорость движения тела при равноускоренном движении.
Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении левую и правую часть поменяем местами:
У нас получилась формула нахождения расстояния, которую мы изучали ранее.
Попробуем из уравнения определить время. Для этого нужно выразить переменную t .
Умнóжим обе части уравнения на t
В правой части переменные t сократим на t и перепишем то, что у нас осталось:
В получившемся уравнении v × t = s обе части разделим на v
В левой части переменные v сократим на v и перепишем то, что у нас осталось:
У нас получилась формула определения времени, которую мы изучали ранее.
Предположим, что скорость поезда равна 50 км/ч
А расстояние равно 100 км
Тогда буквенное уравнение примет следующий вид
Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t
либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t
Затем разделить обе части на 50
Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x
Вычтем из обеих частей уравнения a
Разделим обе части уравнения на b
Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.
Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:
Видим, что второе решение намного проще и короче.
Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.
Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x
Раскроем скобки в обеих частях уравнения
Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.
В левой части вынесем за скобки множитель x
Разделим обе части на выражение a − b
В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x
Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.
Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:
Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:
Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.
Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:
Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x
Приведем левую часть уравнения к общему знаменателю:
Умнóжим обе части на a
В левой части x вынесем за скобки
Разделим обе части на выражение (1 − a)
Линейные уравнения с одним неизвестным
Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.
Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».
Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.
Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.
Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».
Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.
Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.
Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.
Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.
Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a
Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид
.
Отсюда .
Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.
В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.
источники:
http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij
http://spacemath.xyz/obshhie-svedeniya-ob-uravneniyah/
- Главная
- Справочники
- Справочник по математике для начальной школы
- Числовые и буквенные выражения
- Уравнения
Уравнение
Уравнение – это равенство, в котором есть неизвестное.
Если мы заменим любой компонент выражения неизвестным, мы получим уравнение.
Например, из выражения 6 + 7 = 13 можно сделать уравнение:
6 + х = 13
Неизвестное число обозначается маленькой латинской буквой:
6 + b = 13
6 + c = 13
6 + d = 13
Схемы уравнения
Мы видим, что из неизвестного числа х и 5 получается число 9. Целое – это 9.
составим уравнение:
х + 5 = 9
или
5 + х = 9
или
9 — х = 5
Решение уравнений
Решить уравнение – это значит найти такое значение неизвестного числа, при котором это равенство станет верным.
х + 5 = 9
В данном уравнении неизвестно первое слагаемое. Чтобы найти неизвестное первое слагаемое, нужно из суммы вычесть известное второе слагаемое.
Решение уравнения:
х + 5 = 9
х = 9 — 5
х = 4
Проверка:
4 + 5 = 9
9 = 9
5 + х = 9
В данном уравнении неизвестно второе слагаемое. Чтобы найти неизвестное второе слагаемое, нужно из суммы вычесть известное первое слагаемое.
Решение уравнения:
5 + х = 9
х = 9 — 5
х = 4
Проверка:
4 + 5 = 9
9 = 9
9 — х = 5
В данном уравнении неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, нужно из уменьшаемое вычесть разность.
Решение уравнения:
9 — х = 5
х = 9 — 5
х = 4
Проверка:
9 — 4 = 5
5 = 5
х — 4 = 5
В данном уравнении неизвестно уменьшаемое. Чтобы найти неизвестное уменьшаемое, нужно из к разности прибавить вычитаемое.
Решение уравнения:
х — 4 = 5
х = 5 + 4
х = 9
Проверка:
9 — 4 = 5
5 = 5
Советуем посмотреть:
Числовые и буквенные выражения
Правило встречается в следующих упражнениях:
1 класс
Страница 20. Урок 11,
Петерсон, Учебник, часть 3
Страница 24. Урок 13,
Петерсон, Учебник, часть 3
Страница 37. Урок 19,
Петерсон, Учебник, часть 3
Страница 43. Урок 22,
Петерсон, Учебник, часть 3
Страница 67. Урок 34,
Петерсон, Учебник, часть 3
Страница 71. Урок 36,
Петерсон, Учебник, часть 3
Страница 83. Урок 42,
Петерсон, Учебник, часть 3
Страница 86. Урок 44,
Петерсон, Учебник, часть 3
Страница 89. Урок 35,
Петерсон, Учебник, часть 3
Страница 95. Повторение,
Петерсон, Учебник, часть 3
2 класс
Страница 19,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 7. Урок 3,
Петерсон, Учебник, часть 1
Страница 13. Урок 6,
Петерсон, Учебник, часть 1
Страница 29. Урок 15,
Петерсон, Учебник, часть 1
Страница 37. Урок 19,
Петерсон, Учебник, часть 1
Страница 81. Урок 33,
Петерсон, Учебник, часть 2
Страница 101. Урок 42,
Петерсон, Учебник, часть 2
Страница 15. Урок 5,
Петерсон, Учебник, часть 3
Страница 21. Урок 7,
Петерсон, Учебник, часть 3
Страница 74. Урок 28,
Петерсон, Учебник, часть 3
3 класс
Страница 38,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 41,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 44,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 54. Тест 2. Вариант 1,
Моро, Волкова, Проверочные работы
Страница 94,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 30. Урок 10,
Петерсон, Учебник, часть 1
Страница 33. Урок 13,
Петерсон, Учебник, часть 2
Страница 46. Урок 18,
Петерсон, Учебник, часть 2
Страница 42. Урок 19,
Петерсон, Учебник, часть 3
Страница 47. Урок 21,
Петерсон, Учебник, часть 3
4 класс
Страница 42,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 74,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 92,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 41. Тест 1. Вариант 2,
Моро, Волкова, Проверочные работы
Страница 44. ПР 1. Вариант 1,
Моро, Волкова, Проверочные работы
Страница 50. Тест 1. Вариант 1,
Моро, Волкова, Проверочные работы
Страница 61,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 17,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 31,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 17. Урок 6,
Петерсон, Учебник, часть 1
6 класс
Задание 380,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 381,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
7 класс
Номер 82,
Мерзляк, Полонский, Якир, Учебник
Номер 104,
Мерзляк, Полонский, Якир, Учебник
Номер 200,
Мерзляк, Полонский, Якир, Учебник
Уравнение — это самая простая и самая распространенная форма математической задачи. Заканчивая школьный курс, вы накопили богатый опыт решения разнообразных уравнений. Наступил момент, когда нужно привести свои знания в порядок, разобраться в тех приемах и рассуждениях, которые вы обычно проводили при решении уравнений, часто не обращая внимания на их смысл.
Мы начнем повторение с понятия «выражение».
Выражение
Выражение — это числа и буквы, соединенные знаками разнообразных операций.
В начальной школе вы познакомились с простейшими арифметическими операциями — сложением, вычитанием, умножением, делением — и с их помощью составляли выражения такого, например, типа:
Появление новых операций — возведение в степень, логарифмирование, вычисление синуса, тангенса и т. д. — расширило возможности в составлении выражений. Теперь можно составить более сложные выражения, например такие:
Числа и буквы, входящие в состав выражения, имеют разный смысл. Число, как бы оно ни было записано, например 0,5; 0,4999… или как-то иначе, всегда конкретно, постоянно Буква же обозначает переменную, меняющуюся величину, которая может принимать разнообразные значения. Мы будем подставлять в выражения вместо букв только числа. При подстановке в выражение вместо букв каких-то чисел мы будем получать так называемые числовые выражения. Так, числовое выражение
получено из выражения
подстановкой в него значений х = 3, у = 5.
Подставляя в выражение определенные значения букв, мы можем получить числовые выражения, не имеющие смысла. Бессмысленные числовые выражения получаются прежде всего тогда, когда это выражение содержит невыполнимые операции над числами, например деление на нуль, логарифмирование отрицательного числа, арксинус числа, большего единицы, тангенс числа и т. п. Другой причиной, приводящей к не имеющим смысла числовым выражениям, является подстановка вместо букв чисел, не входящих в область допустимых значений этих букв. Например, если в выражении для производительности труда участвует буква а, обозначающая число землекопов в бригаде, то, подставляя значение
(«два землекопа и две трети»), мы получим бессмысленное числовое выражение, хотя все операции над входящими в выражение числами формально осуществимы.
Областью допустимых значений (ОДЗ) выражения обычно называют множество всех значений букв, при подстановке которых выражение имеет смысл, т. е. превращается в осмысленное числовое выражение.
Заметим, что если выражение содержит одну букву, то его ОДЗ — это числовое множество, т. е. какое-то подмножество точек числовой прямой. Если же букв, например, две, то ОДЗ выражения — это множество пар чисел и его можно изобразить в виде области, расположенной на координатной плоскости.
Возьмем какое-либо осмысленное числовое выражение и проделаем все указанные в выражении операции над входящими в него числами. Получим одно число — значение числового выражения. Возьмем буквенное выражение и подставим в него вместо букв числа из ОДЗ (т. е. такие числа, чтобы выражение превратилось в осмысленное числовое выражение). Вычислим значение получившегося числового выражения. Это число называют значением выражения при выбранных значениях букв. Возможность однозначно вычислить значение выражения при любых допустимых значениях входящих в него букв позволяет определить функцию. Вот почему говорят, что выражение можно рассматривать как способ вычисления значений некоторой функции. Поэтому понятие выражения и понятие функции близки между собой.
Два выражения считаются тождественно равными, если равны их числовые значения при любых допустимых значениях букв, входящих в это выражение. Тождество — это два тождественно равных выражения, соединенные знаком равенства.
Примеры тождеств.
Во всех приведенных тождествах ОДЗ выражений, стоящих слева и справа, совпадают. Часто используют тождества, соединяющие выражения, имеющие разные ОДЗ. В этом случае имеется в виду, что тождество выполняется на общей части ОДЗ выражений, стоящих справа и слева. Поэтому без дополнительных оговорок считаются тождествами следующие равенства выражений:
Иногда искусственно (какими-либо дополнительными условиями) уменьшается ОДЗ выражений, составляющих некоторое равенство. Тогда можно говорить о тождестве, выполняющемся на некотором множестве. Так, если [х] обозначает целую часть числа х, то равенство является тождеством на множестве целых чисел (но, разумеется, не является тождеством в обычном смысле слова). Приведем более содержательные примеры.
Тождественное преобразование выражения — это переход от одного выражения к тождественно равному выражению.
Самые «безобидные» тождественные преобразования — например, приведение подобных членов, сокращение дробей, использование свойств степени и т. п.— могут привести к выражению, у которого ОДЗ больше или меньше, чем у исходного выражения. Это может оказаться существенным при решении уравнений, поэтому информацию об изменении ОДЗ при тождественных преобразованиях полезно хранить в памяти (собственной-, машинной или просто в тетради).
Уравнение
Возьмем два числовых выражения и поставим между ними знак равенства. Мы получим числовое равенство. Оно будет верным или неверным в зависимости от того, равны или не равны значения взятых числовых выражений. Классическими примерами являются равенства 2 ⋅ 2 = 4 и «2 ⋅ 2 = 5».
Отметим еще раз, что, когда мы говорим «равенство двух числовых выражений», мы вовсе не утверждаем, что эти два выражения действительно равны. Соединить два числовых выражения A и В знаком « = » и говорить о получившемся равенстве А =В можно независимо от того, верно или неверно сформулированное нами утверждение А = В.
Возьмем два буквенных выражения и соединим их знаком равенства. Получим уравнение. Таким образом, уравнение в первом приближении можно понимать как равенство двух буквенных выражений.
Равенство числовых выражений иногда называют «безусловным» равенством, т. е. равенством или безусловно верным, или безусловно неверным. Уравнение с этой точки зрения можно считать «условным равенством» — при одних условиях ( т. е. при одних значениях букв) оно может оказаться верным, при других — неверным. Тождество — это равенство, верное при всех допустимых значениях букв. Его тоже можно считать частным случаем уравнения.
Уравнение — это не просто формальное равенство двух выражений. Главное в понятии уравнения — это постановка вопроса о его решении. Можно сказать, что уравнение — это равенство двух выражений вместе с призывом найти его решения. Опишем более точно, что же значит решить уравнение.
Буквы, входящие в состав уравнения (т. е. в состав выражений, образующих уравнение), называются неизвестными. Если такая буква одна, то говорят, что мы имеем дело с уравнением с одним неизвестным. Аналогично можно говорить об уравнении с двумя, тремя и любым другим числом неизвестных.
Рассмотрим уравнение с одним неизвестным. Значение неизвестного, при подстановке которого уравнение превращается в верное числовое равенство, называется корнем уравнения.
Решить уравнение с одним неизвестным — значит найти все его корни.
Возьмем уравнение с числом неизвестных, большим чем одно. Например, рассмотрим уравнение с двумя неизвестными. Чтобы получить из него числовое равенство, надо каждому неизвестному придать определенное числовое значение, т. е. взять пару чисел. Решить уравнение с двумя неизвестными — значит найти все пары чисел, удовлетворяющих этому уравнению, т. е. такие, при подстановке которых уравнение превращается в верное числовое равенство. Одну такую пару тоже можно было бы назвать корнем уравнения, но обычно так не говорят, а вводят понятие «решение уравнения».
Винер Норберт
(1894—1964) — американский математик, создатель кибернетики как «науки об управлении и связи в живом организме и машине». Работы Винера являются основополагающими для применения вычислительных машин в различных сферах человеческой деятельности. Норберту Винеру принадлежит высказывание: «Вычислительная машина ценна ровно настолько, насколько ценен использующий ее человек».
Решение уравнения с двумя неизвестными — это пара чисел, удовлетворяющих этому уравнению.
Разумеется, и в случае уравнения с одним неизвестным можно вместо слов «корень уравнения» говорить «решение уравнения». Путаница может возникнуть из-за разного употребления слова «решение». Можно сказать о решении уравнения как его корне. При таком употреблении этого слова имеют смысл такие фразы, как «уравнение имеет одно решение», «уравнение имеет три решения», «уравнение не имеет решений». В речи часто используют словосочетание «решение уравнения» как процесс нахождения его корней (решений). Можно сказать так: «Уравнение имеет сложное решение», «Я не смог найти путь решения этого уравнения». В процессе решения уравнения может обнаружиться, что оно совсем не имеет корней (решений). В этом случае мы скажем, что мы уравнение решили: доказали, что у него решений нет.
Что означает найти корни уравнения? В школьной практике при решении уравнений принято записывать ответ как результат знакомых операций над числами, например:
В то же время при решении прикладных задач бывает необходимо представить ответ в десятичной записи с определенным числом знаков после запятой. Такой ответ можно получить, используя калькулятор или другое вычислительное устройство.
Мы условились понимать под уравнением равенство, составленное из двух выражений. Мы уже говорили о том, что выражение можно рассматривать как способ задания некоторой функции. Поэтому уравнение можно понимать как равенство, соединяющее две функции. Пусть даны две функции от переменной х, например y = f(x) и y = g{x). Составим уравнение f{x) = g(х). Оно получено приравниванием выражений f (х) и g (х). Пусть D1 =D (f) и D2 = D (g) — области определений функций f и g. Тогда D1 и D2 можно понимать как области допустимых значений выражений f (х) и g (х). Общая часть областей D1 и D2, т. е. множество , является ОДЗ уравнения f(x) = g(x).
Полезно вспомнить, что подставлять в уравнение можно любое значение х. При каком-то значении х может получиться бессмысленное числовое выражение, а при х из ОДЗ получится осмысленное числовое равенство. Если при этом оно окажется еще и верным, то взятое число х является корнем уравнения.
Вернемся к вопросу о решении уравнения. Начнем с уравнения с одним неизвестным х. В какой форме рекомендуется записывать его ответ?
Уравнение может иметь один корень, например x=5. Тогда ответ проще всего записать именно в этой форме: х=5.
Уравнение может иметь несколько (конечное число) корней. Ответ удобно записать в виде перечисления всех корней, давая каждому значению х свой номер. Например, х1 = — 1, x2 = 0, xз=1. Полезно корни располагать в порядке возрастания.
Уравнение может вовсе не иметь корней. В таком случае нагляднее всего это и указать в ответе словами: корней нет.
Тригонометрические уравнения (и вообще уравнения с периодическими функциями) часто имеют бесконечно много корней, которые можно записать в виде одной или нескольких последовательностей. Скажем, возможна такая запись ответа:
Встречаются уравнения, решения которых заполняют один или несколько промежутков, которые и указываются в ответе, например: 0 ≤ x ≤ 1 или х —- любое число.
Все корни (решения) уравнения образуют множество корней. Слово «множество» не означает, что корней очень много («великое множество»). Если множество корней обозначить одной буквой, скажем X, то ответ может быть записан иначе. Примеры записи ответов с употреблением теоретико-множественных обозначений: Х={5}; Х = {1; 0; 1}; Х= ∅ (пустое множество, т. е. корней нет; не надо путать знак пустого множества с обозначением нуля);
Множество решений уравнения с двумя неизвестными состоит из пар значений этих неизвестных. Важно помнить, что одна пара, скажем х=1, у = 5,— это одно решение (а не два).
Равносильность
Если идет дождь, то мы открываем зонт. Можно сказать, что открывание зонта является следствием того, что идет дождь. Если число делится на 6, то оно четно. Так же как и в первом случае, можно сказать, что четность числа является следствием его делимости на 6.
Пусть даны два уравнения Лий. Если каждый корень уравнения А является корнем уравнения В, то говорят, что уравнение В является следствием уравнения А, и записывают так: А ⇒ В (читается: «Из А следует В», или «В является следствием A», или «Если А, то В»),
На языке теории множеств можно сказать короче: уравнение В является следствием уравнения А, если множество корней уравнения А содержится в множестве корней уравнения В, т. е. если XA ⊂ ХВ, где ХА и Хв — упомянутые множества корней.
Переходя от одного уравнения к его следствию, мы не потеряем корней исходного уравнения, но возможно приобретем лишние. Основой получения разнообразных следствий является следующее простое соображение. Пусть а = b — числовое равенство, a f — функция, определенная в точках а и b. Тогда равенство f(a) = f(b) является следствием равенства а = b, т. е. если равенство а — b верно, то верно и равенство f(a) = f(b) (если оно имеет смысл).
Возьмем теперь уравнение, полученное приравниванием двух выражений. Если функция f определена при всех значениях этих выражений, то, вычислив значения функции f от обеих частей уравнения, получим новое уравнение, являющееся следствием исходного. Это правило особенно удобно, если функция f определена при любых числовых значениях переменных.
Приведем примеры. Возьмем уравнение
Следующие уравнения являются его следствиями (рядом записана применяемая функция, а буквой z обозначен ее аргумент):
Все функции f определены при любом z, поэтому получение указанных следствий было формальной операцией.
В случаях 5—8 функции уже определены не при всех х. Однако во всех случаях новые уравнения являются следствиями исходного. Этот вывод уже не является формальным. Примеры 5—7 разберите самостоятельно. Пример 8 является существенно более трудным и требует дополнительных сведений о корнях исходного уравнения (докажите, что все его корни лежат на отрезке [0; 1]).
Два уравнения называются равносильными, если каждое из них является следствием другого, т. е. если каждый корень одного из них является корнем другого. Пусть уравнение А имеет множество корней ХА, а уравнение В — множество Хв. Равносильность уравнений А и В обозначается так: А ⇔ В. По определению равносильность означает выполнение двух условий: А ⇒ В (уравнение В является следствием уравнения А) и В ⇒ А (наоборот, уравнение А является следствием уравнения В). На языке теории множеств равносильность означает равенство ХА = ХВ.
Итак, у равносильных уравнений корни одни и те же. Поэтому основным способом решения уравнения является следующий: с помощью перехода от одного уравнения к равносильному стараются прийти к уравнению, решения которого находятся легко.
Основной способ получения следствия нам известен — вычисление значений какой-либо функции от обеих частей уравнения.
Чтобы этот переход сохранял равносильность, надо, чтобы возможен был обратный переход. Это всегда выполняется, если новое уравнение получено с помощью функции, имеющей обратную. На этом соображении основаны теоремы о равносильности, позволяющие утверждать равносильность пар уравнений, получающихся друг из друга с помощью взаимно обратных функций. Сформулируем несколько таких теорем.
Запишем уравнение в символической форме:
□ = Δ,
где □ и Δ —два выражения, составляющие уравнение.
Теоремы помещены в левой колонке таблицы. В правой колонке указаны взаимно обратные функции, с помощью которых эти теоремы доказываются.
Во всех этих случаях не было трудностей с областями определения применяемых функций. Использование таких распространенных операций, как возведение в квадрат, умножение и деление на некоторую функцию, нахождение обратной величины и т. д., в общем виде не гарантирует равносильности. Например, возводя в квадрат обе части уравнения, мы получаем следствие:
Вообще говоря, обратный переход неверен. Однако если из последующего решения уравнения □2= Δ2 мы узнаем, что для его корней выражения □ и Δ имеют одинаковый знак, то можно будет поставить стрелку в обратном направлении и найти корни исходного уравнения:
□2 = Δ2 ⇒ □ = Δ, если □ и Δ одного знака.
Остановимся подробнее на некоторых полезных преобразованиях уравнений.
1) Тождественное преобразование одной из частей уравнения и перенос членов из одной части уравнения в другую с противоположным знаком приводят к равносильному уравнению, если при этом не происходит изменения ОДЗ. Например, уравнение
равносильно уравнению
x2 — Зх + 2 = 0.
В то же время уравнения
не являются равносильными (корни первого: х1 = — 8, x2 = 4; корень второго: x = 4), так как логарифмирование произведения уменьшило ОДЗ.
2) Переход к совокупности уравнений. Рассмотрим задачу, в которой требуется решить несколько уравнений, а затем объединить их корни. Можно сказать, что идет речь о решении совокупности уравнений. Обычно совокупность обозначается с помощью прямой скобки.
Пусть ОДЗ выражений □ и ∆ совпадают. Тогда уравнение □ • ∆ = 0 равносильно совокупности
Оговорка про совпадение ОДЗ не случайна. Так, уравнение cos x • tg x = 0 не равносильно совокупности
3) Переход к системе уравнений. Рассмотрим задачу, в которой надо решить несколько уравнений и взять их общие корни (или иначе найти числа, удовлетворяющие каждому из уравнений системы). В систему можно объединять не только уравнения, но и различные условия, ограничения, неравенства. Например, решить систему
означает, что надо решить первое уравнение и взять только те его корни, для которых выполняется неравенство х+1;>0.
Использование переходов от уравнения к совокупностям и системам позволяет разнообразить схемы равносильных переходов. Покажем некоторые из них:
Различные переходы от уравнения к совокупностям и системам изображены на схеме XV.
Неравенство
Почти все, что было выше сказано об уравнении, можно дословно перенести и на неравенство. Прежде всего отметим, что знаков неравенства четыре: > (больше), < (меньше), ≥ (больше или равно), ≤ (меньше или равно). Мы будем говорить о каком-либо одном из них.
Числовое неравенство получается соединением двух числовых выражений знаком неравенства. Аналогично равенствам числовые неравенства могут быть верными или неверными. В приведенных ниже примерах все неравенства с нечетными номерами являются верными, а с четными — неверными:
Приведем основные правила преобразования неравенств, используя знак следствия ⇒ и равносильности ⇔.
Основой техники преобразования неравенств является следующее общее соображение: пусть функция f монотонна на промежутке, содержащем числа а и b. Тогда а<b ⇒ f {a)<f (b), строго возрастает; а<b ⇒ f {a)>f (b) если f строго убывает.
Указанные выше свойства 3—6 получаются применением этого правила к функциям y = cz и .
Аналогично для функций y = z2 и у = 2z можно записать:
Неравенство с одним неизвестным получается, когда соединяют знаком неравенства два выражения, содержащие одну букву, или, что близко по смыслу, две функции от одной и той же переменной. Аналогично можно рассматривать неравенства с двумя и более неизвестными.
Ограничимся неравенствами с одним неизвестным. Область допустимых значений (ОДЗ) неравенства—это множество значений неизвестного, при подстановке которых получается осмысленное числовое неравенство. Решение неравенства — это такое значение неизвестного, при подстановке которого получается верное числовое неравенство. Решить неравенство — это значит найти, описать множество его решений. Два неравенства называются равносильными, если множества их решений совпадают. Одно неравенство является следствием другого, если множество его решений содержит в себе множество решений второго. Ясно, что каждое из равносильных неравенств является следствием другого. Технику решения неравенств с помощью переходов, сохраняющих равносильность.
Параметр
Посмотрим на знакомое уравнение аx2 + bх+с = 0. Выражение, стоящее в его левой части, содержит четыре буквы — х, а, b, с. Хотя все эти четыре буквы равноправны, мы смотрим на это уравнение как на квадратное уравнение относительно неизвестного х, считая а, b, с буквенными коэффициентами, параметрами. Необходимость рассматривать уравнения с буквенными коэффициентами возникает часто. Прежде всего это полезно тогда, когда формулируются некоторые общие свойства, присущие не одному конкретному уравнению, а целому классу уравнений. Так, мы можем сформулировать свойства корней квадратного уравнения, показательного уравнения ах = b, тригонометрического уравнения sin ωх=а в зависимости от параметров a, b, ω.
Разумеется, то, что в уравнении одни буквы мы считаем неизвестными, а другие — параметрами, в значительной степени условно. В реальной практике из одного и того же соотношения между переменными приходится выражать одни переменные через другие, т. е. решать уравнение относительно одной буквы, считая ее обозначением неизвестного, а другие буквы параметрами.
По традиции неизвестные обозначаются последними буквами латинского алфавита — х, у, z, а параметры — первыми — а, b, с или вообще буквами другого алфавита (например, греческими).
При решении уравнений и неравенств с параметрами чаще всего встречаются две задачи:
- Найти формулы для решений уравнения (неравенства), выражающие эти решения как функции от параметров. Типичный пример — формула корней квадратного уравнения.
- Исследовать решения уравнения (неравенства) в зависимости от изменения значений параметров. Скажем, встречается такая задача: найти число корней уравнения в зависимости от параметра или определить, при каких значениях параметра уравнение не имеет корней. Очень часто исследование корней в зависимости от параметра можно провести, не вычисляя самих корней.
Пример:
Дано уравнение x2+ 2x + а = 0 относительно неизвестного х с параметром а.
- 1) При каких значениях а уравнение имеет два корня?
- 2) При каких значениях а уравнение имеет два корня, причем один из них больше единицы, а другой меньше?
- 3) При каких значениях а сумма квадратов корней меньше шести?
Решите этот пример самостоятельно.
Укажем ответы: 1) а<1; 2) а< — 3; 3) — 1<а<1.
Уравнения с одним неизвестным
В простейших случаях решение уравнения с одним неизвестным распадается на два шага — преобразование уравнения к стандартному и решение стандартного уравнения. Второй шаг осуществляется по известным формулам, которые всегда можно восстановить в памяти с помощью справочников. Есть они и в справочных материалах в нашем учебнике.
Перечислим стандартные уравнения, которые были нами изучены.
- Линейное уравнение ах+b = 0.
- Квадратное уравнение а x2 + bх + с=0.
- Простейшее степенное уравнение хп = а.
- Показательное уравнение а’ = b.
- Логарифмическое уравнение logax = b.
- Простейшие тригонометрические уравнения sin x = a, cos x=a, tg х=а, ctg x — a.
Преобразование уравнения к одному из стандартных является основным шагом в решении уравнения. Полностью алгоритмизировать процесс преобразования нельзя, однако полезно запомнить некоторые наиболее употребительные приемы, общие для всех типов уравнений.
1) Разложение на множители. Если уравнение равносильными преобразованиями удается привести к виду □ • ∆ =0, то, как мы уже отмечали, исходное уравнение равносильно совокупности двух более простых уравнений , при условии сохранения ОДЗ.
Этот прием часто применяется при решении алгебраических уравнений степени выше второй, при решении тригонометрических уравнений. Соответствующие примеры будут приведены ниже.
2) Введение нового неизвестного. Посмотрите, не решая, на следующий набор уравнений:
В каждом из этих уравнений отметим присутствие выражения x2+Зх. Если заменить его буквой у, т. е. положить у = x2 +3x то получим более простые уравнения относительно у:
Найдя из этих уравнений значения у, подставим их в соотношение у = x2 + 3х и вычислим корн и исходного уравнения.
3) Графический метод. Рассмотрим уравнение с одним неизвестным f(x) = g(x).
Изобразим на одном рисунке графики функций y = f(x) и y = g(х) (рис. 139). Точкам пересечения графиков этих функций соответствуют те значения аргумента х, при которых совпадают значения функций, т. е. корни данного уравнения.
Итак, абсциссы точек пересечения графиков функций y = f(x) и y = g(x) являются корнями уравнения f(x) = g(x).
Например, для уравнения x2 = х+2 такими точками будут Р1 (—1; 1) и Р2 (2; 4), т. е. x1 = -1, x2 = 2.
Если уравнение имеет вид f (х) = 0, то в качестве функции, стоящей в правой части, выступает функция у = 0. Графиком ее будет ось х, поэтому корнями уравнения f(x) = 0 будут абсциссы точек пересечения графика функции y=f(x) с осью х.
Графическая иллюстрация решения уравнения указывает на первый взгляд и способ решения уравнения: строят в системе координат две кривые и находят их точки пересечения. Действительно, если выбрать масштаб и построить графики достаточно аккуратно, то можно приближенно найти точки пересечения и их абсциссы — корни уравнения. Но для того чтобы найти координаты точек пересечения точно, как раз и нужно решить соответствующее уравнение! В то же время графическая иллюстрация часто дает некоторые качественные ответы, число корней, а также грубо указывает отрезки на числовой оси, где эти корни могут находиться. Рассмотрим в качестве примера уравнение
Построим графики функций, стоящих в левой и правой частях.
Из рисунка 140 можно заключить, что уравнение имеет два корня, один из которых находится в интервале (0; 1), а другой — в интервале (2; 3). Можно указывать эти интервалы и более точно: (0; 0,5) и (2; 2,5), еще более точно: (0,2; 0,3) и (2,2; 2,3). (Действительно, нетрудно проверить, что при х = 0,2 имеем , а при х = 0,3 уже
; точно так же при x = 2,2 левая часть уравнения больше правой, а при х = 2,3 меньше.)
Вообще, вычисляя и сравнивая значения левой и правой частей уравнения, можно найти корни с любой степенью точности.
Корни уравнения пятой степени х5—Зх + 1= 0 вообще нельзя записать с помощью радикалов, но, построив достаточно точный график функции у = х5-Зх+1 (рис. 141), можно определить, что уравнение имеет три корня в интервалах (—1,5; —1,3), (0; 0,5) и (1; 1,3).
Примеры решения уравнений
1) Алгебраическое уравнение x (x+ 1) (x + 2) (x + 3)= 120.
Если раскрыть скобки и привести подобные члены, то получится уравнение четвертой степени. Общий прием решения уравнения четвертой степени нам неизвестен, поэтому не будем торопиться раскрывать скобки.
Первый способ. Воспользуемся симметрией левой части. Перемножим первый и четвертый множители, а также второй и третий. Получим ( x2 + Зх) ( x2 + Зх + 2) = 120. Теперь видно, что после замены x2 + 3х = у уравнение сводится к квадратному y (y+ 2)= 120.
Второй способ. Симметрией можно воспользоваться иначе. Заметим, что числа х, х+l. х+2, х + З расположены на числовой оси симметрично относительно числа . Сделаем замену
=у. Тогда x = y —
, х+ 1 =у-
, х + 2 = у +
,
,x + 3 = у +. Уравнение превращается в такое:
Теперь преобразования более очевидны:
Это так называемое биквадратное уравнение, приводящееся к
квадратному заменой y2 = z
Третий способ. Перемножив все скобки, получим уравнение
Попробуем подобрать корень.
Легко догадаться, что 2 • 3 • 4 • 5= 120, поэтому х=2 является корнем. Разделим левую часть уравнения на х — 2:
Теперь подбираем корень уравнения x3 + 8x2 + 27x + 60 = 0. Можно угадать х= — 5 (так как ( — 5) • ( — 4) • ( — 3) • ( — 2)= 120). Выделим множитель x+ 5:
У оставшегося квадратного трехчлена x2 + Зx+12 вещественных корней нет.
Четвертый способ. Он основан на тождестве х(х+ 1)(х + 2)(х + 3)+1 =( x2 + 3x+1)2 (см. задачу 3 в конце главы). Получаем:
Ответ: x1 = — 5, x2 = 2.
2) Уравнение с модулем | x2 + 2x|+ x2 + x = 5.
Уравнение равносильно совокупности двух систем:
Рекомендуем сначала решить квадратное неравенство
Ответ:
3) Иррациональное уравнение
Уравнение равносильно системе Заметим, что указывать ОДЗ (х + 2 ≥ 0) нет надобности, так как всякое решение уравнения, полученного после возведения в квадрат, автоматически попадет в ОДЗ: ведь если верно, что x + 2 = x2, то x + 2>0, так как x2 ≥ 0. Наоборот, пропуск условия х ≥ 0 нарушает равносильность.
Ответ: x = 2.
4) Показательное уравнение
Замена = у немедленно приводит его к алгебраическому
Ответ: x1 = — 1, x2 = 2.
5) Логарифмическое уравнение log2 (Зх — x2) = 1 — log2 (х— 1).
При потенцировании теряется информация об ОДЗ. Поэтому выпишем ОДЗ в явном виде:
Решением этой системы неравенств будет интервал (1; 3). Теперь потенцируем, перенося логарифм в левую часть:
Подобрав один корень х = 2, выделяем множитель (x— 2):
Корни квадратного множителя: х=1±. Сопоставляя с ОДЗ, получаем ответ: x1 =2, x2 =1+
6) Тригонометрическое уравнение
Делаем замену
и получаем уравнение
откуда
т. е. π n
Так как уравнение несовместно с условием cos х= — 1, то при переходе к тангенсу половинного угла потери корней не произошло.
Приближенные методы вычисления корней
Во многих случаях при решении уравнений их корни находят приближенно. Для этого в математике накоплены различные методы приближенных вычислений. Обычно они дают последовательность приближений к искомому числу. Примером может служить способ извлечения квадратного корня, знакомый из курса алгебры.
Простейшим методом приближенного вычисления корней является метод половинного деления. Допустим, что известен промежуток [а; b], на котором лежит искомый корень. Приближенно строится график функции f на этом промежутке (например, так, как это изображено на рисунке 142).
Вычисляя f (а) и f (b), видим, что эти числа разных знаков: f (а) < 0, f (b)> 0. Вычисляем далее значение функции f в середине отрезка [а; b). Из двух половин отрезка [a; b] берем ту, на концах которой знаки функции различны. Очевидно, корень х лежит внутри нового отрезка. Совершаем с ним ту же процедуру: делим его пополам, вычисляем значение функции f в точке деления и берем ту половину отрезка, на концах которой знаки функции f различны. Так мы получим последовательность отрезков, длина которых убывает и внутри которых лежит искомый корень. Это и означает, что получена последовательность приближенных значений искомого корня.
И. Ньютону принадлежит так называемый метод касательных. Об этом способе приближенного вычисления корней можно получить представление, рассматривая рисунок 143. Приближенные значения корня получаются построением касательных к графику функции. Уравнение касательной написать нетрудно, а затем нужно найти точку ее пересечения с осью х, что и дает приближенное значение корня функции.
Вместо касательных можно проводить хорды (рис. 144) и поступать аналогично (метод хорд).
Неравенства с одним неизвестным
Решение неравенств (так же как и решение уравнений) обычно распадается на два шага — преобразование неравенства к одному из стандартных и решение стандартного неравенства. К стандартным неравенствам мы отнесем следующие типы неравенств, изученные нами ранее (из возможных четырех знаков неравенства мы выбираем один):
- Линейное неравенство ах + b> 0.
- Квадратное неравенство а x2 + bх + с>0.
- Степенное неравенство
>а.
- Показательное неравенство
>Ь.
- Логарифмическое неравенство logах>Ь.
Решение стандартных неравенств было рассмотрено нами в предыдущих главах.
Общие приемы решения уравнений и неравенств аналогичны. Так же как и для уравнений, при решении неравенств помогает разложение на множители. Как уже отмечалось, решение неравенства вида можно заменить решением двух систем
неравенств:
В то же время если множители □ или ∆ являются линейными или произведениями линейных, то не стоит сводить решение неравенства к системе: проще применить метод интервалов, который сильно сокращает количество вычислений.
Важнейшим методом решения неравенств является метод замены неизвестного. Мы проиллюстрируем его примером решения неравенства
Прежде всего сделаем замену, тогда
и неравенство примет вид
Изобразим график квадратного трехчлена y = 2z2 — 16z (рис. 145). Решением неравенства |у + 19| ≤ 5, как видно из графика, является объединение двух отрезков [z1, z2] и [z3, z4], где z1, z4 — решения уравнения у= = — 14, a z2 , z3 — решения уравнения y = —24. Решая эти уравнения, находим z1 = 1, z2 =2, z3 = 6, z4 = 7. Учитывая, что функция z является возрастающей, решаем стандартные неравенства и записываем ответ: [—1; 0]U[log2 6 —1; log2 7—1].
Примеры решения неравенств
1) Алгебраическое неравенство
Перенесем правую часть влево, приведем к общему знаменателю и разложим на множители числитель дроби:
Применяя метод интервалов, с помощью числовой оси (рис. 146) решаем неравенство и получаем ответ: х<-3, — 2 < x < — 1, x >1.
2) Иррациональное неравенство
ОДЗ: х + 2 ≥ 0 ⇔ х ≥ — 2.
Если иррациональное уравнение мы смело возводили в квадрат, так как всегда можно было проверить нарушение равносильности, подставляя корни полученного уравнения, то при решении неравенства нужно поступать аккуратнее.
Заметим, что неравенство а>b, где а ≥ 0, b<.0, является всегда верным, какие бы значения указанных знаков ни подставляли вместо а и b. Поэтому если х<0, то неравенство будет верным. Итак, все отрицательные числа, входящие в ОДЗ, будут решениями неравенства. Нанесем их на числовую ось. Пусть х ≥ 0. Возведение в квадрат теперь не нарушает равносильности:
Корни квадратного трехчлена x1 = — 1, x2 = 2 наносим на числовую ось; решением неравенства будут числа 0 ≤ х<2.
Ответ: — 2 ≤ x < 2.
3) Логарифмическое неравенство
Сначала преобразуем правую часть:
Стандартное логарифмическое неравенство равносильно системе
Решаем каждое неравенство системы методом интервалов, предварительно сделав преобразования:
Корни числителя: x1 = , x2 = 4. Решение системы неравенств изображено на рисунке 147. Ответ: —
≤ х<0, x ≥ 4.
Системы уравнений
Системы уравнений появляются при решении задач, в которых неизвестной является не одна величина, а несколько. Эти величины связаны определенными зависимостями, которые записываются в виде уравнений.
Способ подстановки
Если система имеет хотя бы одно решение, она называется совместной. Если решений у системы нет, она называется несовместной. Слово «несовместность» наглядно показывает, что уравнения системы накладывают несовместимые друг с другом условия, которым должны удовлетворять неизвестные. Например, система несовместна, потому что сумма чисел х и у не может одновременно равняться единице и двум.
Одним из основных способов решения систем является способ подстановки. Рассмотрим, например, систему двух уравнений с двумя неизвестными хну. Часто удается одно уравнение преобразовать так, чтобы одно неизвестное явно выражалось как функция другого. Тогда, подставляя его во второе уравнение, мы получим уравнение с одним неизвестным. Приведем примеры.
В каждой из четырех систем второе уравнение системы можно решить относительно у, т. е. преобразовать к виду y = f(x):
Подставляя y = f(x) в первое уравнение системы, получим уравнение с одним неизвестным:
Решая уравнение, находим его корни — значения неизвестного х, а затем для каждого из них находим соответствующее значение у по формуле y = f(x):
Уравнение имеет четыре корня, а система — четыре решения:
Способ подстановки возможен не всегда, а кроме того, не всегда выгоден и тогда, когда возможен. Часто из уравнений системы удается получить новое уравнение — их следствие — более простого вида. Так, в четвертом из рассматривавшихся выше примеров можно, исключив произведение ху, стоящее справа, получить:
Последнее соотношение является линейным, и из него соотношение между х и у легче находится так: у = 2х.
Важным приемом, часто позволяющим упростить систему, является замена неизвестных. Так, во втором примере полезно заменить x2 на z и получить более простую систему:
Системы двух уравнений с двумя неизвестными и их решения можно изобразить графически на координатной плоскости. На рисунке 148 изображены кривые уравнений написанных выше систем. Точки пересечения кривых (а точнее, их координаты) — решения систем.
Есть некоторые типы систем, для которых известны стандартные методы решения. Рассмотрим два из них: симметричные системы и линейные системы.
Симметричные системы
Симметричными называются системы, составленные из выражений, являющихся симметричными относительно всех неизвестных. Приведем примеры различных симметричных выражений для двух неизвестных: х и у.
Решение простейшей симметричной системы основано на теореме, обратной теореме Виета: хну, удовлетворяющие указанной системе, являются корнями квадратного уравнения t2 — аt + β =0. Этот вывод можно получить, подставив из первого уравнения во второе у = а — х.
Итак, для решения простейшей симметричной системы надо составить квадратное уравнение с заданными суммой и произведением корней и решить его. Найденные корни будут значениями х и у.
Составляем квадратное уравнение t2 —3t —4 = 0, откуда t1 = 4, t2 = — 1.
Решение других симметричных систем основано на том, что всякое симметричное относительно х и у выражение можно выразить через u= х+у и v=xy.
Приведем примеры таких выражений:
Делая в симметричной системе замену х+у=u, xy = v, получаем более простую систему относительно и и и, а затем, найдя численные значения и и у, приходим к решению простейших симметричных систем:
Воспользуемся найденным выше выражением х 3 + у 3 через и и у:
Из второго уравнения v= — 1— u2 подставляем в первое:
Далее решаем систему
Линейные системы
С системами линейных уравнений мы встречались ранее. В основном рассматривались системы двух линейных уравнений с двумя неизвестными вида
Исследование этой системы можно повторить по информационной схеме XVI.
В практике встречаются системы линейных уравнений с большим количеством неизвестных. Так, в задачах математической экономики можно найти системы, состоящие из нескольких сотен уравнений с таким же примерно числом неизвестных. Для их решения разработаны мощные машинные методы. Эти методы в основном имитируют знакомый вам метод подстановки, которым в принципе можно решить любую такую систему. Основную роль при этом играют компактные способы записи систем и их преобразований. Представьте только себе: система из тысячи уравнений с тысячью неизвестными содержит миллион коэффициентов.
Рассмотрим более скромный пример — систему трех линейных уравнений с тремя неизвестными:
Будем решать систему методом исключения неизвестных. Чтобы исключить х из второго и третьего уравнений, надо вычесть из них первое, умноженное соответственно на 2 и на 3.
Получим систему
Удобно умножить второе и третье уравнения на (—1), а затем из третьего уравнения вычесть второе, умноженное на 5. Получим «треугольную» систему
Из последнего уравнения находим z=1. Подставляя в предыдущее уравнение, находим у=9— 10= — 1.
Подставляя 2=1, у= — 1 в первое уравнение, получим х + 2( — 1) + 3 •1=2, откуда х=1.
Ответ: х— 1, у= — 1, 2=1.
Показанный на этом примере способ решения линейной системы называется методом Гаусса по имени великого немецкого математика, жившего в первой половине XIX в. Метод Гаусса с различными модификациями используется при решении линейных систем с помощью вычислительных машин.
Тождества
Мы определили тождество как равенство двух выражений, справедливое при всех допустимых значениях букв, входящих в эти выражения. Такая точка зрения свойственна теории функций — мы рассматриваем две части равенства как функции и называем эти части тождественно равными, если они совпадают как функции, т. е. если они при одних и тех же значениях аргумента принимают равные значения. Возможна другая точка зрения на тождества, которая более тесно связана с алгеброй.
Колмогоров Андрей Николаевич
(1903—1987) — советский математик, один из создателей и автор общепринятой системы аксиом современной теории вероятностей. Автор глубоких идей и результатов в топологии, математической логике, гидродинамике и небесной механике.
«Обобщение понятия часто бывает полезно для постижения его сущности».
А. Н. Колмогоров
В алгебре многочлен рассматривается не как функция, а как некоторое формальное выражение, составленное из одночленов. Мы умеем совершать различные операции над многочленами, не задумываясь при этом над тем, какие значения можно подставлять в многочлен вместо букв. В алгебре два многочлена равны, если после приведения подобных членов окажется, что они составлены из одинаковых одночленов, т. е. если выполняется формальное, почленное равенство. Так, проверяя тождество а3 — b3 =(a-b)(a2 + ab+b2), мы совсем не занимаемся подстановкой в обе части значений а и b (тем более что неясно, сколько их надо подставлять), а преобразуем правую часть и убеждаемся, что она формально совпадает с левой.
Проверке формального совпадения многочленов может помочь их запись, принятая в качестве стандартной. Например, если многочлены от одной буквы х записывать по убывающим степеням (как мы привыкли), то тождество многочленов будет означать равенство их степеней и совпадение коэффициентов, стоящих на одинаковых местах.
Возникает естественный вопрос: как связаны между собой функциональное и алгебраическое определения тождества? Разумеется, если два многочлена равны формально, то они принимают одинаковые значения при всех значениях букв. Обратное заключение составляет содержание трудной теоремы алгебры — теоремы о тождестве. Поясним смысл этой теоремы для простейшего случая многочленов от одной буквы х.
Прежде всего заметим, что от равенства f(x)=g(x) всегда можно перейти к равенству f(x) — g (х)=0, как бы мы ни определяли понятие тождества. Это означает, что теорему о тождестве можно доказывать в таком упрощенном варианте: если многочлен F (х) при всяком значении x равен нулю, то этот многочлен нулевой, т. е. не содержит ни одного ненулевого одночлена. Если многочлен F (х) имеет степень n, то, оказывается, достаточно подставлять лишь n + 1 значение х. Иными словами, если многочлен F (х) степени n имеет n + 1 корень, то этот многочлен нулевой. В такой формулировке теорема допускает уже не очень сложное доказательство.
Итак, полезно запомнить, что ненулевой многочлен не может иметь корней больше, чем его степень. Возможна другая формулировка: если два многочлена степени n совпадают в n + 1 точке, то эти многочлены формально равны. Последняя формулировка очень полезна при доказательстве различных тождеств (см. задачи).
В применении к многочленам первой степени нам знакома геометрическая формулировка этой теоремы: через две точки проходит только одна прямая. Аналогично для совпадения двух квадратных трехчленов достаточно равенства их значений в трех точках.
Кроме равенства многочленов, можно определить равенство дробей с алгебраической точки зрения: две дроби считаются равными, если формально равны многочлены f1(x)g2 [x) и g1(x)f2 (x).
В более усложненном варианте алгебраический подход возможен и к тригонометрическим тождествам. Так, тождествам, содержащим степени sin х и cos х, можно придать условный характер: доказать тождество, используя из тригонометрии лишь соотношение sin2 x+cos2 х= 1. Такую задачу можно решить, делая лишь алгебраические преобразования и не вспоминая о том, что такое синус и косинус. Приведем пример условного тождества в алгебре:
Другие примеры условных тождеств приведены в задачах.
Доказательство неравенств
Наряду с тождествами — равенствами, выполняющимися тождественно,— существуют тождественно выполняющиеся неравенства, т. е. неравенства, верные при любых допустимых значениях входящих в них букв. Приведем простейшие примеры таких тождественно выполняющихся неравенств.
1) x 2 ≥ 0
2) а 2 + f 2 + с 2 ≥ 0, причем равенство нулю возможно лишь при а = b = с = 0;
3) х 2 + + q>0, если p 2 — 4q<0.
Задачи на доказательство неравенств (т. е. на доказательство того, что неравенство выполняется при всех допустимых значениях букв) решаются с помощью цепочки преобразований, приводящей к равносильному известному неравенству.
Пример:
Доказать неравенство , где а ≥ 0, b ≥ 0.
Делаем цепочку преобразований:
Последнее неравенство всегда верно, следовательно, всегда верно исходное.
Полученное неравенство (его называют неравенством о среднем арифметическом и среднем геометрическом двух чисел) можно применять к доказательству других неравенств. Убедитесь, например, что следующие неравенства являются следствиями доказанного:
Использование производной дает мощный способ доказательства неравенств с одной переменной. Этот способ основан на следующем соображении: если в точке Хо выполняется условие f (хо) ≥ 0 и для всех х ≥ хо выполняется условие f (х) ≥ 0, то для всех х ≥ хо верно неравенство f(x)>0 (разберитесь в справедливости сформулированного правила).
Пример (неравенство Бернулли).
Для доказательства рассмотрим функцию y = f(x), где f(x) = (1+x)k — l — kx. Имеем f(0) = 0, f'{x) = k{1+x) k-1 — k = k ((1+x) k-1 —1). Так как x ≥ 0, k ≥ 1, то (1+x) k-1 ≥ 1 и f (х) ≥ 0. Значит, при х ≥ 0 функция f возрастает и при всяком х ≥ 0 имеем f(x) ≥ f(0) = 0, что и требовалось доказать.
Алгебраические уравнения
Алгебраическое уравнение — это уравнение вида
Число n называется степенью уравнения. Уравнение первой степени (или линейное уравнение) решается с помощью арифметических операций. Формула для решения уравнения второй степени (или квадратного уравнения) известна с глубокой древности. В нее входит операция извлечения квадратного корня. Решение уравнения произвольной степени в течение многих веков считалось основной задачей алгебры.
Постановка вопроса о решении алгебраического уравнения может быть различной. Почему «не решается» данное нам уравнение? Рассмотрим возможные ответы на этот вопрос.
1) Нам «не хватает» имеющихся чисел. Уравнение х 2 + 2х + 5 = 0 не имеет вещественных корней. Можно, конечно, на этом утверждении остановиться. Однако полезно, как это было сделано еще в XVI в., ввести комплексные числа, с которыми вы немного знакомы. Комплексное число имеет вид a+bi, где а и b —’ вещественные числа, а символ i (мнимая единица) обозначает такое число, для которого i2 = — 1. Комплексные числа x1 = — 1 — 2i и x2 = — 1 + 2i являются корнями написанного выше квадратного уравнения.
Если мы разрешим числу х принимать не только вещественные, но и комплексные значения, то отпадет вопрос существования корня алгебраического уравнения. В 1831 г. Гаусс доказал замечательную теорему, которую часто называют основной теоремой алгебры: всякое алгебраическое уравнение имеет хотя бы один комплексный корень.
2) Мы не можем разложить левую часть уравнения на множители. Возьмем, например, уравнение х5 + x + 1 =0. Не сразу бросается в глаза, что левую часть можно разложить на множители:
После разложения на множители получим уравнения меньших степеней: x2 + х + 1 = 0 и x3— x2 + 1=0. Однако этот прием проходит далеко не всегда. Так, многочлен х5 — х+1 уже нельзя разложить на множители с целыми коэффициентами. Известен алгоритм, который позволяет разложить любой многочлен с целыми коэффициентами на множители с целыми коэффициентами, если это возможно. Частный случай применения этого алгоритма мы неоднократно использовали: если многочлен хn + аn-1 хn-1 + … + а0 с целыми коэффициентами имеет множитель вида х — с, где с — целое число (являющееся, конечно, корнем многочлена), то свободный член а0 делится на с. Эта теорема позволяет перебором делителей свободного члена и проверкой найти целые корни многочлена с целыми коэффициентами.
3) Мы не знаем общей формулы для корней уравнения. Простая формула корней квадратного уравнения вызывала желание математиков найти формулы корней уравнения более высокой степени. В XVI в. эта задача была решена для уравнений 3-й и 4-й степеней. Хотя эти формулы громоздки и не употребляются для реального вычисления корней, принципиальное их значение велико: они позволяют записать корни уравнений 3-й (и 4-й) степеней как некоторую функцию от коэффициентов этих уравнений. Эта функция содержит операции извлечения корней 3-й (и 4-й) степеней. Долго изучавшийся вопрос о том, существует ли формула, выражающая корни уравнения 5-й степени через его коэффициенты с помощью радикалов, получил отрицательное решение в работах Абеля (1802—1829) и Галуа (1811 —1832) в начале XIX в.
Итак, как правило, для алгебраического уравнения высокой степени мы не можем указать общей формулы его корней. Для приближенного вычисления корней используют методы анализа.
Различные приближенные методы нахождения корней уравнения часто используют следующее соображение, которое мы неоднократно отмечали раньше: если на концах промежутка функция y=f(х) принимает значения разных знаков, то внутри этого промежутка уравнение f(х) = 0 имеет корень (рис. 142). Это утверждение верно для всех непрерывных функций. С его помощью нетрудно, например, доказать, что всякий многочлен нечетной степени имеет вещественный корень. Например, кубическое уравнение х3 + ax2 +bх+с = 0 всегда имеет хотя бы одно решение, так как левая часть при больших по модулю и отрицательных х меньше нуля (слагаемое х3 «перевесит» все остальные), а при положительных больших х станет больше нуля.
Для разрывных функций сформулированное утверждение может оказаться неверным, как показывает простой пример функции не имеющей корней, но принимающей значения разных знаков.
Уравнения, тождества, неравенства: определения и классификация
Уравнением называется равенство двух математических выражений с одной или несколькими переменными. В математике рассматриваются два вида равенств — тождества и уравнения. Тождество — это равенство, которое выполняется при всех допустимых значениях входящих в него букв. Для записи тождества наряду со знаком обычного равенства «=» также используется знак тождественного равенства В отличие от тождества уравнение — это равенство, которое выполняется лишь при некоторых значениях входящих в него букв или даже не выполняется никогда. Используемые при записи уравнения буквы бывают двух видов; те буквы, значения которых требуется отыскать, называют неизвестными (например, x,y,z,…) или переменными. Другие называют коэффициентами или параметрами. В зависимости от числа неизвестных уравнение называют уравнением с одной, двумя и т.д. неизвестными. Два математических выражения, связанные одним из знаков «<» (меньше), «>» (больше),
(меньше либо равно),
(больше либо равно),
(не равно), образуют неравенство.
В общем виде уравнение с одним неизвестным имеет представление
где f(x) некоторая функция неизвестной x. Областью (множеством) допустимых значений (ОДЗ) неизвестной x в этом случае называют область определения функции f (х). Значения неизвестной x из области допустимых значений уравнения, обращающие уравнение в верное тождество, называют решениями (корнями) уравнения. Уравнение считается решённым, если найдены все его решения или показано, что оно не имеет решений. Аналогично всякое значение неизвестной x из области допустимых значений неравенства, обращающее неравенство в верное числовое неравенство, называется решением неравенства. Все решения неравенства образуют множество его решений.
Если у= f(x) — одна из основных элементарных функций, b — некоторое действительное число, то уравнение f(x) = b принято называть простейшим уравнением. Например, при уравнение
называется простейшим степенным уравнением, в частности при
уравнение
носит название простейшего целого алгебраического уравнения, а
простейшего дробного алгебраического уравнения; при
уравнения
и
называются соответственно простейшими показательным и логарифмическим уравнениями; уравнения
, — простейшими тригонометрическими уравнениями; уравнения
— простейшими уравнениями с обратными тригонометрическими функциями и т.д.
Пример:
Найти все значения а, при каждом из которых множество решений неравенства содержит точку x = 1.
Решение:
Число x = 1 является решением неравенства тогда и только тогда, когда
Ответ:
Рассмотрим простейшую классификацию уравнений (неравенств), изучаемых в школьном курсе. В алгебраических уравнениях над неизвестными совершаются, и притом в конечном числе, лишь операции сложения, вычитания, умножения, деления, возведения в целую степень и извлечения корня. Если над неизвестными совершаются и другие операции, например возведение в иррациональную степень, взятие логарифма или синуса, или же перечисленные выше математические операции совершаются бесконечное число раз, то уравнение называется трансцендентным. В рациональных уравнениях отсутствует операция извлечения корня из выражения, содержащего неизвестные. В целых уравнениях отсутствует операция деления на выражение, содержащее неизвестные, а в дробных — такое деление есть.
Например: — дробно-рациональное уравнение с двумя неизвестными;
— иррациональное неравен-ство с одним неизвестным;
— целое рациональное уравнение 3-й степени с одним неизвестным;
— дробно-рациональное неравенство с одним неизвестным;
— трансцендентное уравнение с одним неизвестным.
Любое целое рациональное алгебраическое уравнение с одним неизвестным x степени n после преобразований можно привести к стандартному виду:
где ,
— коэффициенты уравнения,
-старший коэффициент,
— свободный член.
Пример:
Найти сумму коэффициентов многочлена, который получится после раскрытия скобок и приведения подобных членов в выражении:
Решение:
Конечно, никто не ожидает от вас на экзамене, что вы начнёте раскрывать скобки и приводить данный многочлен к стандартному виду. У этой задачи существует оригинальное и очень простое решение. Обозначим данный многочлен через f (х). Тогда искомая сумма его коэффициентов равна f(l) (объясните, почему). В нашем случае
Ответ: сумма коэффициентов равна 1.
Пример:
Для каких значений параметра р отношение суммы коэффициентов многочленак его свободному члену минимально?
Решение:
Поскольку сумма коэффициентов данного многочлена равна его значению в точке x = 1, а его свободный член, как несложно увидеть, равен , то рассматриваемое отношение имеет вид
Это выражение неотрицательно при всех действительных значениях р и достигает наименьшего значения, равного нулю, только при р = 7 .
Пример:
Привести пример алгебраического уравнения с целыми коэффициентами, одним из корней которого является число
Решение:
Рассмотрим равенство как алгебраическое уравнение первой степени относительно неизвестной x. Это уравнение не удовлетворяет условию задачи, так как его свободный член (число
)иррационален. С целью избавления от иррациональности возведём данное равенство в квадрат, перейдя к следствию
Уединим радикал и еще раз возведем в квадрат
Благодаря операции возведения в квадрат удалось добиться того, чтобы все коэффициенты уравнения стали целочисленными. Полученное уравнение 4-й степени удовлетворяет условию задачи.
Замечание:
Эта задача имеет не единственный ответ. Любое алгебраическое следствие уравнения , например уравнение
также можно было бы предъявить в качестве ответа.
Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:
Предмет математика
Эти страницы возможно вам будут полезны:
ГЛАВА VII
УРАВНЕНИЯ И НЕРАВЕНСТВА ПЕРВОЙ СТЕПЕНИ С ОДНИМ
НЕИЗВЕСТНЫМ
Уравнения и неравенства первой степени с одним неизвестным
Два свойства уравнений
Мы много раз пользовались уравнениями и знаем, что они очень полезны для решения различных задач. Чтобы успешно, пользоваться уравнениями, надо хорошо знать их свойства и изучить различные приемы их решения..
Решение уравнений — один из основных вопросов курса алгебры. К этому вопросу мы будем возвращаться несколько раз. Сейчас рассмотрим два основных свойства уравнений.
Свойство:
Если к обеим частям уравнения прибавить
одно и то же число или один и то же многочлен относительно неизвестного, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.
Или, другими словами: уравнение не теряет и не приобретает решения, когда к обеим частям его прибавляется одно и то же число или один и тот же многочлен относительно неизвестного.
Разъясним сначала, почему уравнение щ может потерять решение когда к обеим частям его прибавляется одно и то же число или один и тот же многочлен относительно неизвестного.
Рассмотрим уравнение
Это уравнение имеет решение x = 5. При х = 5 уравнение (1) превращается в тождество 6 = 6. Прибавим теперь к каждой части уравнения (1) по 20, получим новое уравнение
После замены в уравнении (2) буквы х числом 5 каждое из выражений, заключенных в скобки, дает в результате опять 6, и таким образом мы в каждой части получим 26. Разница между уравнением (1) и уравнением (2) заключается лишь в том, что при x = 5
уравнение (1) превращается в тождество 6 = 6, а уравнение (2) превращается в тождество 26 = 26.
Если бы к каждой части уравнения (1) прибавили не по 20, а по —200, новое уравнение опять при х=Ь превратилось бы в тождество. Различие между этим уравнением и уравнением (1) заключалось бы только в том, что в каждой части нового уравнения получилось бы по —194, а не по 6, как в уравнении (1).
Если бы мы к каждой части уравнения прибавили по многочлену , новое уравнение опять при х=5 превратилось бы в тождество 38 = 38 (многочлен
при х = 5 принимает значение 32).
Выходит, что решение лг = б не теряете», когда к каждой части уравнения (1) прибавляется одно и то же число или один и тот же многочлен относительно неизвестного.
То, что мы показали на уравнении (1), можно также показать и на каком угодно другом уравнений. Так как вычитание любого числа и любого многочлена можно заменить сложением, уравнение не может потерять решение и тогда, когда от каждой части его отнимается одно и то же число или один и тот же многочлен относительно неизвестного.
Разъясним теперь, почему уравнение не может приобрести решение, когда к обеим частям его прибавляется одно и то же число или один и тот же многочлен относительно неизвестного. Рассмотрим
опять уравнение (1) и (2) и выясним, почему при переходе от уравнения (1) к уравнению (2) мы не могли приобрести решения.
Для того чтобы от уравнения (2) перейти к уравнению (1), достаточно от каждой части его отнять по 20 (или к каждой части прибавить по —20). Значит, при переходе от уравнения (2) к уравнению (1) мы не можем потерять решение.
Допустим теперь, что при переходе от уравнения (I) к
уравнению (2) мы приобрели какое-нибудь решение (скажем, x=2,5). Тогда при переходе от уравнения (2) назад к уравнению (1) мы должны потерять это решение, а это невозможно.
Замечание:
Так как буквы в алгебре обозначают числа, все сказанное об уравнениях с числовыми коэффициентами относится также и к уравнениям с буквенными коэффициентами.
Покажем, на примерах, как свойство 1 можно применять к решению уравнений.
Пример:
Решить уравнение х— 7 = 11.
Решение:
Прибавим к каждой части уравнения по 7, получим x = 18.
Пример:
Решить уравнение х + 30 = 10.
Решение:
Вычтем из каждой части уравнения по 30 (или прибавим по —30). Получим х = — 20
Пример:
Решить уравнение х — а=b.
Решение:
Прибавим к каждой части уравнения а, получим х = b+a
Следствие из свойства 1 уравнений. Любой член
уравнения можно перенести из одной части е другую, изменив при этом его знак на противоположный.
Это утверждение справедливо для любых уравнений. Чтобы упростить изложение, мы проведем его на частном примере.
Дано уравнение
Покажем, что —2х можно перенести с противоположным знаком в левую часть, т. е. покажем, что при переходе от уравнения (3) к уравнению
ни одно решение не теряется и не приобретается.
К каждой части уравнения (3) прибавим 2х, получим уравнение (4). На оснований свойства 1 уравнений переход от уравнения (3) к уравнению (4) происходит без потери и приобретения решений.
Все сказанное относительно —2х можно повторить относительно любого другого члена уравнение (3).
Этим свойством уравнений широка пользуются при решении уравнений. Именно, решая уравнения, часто переносят члены, содержащие неизвестные, в одну часть, а известные — в другую. Поясним это примером.
Пример:
Решить уравнение
Решение:
Перенесем неизвестные члены в левую часть, а известные в правую, получим
отсюда
Свойство:
Если обе части уравнения умножить или
разделить на какое-нибудь число, отличное от нуля, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.
Иными словами: уравнение не приобретает и не теряет решений от того, что обе части его умножены или разделены на одно и то же число, отличное от нуля.
Прежде чем разъяснить свойство 2, заметим, что его достаточно разъяснить для умножения, так как деление можно всегда заменить умножением на обратное число.
Мы и здесь, как и при разъяснении свойства 1, сначала расскажем, почему при умножении (или делении) обеих частей уравнения на одно и то же число, отличное от нуля, ни одно решение не может быть потеряно. После этого разъяснится и то, что ни одно решение не может быть при этом приобретено..
Возьмем какое-нибудь уравнение. Все, что будет показано на этом уравнении, можно показать и на любом другом уравнении.
Уравнение
имеет решение х = 6. Действительно, при x=Q уравнение
превращается в тождество 10 = 10.
Умножим каждую часть уравнения (5) на 20, получим уравнение
При х = 6 уравнение (6) тоже превращается в тождество
20.10 = 20-10.
Если бы мы умножили обе части уравнения на ,мы получили бы уравнение, которое при x = 6 превращается в тождество
Выходит, что решение x=6 не теряется при умножении или делении каждой части уравнения (5) на одно и то же число.
От уравнения (6) можно, перейти обратно к уравнению (5) посредством умножения каждой части его
Ясно поэтому, что при переходе от уравнения (6) к уравнению (5) не может быть потери решения,
Отсюда вытекает, что при переходе от уравнения (5) к
уравнению (6) не могло быть и приобретения решения, Здесь опять, как и при изучении свойства 1, важно понять, что решения, приобретенные при переходе от уравнения (5) к уравнению (6), должны были бы
потеряться при обратном переходе, а потеря решения здесь невозможна.
Замечание:
Рассмотрим уравнение
Оно имеет единственное решение х = 6. Умножим каждую часть его на нуль. Получим
Уравнению (8) удовлетворяет не только х = б, но и любое другое значение х. (Например, положим х = 1 000, получим тождество )
Выходит, что при переходе от уравнения (7) к уравнению (8) мы приобрели бесконечное множество решений. Вот почему в формулировке свойства 2 указано, что число, на которое умножаются обе части уравнения, должно быть отлично от нуля.
Замечание:
Так как буквы в алгебре обозначают числа, все сказанное об уравнениях с числовыми коэффициентами относится также и к уравнениям с буквенными коэффициентами. При этом необходимо только следить, за тем, чтобы при умножении обеих частей уравнения на буквенное выражение не вкралось умножение на нуль (Дело в том, что буквенные выражения могут при некоторых значениях входящих в них букв равняться нулю.)
Покажем на примерах, как свойство 2 можно применять к решению уравнений.
Пример:
Решить уравнение
Решение:
Разделим обе части уравнения на 2 получим
Пример:
Решить уравнение 15 — x = 20.
Решение:
Перенесем 15 в правую часть, получим
Умножим теперь обе части уравнения на —1,получим
Пример:
Решить уравнение ах=b.
Решение:
Если то, разделив обе части уравнения на а, получим
Если же а = 0, то уравнение имеет вид и тогда, если
уравнение решений не имеет, если же b = 0, уравнение есть тождество, так как ему удовлетворяет любое значение х.
Пример:
Решить уравнение
Решение:
Здесь так как иначе уравнение не имеет смысла. Умножив обе части уравнения на a, получим х = аb.
Понятие о равносильности уравнений
Определение:
Если каждое решение одного из уравнений является решением другого и каждое решение второго уравнения является решением первого, уравнения называются равносильными.
Пример:
Уравнение
имеет единственное решение x=11 Уравнение
имеет также единственное решение x=11 . Уравнение (1) и (2) равносильны.
Пример:
Уравнение
имеет два решения: Уравнение
имеет также два решения: Уравнение (3) и (4) равносильны
Пример:
Уравнения
и
не равносильны. Действительно, уравнение (5) имеет два решения: а уравнение (6) имеет три решения:
таким образом, каждое решение уравнения (5) является решением уравнения (6), но не каждое решение уравнения (6) является решением уравнения (5).
Теперь основные свойства уравнений можно сформулировать так:
Свойство:
Если к обеим частям уравнения прибавить
одно и то же число или один и тот же многочлен относительно неизвестного, то полученное в результате этого новое уравнение равносильно данному.
Свойство:
Если обе части уравнения умножить или
разделить на какое-нибудь число, отличное от нуля, то полученное в результате этого новое уравнение равносильно данному.
О некоторых преобразованиях уравнения, которые могут привести к потере или приобретению решений
При внимательном рассмотрении свойств 1 и 2 уравнений (§ 1) могут возникнуть два вопроса:
- В § 1 говорится о прибавлении к обеим частям уравнения многочленов относительно неизвестного. А что произойдет с решениями уравнения, если к обеим частям его прибавить не многочлен относительно неизвестного, а выражение, содержащее неизвестное в знаменателе?
- В § 1 говорится об умножении и делении обеих частей уравнения на любое число. А что произойдет с решением уравнения, если обе части его умножить или разделить на одно и то же выражение, содержащее неизвестное?
Мы сейчас приведем примеры, которые и помогут нам ответить на эти вопросы.
Пример:
Уравнение
имеет решение х = 8. Уравнение
полученное из уравнения (1) прибавлением к каждой части выражения , не имеет решения х = 8, так как при этом значении равенство (2) не имеет смысла. При переходе от уравнения (1) к уравнению (2) решение x = 8 потеряно, при обратном переходе от уравнения (2) к уравнению (1) решение х=8 приобретается.
Теперь ясно, почему в § 1 шла речь о прибавлении многочленов от неизвестного.
Пример:
Уравнение
имеет единственное решение x= 3. Уравнение
полученное из уравнения (3) умножением обеих частей на х — 2, имеет два решения: . При переходе от уравнения (3) к уравнению (4) приобретено решение x = 2. От уравнения (4) мы можем перейти к уравнению (3) делением обеих частей уравнения на х- 2. При этом решение x = 2 будет потеряно.
Теперь ясно, почему, в § 1 говорится об умножении и делении обеих частей уравнения на число, а не на выражения, которые содержат неизвестное.
Дело в том, что, умножая обе части уравнения на х — 2, мы умножаем их не на определенное число, а на выражение, которое при разных значениях х имеет разные значения и среди этих значений содержится нуль (при x = 2 выражение х — 2 равно нулю). Мы же знаем, что умножение обеих частей уравнения на нуль
приводит к приобретению решений (см. § 1).
При делении на х — 2 мы теряем решение потому, что в
выражении х — 2 скрыты разные значения и среди них содержится 0, на который делить нельзя.
Все сказанное здесь приводит к следующим выводам:
- Прибавление к обеим- частям уравнения выражения, содержащего неизвестное в знаменателе, может привести к потере и приобретению решений. При этом потерянными и
приобретенными решениями могут быть только те значения неизвестного, при которых знаменатель этого выражения равен нулю. - Умножение обеих частей уравнения на многочлен от неизвестного может привести к приобретению решений. При этом приобретенными решениями могут быть только те значения неизвестного, при которых этот многочлен равен нулю.
- Деление обеих частей уравнения на<многочлен от
неизвестного может привести к потере решений. При этом потерянными решениями могут быть только те значения неизвестного, при которых этот многочлен равен нулю.
Задача:
Обе части уравнения умножены на х — 3. Могло ли уравнение при этом приобрести решение. x = 5?
Ответ. Нет, так как при x = 5 выражение x —3 отлично от нуля.
Задача:
Какие решения может потерять уравнение, когда обе части его делят на (x— 2)(x— 7)?
Ответ. Уравнение может потерять решения x = 2 и x = 7, так как только при этих значениях x выражение (х — 2)(x—-7) равно нулю.
Решение уравнений
При решений уравнений можно поступать по следующему правилу:
- Освободить уравнение от дробей.
- Раскрыть скобки.
- Перенести все члены, содержащие неизвестные, в одну часть уравнения (в левую), а известные в другую.
- Сделать приведение подобных членов. В случае если неизвестное входит в несколько членов с буквенными коэффициентами, вынести неизвестное за скобки.
- Если в результате этих преобразований получится урaвнение вида ax = b, то разделить обе части этого уравнения на коэффициент при неизвестном (а), не допуская деления на нуль.
Пример:
Решить уравнение
Решение:
Умножим обе части уравнения на 20 (20 — общее наименьшее кратное знаменателей)
Раскрыв скобки, имеем
Приведем подобные члены в каждой части уравнения
Перенесем в левую, а — 61 в правую часть. Получим.
Пример:
Решить уравнение
Решение:
Чтобы освободить уравнение от дробей, умножим обе части его на (a + b) (а — b). Выражение (a + b) (а — b) отлично от нуля, так как иначе а+ b=0 или а — b= 0, и тогда уравнение (1) не имело бы смысла. Получим
Раскроем скобки
Перенесем неизвестные в левую, а известные в правую часть
(Можно упростить решение, вычеркнув сразу после раскрытия скобок из каждой части уравнений одинаковые слагаемые ах и ab,) Приведем подобные члены
Теперь нам. следует делить oбе части уравнения на 2b. Это можно делать только в том случае, если Предположим, что
Тогда
Если b=0, уравнение (1) принимает такой вид:
Это уравнение, очевидно, не имеет решения.
Ответ. Если ,
Если b = 0,
уравнение решений не имеет.
Пример:
Решить уравнение
Решение:
Умножим обе части уравнения на abc. Выражение abc отлично от нуля, так как иначе уравнение не имело бы смысла. Получим
Вынесем х за скобки, получим
Предположим, что
тогда
Случай, когда ab+bc+ca = 0, представляет некоторые трудности для исследования, и потому мы оставим его без рассмотрения.
Ответ. Если то
О числе решений уравнения первой степени с одним неизвестным
Определение:
Уравнением первой степени с одним
неизвестным называется такое уравнение, которое после освобождения его от дробей, раскрытия скобок, перенесения всех членов в одну часть и приведения подобных членов принимает вид
где а и b — известные числа, а — называется коэффициентом при неизвестном, b — свободным членом.
Пример:
Уравнения, рассмотренные в § 4, — уравнения первой степени с одним неизвестным.
Уравнение первой степени с одним неизвестным либо имеет единственное решение, либо совсем не имеет решения, либо имеет бесконечное множество решений.
- Если коэффициент при неизвестном в уравнении первой степени с одним неизвестным отличен от нуля, уравнение имеет решение и притом единственное.
Пример. Уравнение З х + 2 = 0 имеет единственное решениеПример. Уравнение 2x=0 имеет единственное решение х=0.
- Если коэффициент при неизвестном в уравнении первой степени с одним неизвестным равен нулю, а свободный член неравен нулю, уравнение не имеет решения.
Пример. Уравнение 0х + 1 = 0 не имеет решения, так как при любом значении х произведение 0
х равно 0 и 0 + 1 =1.
- Если коэффициент при неизвестном и свободный член в уравнении первой степени с одним неизвестным равны нулю, уравнение имеет бесконечное множество решений. Всякое число
является решением такого уравнения. В самом деле, уравнению 0 • x +0 = 0 удовлетворяет любое
число, так как произведение любого числа и нуля равно нулю и 0 + 0 = 0.
Уравнения, содержащие неизвестное в знаменателе
К уравнениям первой степени с одним неизвестным приводятся и некоторые уравнения, содержащие неизвестное в знаменателе. Они решаются по тому же правилу, что и уравнения, не содержащие неизвестное в знаменателе.
Нужно только иметь в виду, что при освобождении такого уравнения от дробей приходится обе части его умножать на многочлен от неизвестного, и потому возможно приобретение решений или, как говорят, возможно появление посторонних решений.
Пример:
Решить уравнение
Решение:
Умножим обе части уравнения на
Получим
Раскрываем скобки
Отсюда
Так как при умножении на мы могли ввести посторонние решения, мы обязаны проверить полученный ответ. Подставим 8 вместо х в исходное уравнение. Имеем
Проверка показала, что х = 8 есть решение уравнения. Таким образом, мы посторонних решений не ввели. Впрочем, это можно было установить и проще: при х = 8 выражение отлично от нуля, и потому х = 8 не может быть посторонним решением.
Ответ. x = 8.
Пример:
Решить уравнение
Решение:
Умножим обе части уравнения на (x + 2)(x + 3).
Получим
При x = —2 уравнение не имеет смысла. Таким образом, х = —2 есть постороннее решение.
Ответ. Уравнение решений не имеет.
Решение задач при помощи уравнений. Понятие об исследовании задачи
Задачи, которые . приходится решать при помощи уравнений, весьма разнообразны и весьма разнообразны способы их решения. Поэтому нельзя дать общее правило, руководствуясь которым можно
было бы, не задумываясь, решить любую задачу при помощи уравнений. Часто бывает так, что способ, который с успехом применялся в решении одной задачи, непригоден для решения другой. Каждая задача требует для ее решения сообразительности,
изобретательности.
Научиться решать задачи можно только на практике. Чем больше мы будем решать задач, чем больше будем думать над их решением, чем больше будем стараться изобретать различные способы их решения, тем больше мы разовьем свою сообразительность, тем лучше будем решать задачи.
Мы сейчас для примера рассмотрим несколько задачки расскажем, как эти задачи решаются.
Рекомендуем внимательно рассмотреть эти решения и на них учиться самостоятельному решению задач.
Задача:
Определить расстояние между пунктами А и В, если велосипедист, делающий по 15 км в час, проезжал это расстояние на 2 мин. скорее, чем другой велосипедист, проезжающий по 12 км в час?
Решение:
Обозначим буквой х расстояние между А и В (в
километрах). Первый велосипедист проехал это расстояние в час, второй в
час. По условию,
на
меньше, чем
. Значит,
Уравнение составлено. Из него имеем
Проверка. Первый велосипедист 2 км проезжает в часа, т. е. в 8 мин. Второй велосипедист 2 км проезжает в
часа, т. е. в 10 мин. Значит, первый велосипедист на 2 мин. скорее проходит это расстояние, чем второй. Задача решена правильно.
Ответ. 2 км.
Замечание:
Рекомендуем обратить внимание на следующее:
- Буквой х в рассмотренной задаче мы обозначили искомую величину. Так можно поступать при решении многих задач. В дальнейшем, мы покажем, что иногда лучше поступать иначе и обозначать буквой л: другую величину, которая не является искомой.
- В рассмотренной задаче мы имели дело с двумя величинами, из которых одна на некоторое количество меньше другой
При составлении уравнения мы к меньшей из величин добавили соответствующее количество и полученную сумму приравняли большей. Вместо этого мы могли бы из большей величины вычесть соответствующее количество и полученную разность приравнять меньшей.
Задача:
Самолет летел сначала со скоростью 180 км в час. Когда ему осталось пролететь на 320 км меньше, чем он пролетел, он стал лететь со скоростью 250 км в час. Средняя скорость на всем пути оказалась равной 200 км в час. Сколько всего километров пролетел самолет?
Решение:
Обозначим буквой х расстояние (в километрах), которое самолет пролетел со скоростью 180 км в час. Тогда ему осталось после этого пролететь (х— 320) км. Всего самолет пролетел
Так как средняя скорость оказалась равной 200 км в час, самолет на весь путь потратил
На первую часть пути он потратил час, а на вторую часть
час Значит, на весь путь он потратил
Мы получили два различных выражения для времени (в часах), которое самолет потратил на весь путь. Выходит, что
Уравнение составлено. Имеем
Умножим обе части уравнения на 4500, получим
Отсюда
Итак, первая, часть пути составляет 720 км, вторая 400 км (720 — 320 = 400 км), Значит, весь путь составляет 1120 км.
Проверка. На первую часть пути самолет потратил 4 часа На вторую часть пути он потратил 1,6 часа
На весь путь самолет потратил 5,6 часа. Средняя скорость выходит равной
(км в час). Задача решена правильно.
Ответ. 1120 км.
Замечание:
Рекомендуем обратить внимание на следующее: буквой х мы обозначили здесь не искомую величину (все расстояние, которое пролетел самолет), а другую величину (первую часть этого расстояния). Мы поступили так потому, что при таком обозначении проще составить уравнение и, кроме того, потому, что, зная первую часть расстояния, нетрудно найти и все расстояние.
Впрочем, можно обозначить буквой х и все расстояние в километрах. Тогда для определения первой и второй части расстояния надо х разделить на 2 части так, чтобы одна была на 320 больше другой. Делается это так: от х отнимается 320 и полученная разность делится на 2, получается ,это меньшая из частей. Для отыскания большей части надо к х сначала прибавить 320, а потом полученную сумму разделить на 2, получим
есть количество часов, потраченных на первую часть пути.
есть количество часов, потраченных на вторую часть пути.
есть количество часов, потраченных на весь путь, т. е
Решив это уравнение, получим х = 1120, т. е. тот же ответ, что и раньше. Из этого примера видно, что простота решения задачи зависит от того, насколько удачно выбрана величина, обозначаемая буквой х.
Задача:
Ученики собрали 3 кг 200 г семян белой акации,
желтой акации, клена и липы. Сколько семян каждого вида в отдельности собрали ученики, если семян белой акации они собрали в 3 раза больше, чем семян липы; семян клена собрано в 2 раза больше, чем семян белой акации и липы вместе, а семян желтой акации на 1 кг 200 г больше, чем семян клена?
Решение:
Мы должны определить четыре неизвестных величины: количество семян белой акации, желтой акации, клена и липы. При внимательном рассмотрении условия задачи видно, что, если бы мы узнали количество семян липы, нам нетрудно было бы узнать и остальные неизвестные величины.
Предположим, что семян липы собрано х г. Тогда семян белой акации собрано 3 х г. Семян клена собрано 2(x+3х) = 8х г. Семян желтой акации собрано (8х+1200)г,
Теперь нетрудно подсчитать, сколько собрано всех семян. Для этого достаточно сложить [х+Зх+8х(8х+1200)] г. Но, по условию, всех семян собрано 3200 г. Значит,
Или
Теперь нетрудно написать и ответ: семян липы собрано 100 г, семян белой акации — 300 г, семян клена — 800 г, семян желтой акации — 2 кг. Проверка ответа не представляет труда.
На примере этой задачи видно, что посредством уравнений с одним неизвестным можно решать не только задачи с одной искомой величиной, но и такие задачи, в которых имеется несколько искомых величин.
Задача:
Периметр треугольника 44 см. Стороны треугольника относятся как 10:7:5. Определить стороны треугольника.
Решение:
Пусть меньшая сторона треугольника равна 5х см. Тогда средняя сторона этого треугольника равна 1х см, а бoльшая сторона равна 10x см. По условию,
Значит,
Выходит, что меньшая сторона треугольника равна 10 см, средняя 14 см, а большая 20 см. Нетрудно проверить, что задача решена правильна
Ответ. 10 см;14 см; 20 см.
Замечание:
При решении последней задачи рекомендуем обратить внимание на следующее:..
1) В задаче три искомые величины, но мы их выразили через одно неизвестное х.
2) Буквой х (в см) мы обозначили часть меньшей стороны.
Конечно, можно было бы обозначить буквой х и всю меньшую сторону, но тогда средняя сторона была бы равна x, бoльшая 2х. Как видно, в уравнении появились бы дроби, и от этого решение стало бы несколько сложнее.
Задача:
В комнате № 1 общежития живут 9 человек, а в
комнате № 2 — 6 человек. Сколько человек надо переселить из комнаты № 1 в комнату № 2, чтобы в каждой комнате проживало по одному и тому же числу людей?
Решение:
Обозначим буквой х искомое количество людей. Тогда
Мы не напишем в ответе, что надо переселить 1,5 человека, так как это было бы бессмысленно. Мы должны сказать, что задача не имеет решения.
Ответ. Задача не имеет решения.
Задача:
Числитель дроби составляет знаменателя. После того как к числителю прибавили 5, а к знаменателю 15, дробь стала равной
Найти дробь:
Решение:
Обозначим знаменатель дроби буквой х. Тогда числитель ее будет x. По условию,
или
Ответ. Дроби, удовлетворяющей условию задачи, не существует.
Задача:
Сумма цифр двузначного числа равна 14. Если к этому числу прибавить 72,, то в результате получается число, записанное теми же цифрами, но в обратном порядке. Найти число.
Решение:
Обозначим Цифру десятков искомого числа буквой х. Тогда цифра единиц этого числа равна 14 — x. Имеем
или
Выходит, что цифра десятков искомого числа равна 3, а цифра единиц равна 11.
Ответ. Так как цифра не может быть больше 9,
задача решения не имеет.
Задача:
Одна машинистка может выполнить некоторую работу за 5 час. Во сколько часов может выполнить эту работу вторая машинистка, если, работая совместно, обе машинистки выполнили ту же работу в 6 час?
Решение:
Предположим, что вторая машинистка может
выполнить эту работу в х час. Тогда в 1 час она выполнит часть работы. Первая машинистка в час выполняет
часть работы. Обе машинистки, работая совместно, выполняют в час
часть работы или
часть работы. Значит,
Ответ. Так как искомое чрсло часов не может быть отрицательно, задача решения не имеет.
Обратим .внимание на следующее. Уравнения, к которым приводили последние четыре задачи, имеют решения, а задачи все же не имеют решения, В первой из этих задач оказалось, что искомое число людей должно быть дробным; в-следующей задаче оказалось, что знаменатель дроби должен быть равен 0; в предпоследней задаче оказалось, что число единиц двузначного числа больше 9, в последней задаче
оказалось, что машинистка выполняет некоторую работу в отрицательное число часов.
Отсюда вытекает, что всякое решение требует еще и проверки его по смыслу. Мало того, крайне важно выяснить: почему данная задача не имеет решения, где в условии задачи кроются х причины, в силу которых задача не имеет решения, при каких численных данных подобная задача имеет решение.
Такая работа над задачей называется исследованием задачи.
Проведем, исследование рассмотренных четырех задач.
Исследование первой з а д а ч и. Дробное число людей,
которых надо переселить из одной комнаты в другую, возникло потому, что в одной комнате проживает чётное число людей, а в другой нечетное. Если бы числа проживающих в этих комнатах людей были одной четности, отрет был бы выражен целым числом. При этом, если в комнате № 1 живет больше людей, чем в комнате № 2, в ответе будет целое положительное число. Если в обеих комнатах живет по одинаковому числу людей, в ответе будет 0, и такой ответ означает,
что никого переселять из одной комнаты в другую не надо. Если, наконец, в комнате № 1 проживает меньше людей, чем в комнате № 2 в ответе получится целое отрицательное число, и такой ответ означает, что переселять надо не из комнаты № 1 в комнату № 2, а наоборот— из второй в первую»
Исследование второй задачи. Знаменатель дроби оказался равным нулю, потому что Если бы отношение чисел, прибавленных к числителю и знаменателю дроби, было не равно
, знаменатель искомой дроби был бы отличен от нуля и задача имела бы решение.
Исследование третьей задачи. Двузначных-чисел, сумма, цифр которых 14, существует всего пять: 59, 68, 77, 86 и 95. Если к любому из них прибавить 72, в результате получится не двузначное, а трехзначное число. Если в условии задачи заменить число 72
числом 36, задача будет иметь решение, так как 95 — 59 = 36, Точно так же задача будет иметь решение, если, в условии ее число 72 заменить числом 18, так как 86 — 68 = 18.
Исследование четвертой задачи. Отрицательный ответ
получился потому, что по условию две машинистки, работая совместно, тратят на- выполнение работы больше времени (6 час), чем одна машинистка (5 час). Так могло бы быть, если бы вторая машинистка
не помогала первой, а уничтожала бы работу, выполненную первой машинисткой. Для того чтобы задача имела решение, достаточно число 6 в условии заменить каким-нибудь положительным числом, меньшим 5, или число 5 заменить числом, большим 6. Можно, конечно, сразу заменить и оба числа, только при -этом нужно, чтобы вдвоем машинистки меньше тратили времени на работу, чем одна.
Задача:
На трех складах находится 300 куб. м дров. На первом складе 110 куб. м. На втором складе на несколько куб, метров больше, чем на первом, а на третьем складе на столько же куб. метров меньше, чем, на первом. Сколько куб. метров дров на каждом складе?
Решение:
Пусть на втором складе на х дров больше, чем на первом. Тогда
Выходит, что
т. е.
Уравнение не имеет решения.
Ответ. Задача не имеет решения.
Последняя задача не имеет решения, и этим она похожа на предыдущие четыре задачи. Однако здесь есть и различие. Это различие заключается в том, что предыдущие задачи приводили ю уравнениям, которые имели решения, но эти решения не подходили по смыслу. Последняя же задача привела к уравнению, которое не имеет решения.
Исследование задачи. Где в условии кроется причина того, что задача не имеет решения? По смыслу задачи на втором и на третьем складах вместе должно быть дров вдвое больше, чем на первом. Значит, на первом складе должно быть всех дров. Выходит,
что либо надо 300 заменить на 330, либо надо 110 заменить на 100, либо заменить оба числа так, чтобы одно было в 3 раза больше другого. Заменим, например, 300 на 330, тогда получим уравнение
или
Этому уравнению удовлетворяет любое число. Выходит, что задача имеет бесконечное число решений. По смыслу задачи х может быть любым числом, абсолютная величина которого не превосходит 110.
Все сказанное по поводу решения задач при помощи уравнений приводит к следующему выводу.
Решение задачи при помощи уравнений состоит из четырех частей:
1) составления уравнения,
2) решения уравнения,
3) проверки,
4) исследования.
Наиболее трудная часть работы заключается в составлении уравнения. При составлений уравнения большое значение имеет удачный или неудачный выбор величины для обозначения ее буквой. Большое
внимание требуется и при исследовании решения.
Применение уравнений к решению задач в общем виде
Мы рассмотрели ряд задач с числовыми данными. Известно, однако, что особый интерес представляют задачи в общем виде, т. е. задачи с буквенными данными. Так как буквы обозначают у нас числа, решение задач с буквенными данными ведется так же, как и задач с числовыми данными, только всякий раз нужно исследовать решение. Покажем это на примере.
Задача:
Отцу 40 лет, сыну 10 лет. Через сколько лет отец будет в n раз старше сына?
Решение:
Предположим, что через х лет отец будет в n раз старше сына. Через х лет отцу будет (40 + x) лет, а сыну (10 +x ) лет. Значит,
Уравнение составлено. Решая его, имеем:
По смыслу задачи n > 1, поэтому знаменатель — всегда
положительное число. Что касается числителя, то при x < 4 числитель положителен, при n = 4 числитель равен 0, при n > 4 числитель отрицателен. Исследование показывает, что возможны три случая:
Случай 1. n < 4. Задача имеет положительное решение.
Найденное выражение для х дает искомый ответ. Пусть, например, x = 2, тогда х = 20. Действительно, через 20 лет отцу будет 60 лет, а сыну 30 и отец будет вдвое старше сына.
Случай 2. n = 4. В этом случае x = 0. Такой ответ означает, что отец сейчас в 4 раза старше сына.
Случай 3. n > 4. В этом случае задача имеет отрицательное решение, которое означает, что | x | лет назад отец был в n раз старше сына. Пусть, например, n = 6. Тогда x = —4; х = 4. Действительно, 4 года назад отцу было 36 лет, сыну 6 лет, и отец был в 6 раз старше сына.
Понятие о неравенстве
При исследовании уравнений с буквенными коэффициентами приходится решать такие задачи:
Даны два алгебраических выражения, зависящие от одной или нескольких букв. Требуется узнать, при каких значениях этих букв одно из данных выражений больше или меньше другого. Например, исследуя задачи из § 8, мы должны были узнать, при каких значениях n выражение 40—10n является положительным числом и при каких значениях n это выражение является отрицательным числом. Иными
словами, нам нужно было узнать, при каких значениях n
и при каких значениях n
В таких случаях говорят, что нам нужно было решить два неравенства: 40>10n и 40<10n.
Определение:
Неравенством называется выражение,
полученное посредством соединения знаком > или знаком < двух алгебраических выражений.
Примеры неравенств:
Выражение, записанное слева от знака неравенства, называется левой частью неравенства, а выражение, записанное справа от этого знака, называются правой частью неравенства.
При желании части неравенства можно переменить местами, но тогда надо изменить знак неравенства на. знак противоположного смысла, т. е. вместо знака ]> писать знак <, а вместо знака < писать знак >. Перепишем неравенства (1), переменив местами правую и левую части. Получим
Неравенства (1) и (2) не содержат букв, это так называемые числовые неравенства. Неравенства
содержат буквы.
Неравенства, не содержащие букв, могут быть верными
(справедливыми) или неверными (несправедливыми). Так, например, все неравенства (1) и (2) верные. Нетрудно указать и несправедливое неравенство. Для этого достаточно в верном неравенстве заменить знак
неравенства знаком противоположного смысла.
С неравенствами, содержащими буквы, дело обстоит сложнее. Рассмотрим для примера знакомое нам неравенство
Мы знаем, чтo это неравенство справедливо при n < 4. При n = 4 знак > надо заменить знаком = , а при n > 4 знак > надо заменить знаком < . Таким образом, неравенство, содержащее буквы, может при некоторых значениях этих букв оказаться справедливым, а при других значениях букв оказаться несправедливым.
Впрочем, бывают и такие неравенства, которые справедливы при всех значениях входящих в них букв. Таково, например, неравенство
Действительно, при любом а левая часть неравенства (5) на 1 больше правой.
С другой стороны, нетрудно указать и такое неравенство, которое при любых значениях входящих в него букв несправедливо. Для этого достаточно в неравенстве, которое справедливо при всех значениях входящих в него букв, заменить знак неравенства знаком противоположного смысла. Так, например, заменим в неравенстве (5) знак > знаком <, получим неравенство
которое при всех значениях буквы а несправедливо.
Определение:
Решить неравенство — это значит узнать, при каких значениях входящих в него букв это неравенство справедливо.
Пример:
Решить неравенство 40 > 10n.
Пример:
Решить неравенство 40<10n.
Пример:
Решить неравенство
Ответ. Неравенство справедливо при любом значении а.
Пример:
Решить неравенство
Ответ. Неравенство решений не имеет (при
любом значении буквы а оно несправедливо).
Свойства неравенств
Для того чтобы научиться решать неравенства, надо изучить их свойства.
Свойство:
Возьмем какое-нибудь справедливое неравенство, например
Прибавим к каждой части этого неравенства одно и то же число, например 10. Получим новое неравенство 5 + 10 > 3 + 10 или
Неравенство (2) тоже справедливо. В самом деле, мы к большему числу 5 и к меньшему числу 3 прибавили поровну (по 10), понятно, поэтому, что первая сумма больше второй.
Возьмем неравенство (1). Вычтем теперь из каждой части этого неравенства одно и то же число, например 10. Получим новое неравенство
Неравенство (3) тоже справедливо.
Возьмем еще раз неравенство (1). Прибавим к каждой его часта одно и то же буквенное выражение, например а + 2b. Получим новое неравенство
Неравенство (4) справедливо при любых значениях а и b. В самом деле, при каких угодно значениях а и b к правой и левой части неравенства (1) добавляется одно и то же число.
Пусть, например, а=3; b=4, тогда
и выходит, что при этих значениях а и b к каждой части неравенства (1) прибавлено по 11. Если а и b имеют какие-нибудь другие значения, все равно а + 2b, добавленное к левой части неравенства (1), имеет
то же значение, что и а + 2b, добавленное к правой части этого неравенства.
Теперь мы можем сформулировать свойство 1 неравенств:
Если а > b и с — произвольное число, то а + с > b + с;
а— с > b— с, т. е. к обеим частям неравенства можно прибавить или от обеих частей его вычесть одно и то же число или буквенное выражение.
Как легко видеть, свойство 1 неравенств очень напоминает соответствующее свойство равенств.
Следствие из свойства 1. Любой член неравенства можно перенести из одной части в другую, переменив при этом знак его на противоположный.
Действительно, рассмотрим неравенство
Нетрудно проверить, что это неравенство справедливо. Допустим, что мы хотим число —2 перенести из правой части в левую. Прибавим к каждой части неравенства по 2, получим опять справедливое неравенство
Сравнивая неравенство (6) с неравенством (5), видим, что неравенство (6) получается из неравенства (5) посредством переноса числа (—2) из правой части в левую, но с противоположным знаком.
Свойство:
Возьмем какое-нибудь справедливое неравенство, например
Умножим обе части этого неравенства на одно и то же положительное число, например на 5. Получим новое неравенство
Неравенство (2) тоже справедливо.
Возьмем опять то же неравенство
Разделим обе части этого неравенства на одно и то же
положительное число, например на 10. Получим новое неравенство
Неравенство (3) тоже справедливо.
Возьмем еще раз неравенство 3 >—2. Умножим обе части этого неравенства на какое-нибудь отрицательное число, например на —5. В левой части получится —15, а в правой 10. Ясно, что
Как видно, чтобы получить справедливое неравенство (4), нам пришлось знак > заменить знаком <
То же самое получается и при делении каждой части неравенства на одно и то же отрицательное число. Возьмем опять неравенство
Разделим обе части его на какое-нибудь отрицательное число, например на —10. В левой части получится —0,3, а в правой 0,2. Чтобы новое неравенство было справедливым, необходимо знак > заменить
знаком <. Получим
Теперь мы можем сформулировать свойство 2 неравенств:
Если а > b и с положительно, то т. е. обе части неравенства можно умножить или разделить на одно и то же положительное число.
Если а>b и с отрицательно, то т.е. при умножении или делении обеих частей неравенства на одно и то же отрицательное число знак неравенства надо заменить знаком противоположного смысла (т.е. вместо знака > надо писать знак <, и вместо знака < надо писать знак >).
Если обе части неравенства умножить на нуль, неравенство превращается в равенство.
Пример:
Умножим обе части неравенства 3 > — 2 на нуль. В левой части получится 0, в правой части получится тоже 0, т. е.
Вместо знака > приходится писать знак=.
При умножении или делении обеих частей неравенства на буквенное выражение нужно быть весьма осторожным, так как при различных значениях букв это выражение может оказаться и положительным,
и отрицательным, и нулем. Так, например, неравенство 3 > — 2 при умножении на х дает
Решение неравенств первой степени с одним неизвестным
Определение:
Неравенством первой степени с одним
неизвестным называется такое неравенство, которое не содержит неизвестного в знаменателе и после освобождения его от дробей, раскрытия скобок, перенесения всех членов в левую часть и приведения
подобных членов имеет вид ах + b > 0 или ах + b < 0, где а и b— известные числа.
Применяя первое и второе свойства неравенств, можно решить любое неравенство первой степени с одним неизвестным. Покажем это на примерах.
Пример:
Решить неравенство
Решение:
Перенесем 2х в левую, а —1 в правую часть
неравенства. Получим
Этот ответ означает, что данное неравенство справедливо при любом значении х, большем чем —4. Ответ. x > —4.
Пример:
Решить неравенство 5х + 2 < 2х — 11.
Решение:
Перенесем 2х в левую, а 2 в правую часть
неравенства. Получим
Разделим обе части неравенства на 3, получим
Ответ.
Пример:
Решить неравенство 2х + 5 > 7х — 10.
Решение:
Перенесем 2х в правую, а —10 в левую часть
неравенства. Получим
Разделим обе части неравенства на 5. Получим
Это неравенство можно решить и иначе. Например, перенесем 7х в левую, а 5 в правую часть. Получим
Разделим обе части неравенства на —5. Получим опять
Ответ. х < 3.
Пример:
Решить неравенство
Решение:
Умножим обе части неравенства на 6. Получим
или
отсюда
Перенесем —8х в правую часть. Получим
Значит
Ответ.
Пример:
Решить неравенство ах < b.
Решение:
Если а положительно (т. е. а > 0), то Если а отрицательно (т. е. a < 0), то
Если а = 0, то неравенство принимает вид 0 • х < b.
Это неравенство справедливо при любом x, если b положительно и не имеет решений (т. е. не может быть справедливым ни при каком значении x), если b отрицательно или равно нулю.
Задача:
Показать, что из условий: l)2) b и d одного знака, вытекает, что ad > bc.
Решение:
Так как b и d одного знака, bd положительно.
Поэтому, умножив обе части справедливого по условию неравенства на bd, получим опять справедливое неравенство.
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат