Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
2+1=3
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
x+2-2=7-2
x+0=7-2
x=7-2
Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.
x=5
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
x-4+4=12+4
x=12+4
Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.
x=16
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.
4+3x=2x-5
4+3x-2x=-5
Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4+3x-2x=-5
3x-2x=-5-4
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅(-9)=2⋅(-9)-5
4-27=-18-5
-23=-23
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x:5=20:5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅4=20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
1x=21 или x=21
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
3x=45
Далее делим все уравнение на 3.
3x:3=45:3
(3:3)x=15
1x=15 или x=15
Сделаем проверку. Подставим в уравнение найденный корень.
5=5
Ответ: x=15
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
- Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
- Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
- Избавиться от коэффициента при переменной если нужно.
- В итоге всех действий получаем корень уравнение. Выполняем проверку.
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.
Решение квадратных уравнений
6 июля 2011
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.
Дискриминант
Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D < 0, корней нет;
- Если D = 0, есть ровно один корень;
- Если D > 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x2 − 8x + 12 = 0;
- 5x2 + 3x + 7 = 0;
- x2 − 6x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.
Задача. Решить квадратные уравнения:
- x2 − 2x − 3 = 0;
- 15 − 2x − x2 = 0;
- x2 + 12x + 36 = 0.
Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]
Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
[x=frac{-12+sqrt{0}}{2cdot 1}=-6]
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
- x2 + 9x = 0;
- x2 − 16 = 0.
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
- Если же (−c/a) < 0, корней нет.
Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x2 − 7x = 0;
- 5x2 + 30 = 0;
- 4x2 − 9 = 0.
x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.
5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.
Смотрите также:
- Теорема Виета
- Следствия из теоремы Виета
- Тест на тему «Значащая часть числа»
- Метод коэффициентов, часть 1
- Однородные тригонометрические уравнения: общая схема решения
- Задача B4: строительные бригады
Это уравнение вида ax2+bx+c=0ax^2 + bx + c = 0,
где aa – коэффициент перед x2x^2,
bb – коэффициент перед xx,
cc – свободное число.
Существуют разные способы нахождения корней квадратного уравнения. Пожалуй, самый основной и распространенный способ – через вычисление дискриминанта. В этом случае он рассчитывается по формуле:
D=b2–4acD = b^2 – 4ac
Если второй коэффициент уравнения четный, можно решать уравнение через kk, тогда будет другая формула дискриминанта:
D1=k2–acD_1 = k^2 – ac
Если первый коэффициент уравнения равен 1, то можно воспользоваться теоремой Виета, которая имеет 2 условия:
x1+x2=−bx_1 + x_2 = -b
x1⋅x2=cx_1 cdot x_2 = c
Но если мы захотим решить уравнение основным способом, ошибки не будет. Нахождение корней уравнения через дискриминант – универсальный способ, а остальные введены для удобства вычислений.
Задача 1
Решим уравнение: 3×2+7x−6=0.3x^2 + 7x — 6 = 0.
Обозначим коэффициенты:
a=3a = 3,
b=7b = 7,
c=−6c = -6
Далее находим дискриминант по формуле:
D=b2–4acD = b^2 – 4ac
D=72–4∗3∗(−6)=49+72=121=112D = 7^2 – 4 * 3 * (-6) = 49 + 72 = 121 = {11}^2
D>0D > 0 – значит, уравнение имеет 2 корня.
Находим корни уравнения по следующим формулам:
x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
x2=(−b−√D)/2ax_2 = (-b — √D) / 2a
Подставляем численные значения:
x1=(−7+11)/2∗3=4/6=23x_1 = (-7 + 11) / 2*3 = 4 / 6 = frac{2}{3}
x2=(−7–11)/2∗3=−18/6=−3x_2 = (-7 – 11) / 2*3 = -18 / 6 = -3
Ответ: x1=23x_1 = frac{2}{3}, x2=−3x_2 = -3.
Задача 2
Решим уравнение: −x2+7x+8=0.-x^2 + 7x + 8 = 0.
Обозначим коэффициенты:
a=−1a = -1,
b=7b = 7,
c=8.c = 8.
Далее находим дискриминант по формуле:
D=b2–4acD = b^2 – 4ac
D=72–4⋅(−1)⋅8=49+32=81=92D = 7^2 – 4 cdot (-1) cdot 8 = 49 + 32 = 81 = 9^2
D>0D > 0 – значит, уравнение имеет 2 корня.
Находим корни уравнения по следующим формулам:
x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
x2=(−b−√D)/2ax_2 = (-b — √D) / 2a
Подставляем численные значения:
x1=(−7+9)/2∗(−1)=2/(−2)=−1x_1 = (-7 + 9) / 2 * (-1) = 2 / (-2) = -1
x2=(−7–9)/2∗(−1)=−16/(−2)=8x_2 = (-7 – 9) / 2 * (-1) = -16 / (-2) = 8
Ответ: x1=−1x_1 = -1, x2=8x_2 = 8.
Задача 3
Решим уравнение: 4×2+4x+1=0.4x^2 + 4x + 1 = 0.
Обозначим коэффициенты:
a=4a = 4,
b=4b = 4,
c=1.c = 1.
Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac
D=42–4⋅4⋅1=16–16=0D = 4^2 – 4 cdot 4 cdot 1 = 16 – 16 = 0
D=0D = 0 – значит, уравнение имеет 1 корень.
Находим корень уравнения по следующей формуле: x=−b/2ax = -b / 2a
Подставляем численные значения:
x=−4/2⋅4=−4/8=−1/2=−0,5x = -4 / 2 cdot 4 = -4 / 8 = -1 / 2 = -0,5
Ответ: x=−0,5.x = -0,5.
Задача 4
Решим уравнение: 2×2+x+1=0.2x^2 + x + 1 = 0.
Обозначим коэффициенты:
a=2a = 2,
b=1b = 1,
c=1.c = 1.
Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac
D=12–4∗2∗1=1–8=−7D = 1^2 – 4 * 2 * 1 = 1 – 8 = -7
D<0D < 0 – значит, уравнение корней не имеет.
Ответ: корней нет.
Решение квадратного уравнения через k
Если у квадратного уравнения коэффициент bb четный, то можно решать уравнение через kk, при этом k=12bk = frac{1}{2} b.
Задача 5
Решим уравнение: −x2+2x+8=0.-x^2 + 2x + 8 = 0.
Обозначим коэффициенты:
a=−1a = -1,
b=2b = 2,
c=8c = 8
bb – четное.
k=12b=1k = frac {1}{2} b = 1.
Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac
D1=12–(−1)∗8=1+8=9=32D_1 = 1^2 – (-1) * 8 = 1 + 8 = 9 = 3^2
D1>0D_1 > 0 – значит, уравнение имеет 2 корня.
Находим корни уравнения по следующим формулам:
x1=(−k+D1)/ax_1 = (-k + {sqrt D}_1) / a
x2=(−k−D1)/ax_2 = (-k — {sqrt D}_1) / a
Подставляем численные значения:
x1=(−1+3)/(−1)=2/(−1)=−2x_1 = (-1 + 3) / (-1) = 2 / (-1) = -2
x2=(−1–3)/(−1)=−4/(−1)=4x_2 = (-1 – 3) / (-1) = -4 / (-1) = 4
Ответ: x_1 = -2, x_2 = 4.
Задача 6
Решим уравнение: 9×2–6x+1=0.9x^2 – 6x + 1 = 0.
Обозначим коэффициенты:
a=9a = 9,
b=−6b = -6,
c=1c = 1
bb – четное.
K=12b=−3.K = frac{1}{2} b = -3.
Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac
D1=(−3)2–9∗1=9–9=0D_1 = {(-3)}^2 – 9 * 1 = 9 – 9 = 0
D1=0D_1 = 0 – значит, уравнение имеет 1 корень.
Находим корень уравнения по следующей формуле: x=−k/ax = -k / a
Подставляем численные значения:
x=3/9=13x = 3 / 9 = frac{1}{3}
Ответ: x=13.x = frac{1}{3}.
Нахождение корней уравнения по теореме Виета
Если в квадратном уравнении a=1a = 1, то можно найти корни уравнения по теореме Виета.
Задача 7
Найдем корни уравнения: x2+3x+2=0.x^2 + 3x + 2 = 0.
Обозначим коэффициенты:
a=1a = 1,
b=3b = 3,
c=2c = 2.
Запишем 2 условия теоремы Виета:
x1+x2=−bx_1 + x_2 = -b
x1∗x2=cx_1 * x_2 = c
Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа -2 и -1.
Значит, корни уравнения равны:
x1=−2x_1 = -2
x2=−1x_2 = -1
Ответ: x1=−2x_1 = -2, x2=−1x_2 = -1.
Задача 8
Найдем корни уравнения: x2–5x+6=0.x^2 – 5x +6 = 0.
Обозначим коэффициенты:
a=1a = 1,
b=−5b = -5,
c=6c = 6
Запишем 2 условия теоремы Виета:
x1+x2=−bx_1 + x_2 = -b
x1∗x2=cx_1 * x_2 = c
Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа 2 и 3.
Значит, корни уравнения равны:
x1=2x_1 = 2
x2=3x_2 = 3
Ответ: x1=2x_1 = 2, x2=3.x_2 = 3.
Тест по теме «Примеры решения квадратных уравнений»
Математическая продлёнка. Квадратные уравнения во всей красе
Время на прочтение
9 мин
Количество просмотров 12K
Продолжаю потихоньку публиковать свои наработки к занятиям математического кружка. На этот раз речь пойдёт о до боли знакомых квадратных уравнениях и их свойствах, о которых нет времени поговорить в школе.
Геометрия квадратных уравнений
В восьмом классе мы встречаемся с квадратными уравнениями, выводим или заучиваем формулу для их решения, запоминаем страшное слово «дискримитант», в общем, становимся суровыми математиками! Либо окончательно понимаем, что «математика не моё» и наивно называем себя «гуманитариями».
Положа руку на сердце, признаю, что умение решать квадратные уравнения пригодится не всем нам во взрослой жизни. Чаще всего, мы оставляем это знание на полке со школьными тетрадками и учебниками.
Но вот какое важное универсальное знание даёт знакомство с ними: уравнение может не иметь решений, либо одно из решений может не иметь смысла, как, например, отрицательное время в какой-нибудь физической задаче.
Это важный жизненный опыт, который помогает осознавать и познавать границы возможного, применимого, разрешимого.
Квадратные уравнения могут научить ещё кое-чему, а именно, видеть алгебру, отыскивать геометрический смысл алгебраических результатов.
Давайте вспомним, как выглядит общий вид решения квадратного уравнения:
Что означает эта формула? Что два решения расположены по разные стороны некоторого числа и отстоят от него на расстоянии
. Какой же смысл у этих чисел?
Мы знаем, что график квадратного уравнения — это парабола. Кривая, которая имеет осевую симметрию относительно своего минимума. Эта симметрия присутствует и в решении. Число — это положение оси симметрии, то есть, минимума, а
— половина ширины отрезка, который парабола отсекает на оси. Если отсекает, конечно.
Давайте подставим в уравнение положение минимума:
Смотрите-ка, в числителе сам собой образовался дискриминант! Теперь нам легко понять его смысл — вертикальное положение минимума параболы.
Пусть, для определённости, коэффициент будет положительным, а значит, ветви параболы будут идти наверх. Если дискриминант
отрицателен, то парабола расположена над осью
и не пересекает её. В этом случае решений не будет. Если дискриминант положителен, минимум находится под осью
и парабола неизбежно пересечёт эту ось в двух точках.
Наконец, давайте посмотрим, как в само квадратное уравнение входят числа и
из которых состоят его решения. Это легко увидеть с помощью теоремы Виета:
На такой разбор может не хватить времени на школьном уроке, но он полезен для того, чтобы уравнения и их решения стали несколько более говорящими.
Пространство квадратных уравнений
Задачки в учебниках придумывают люди. И они хотят, чтобы задачи в них не просто решались, а ещё и красиво решались. Чтобы чудесным образом извлекались квадратные корни, чтобы дроби сокращались как надо.
Предположим, вам для проведения экзамена нужно сочинить десятка три задачек на решение квадратных уравнений. Вы выписываете наугад тридцать уравнений с целыми коэффициентами. Какую долю из них составят те что, не имеют вещественных решений? А сколько из них будут иметь целочисленные корни? Понятно, что во всех этих вопросах речь идет об ожидаемых величинах и долях.
Доля нерешаемых уравнений
Мы знаем, что квадратное уравнение решается, если его дискриминант
оказывается неотрицательным. А какая доля пространства троек
будет удовлетворять этому условию?
На этот вопрос проще ответить не в целых числах, а в действительных, сформулировав вопрос геометрически: какой фигурой в пространстве ограничивается объём нерешаемых уравнений?
Мы знаем уравнение границы этой фигуры: . Давайте преобразуем координаты так, чтобы стало очевидным, с чем мы имеем дело. Для этого сделаем преобразование координат:
и получим:
Мы видим уравнение окружностей в координатах с радиусами
. Значит, все нерешаемые уравнения попадают внутрь некоторого кругового конуса. Обратное преобразование к координатам
превратит этот круговой конус в эллиптический и повернёт его, как показано на рисунке:
Нам повезло! Конус, даже эллиптический, на всех масштабах выглядит одинаково, а это значит, что можно вычислить долю его объёма в объёме всего пространства параметров. Не буду здесь вдаваться в подробности расчёта, приведу конечный результат: доля нерешаемых уравнений составляет .
Получается, что если наугад выбрать три числа и составить с их помощью квадратное уравнение, то вероятность того, что оно будет иметь вещественные решения составит чуть менее двух третей. Конечно, эта вероятность будет зависеть от конкретного способа выбора коэффициентов, но в случае их равномерного распределения результат можно ожидать таким.
Конечно, если стоит задача составить список заведомо решаемых уравнений, то наугад их сочинять не придётся. Достаточно сгенерировать нужное количество пар решений и с помощью теоремы Виета сформировать соответствующие им уравнения:
Целочисленные решения
И теперь можно перейти ко второму вопросу: как выглядит в пространстве целочисленных коэффициентов квадратных уравнений подмножество «хороших» уравнений? Хорошими будем считать квадратные уравнения с целочисленными коэффициентами, у которых и дискриминант является полным квадратом, и дроби сокращаются так, что решения тоже получаются целочисленными.
Для наглядности, эту задачу будем решать для приведённых квадратных уравнений, то есть, таких, у которых .
В поиске ответа нам опять поможет теорема Виета. Она определяет преобразование координат, отображающее пространство решений в пространство коэффициентов:
Назовём это преобразование именем Виета. Все пары целочисленных решений образуют равномерную решётку в пространстве всех действительных решений.
На этой решётке выделяется линия , которая соответствует нулевому дискриминанту и кратным корням. Эта линия является осью симметрии всего пространства решений. Действительно, одному уравнению соответствует две пары решений
и
, которые расположены симметрично относительно линии кратных корней. Так что достаточно рассмотреть как отображается в пространство коэффициентов только подпространство уникальных решений, например, нижняя полуплоскость.
Горизонтальные и вертикальные прямые линии, соответствующие уравнениям и
(красные и синие линии на диаграммах) преобразование Виета снова превращает в прямые:
Какая красивая картинка! Линия кратных решений окаймляет «мёртвую область», в которой оказываются коэффициенты уравнений, не имеющих вещественных решений. К ней по касательной подходят линии, вдоль которых располагаются пары решений с одинаковым первым или одинаковым вторым элементом.
Линии, касательные параболе образуют прямолинейную, но непрямоугольную сетку. У неё есть интересное свойство: расстояния между всеми точками пересечений любой отдельно взятой касательной со всеми другими всегда одинаково. Нам оно потребуется, но мы позволим себе принять это эмпирическое наблюдение за факт без доказательства.
В отличие от доли нерешаемых уравнений, доля тех, что имеют целочисленные решения, будет сильно зависеть от диапазона, в котором выбираются коэффициенты. По мере его увеличения, число вариантов будет расти квадратично, как площадь в пространстве коэффициентов. В то же время, коэффициенты, дающие целочисленные решения будут располагаться на касательных к линии кратных корней, и их число будет расти линейно с увеличением диапазона, из-за того, что на касательных они располагаются на равном удалении друг от друга. Так что можно ожидать, что доля целочисленных решений будет падать пропорционально , если
и
. Численный эксперимент показывает, что на очень больших
сказывается отличие от обратной пропорциональности, но это уже такие тонкости, в которых возиться большого смысла нет.
Это значит, что уравнения с небольшими по модулю целыми коэффициентами с большей вероятностью будут иметь целочисленные корни, чем уравнения с большими коэффициентами.
И последнее замечание. В плоскости область нерешаемых уравнений ограничена параболой, тогда как в пространстве
эта область представляет собой конус. В этом нет противоречия, плоскость
сечёт конус параллельно образующей конуса, а такое коническое сечение является параболой.
Истинный облик квадратных уравнений
А куда деваются корни квадратного уравнения, когда оно не имеет действительных решений и откуда берутся комплексные корни? Как выглядят квадратные уравнения «на самом деле»? Сегодня мы увидим скрытый от вещественного мира облик привычных со школы квадратных уравнений.
Грамотные маткружковцы знают про существование комплексных корней квадратного уравнения, и даже знают, как правильно ставить ударение в слове «комплéксный». А как и откуда эти комплексные корни появляются по мере исчезновении вещественных? Где они располагаются и какой имеют геометрический смысл, применительно к параболе ?
Для того, чтобы порассуждать об этом, надо выйти за пределы вещественной числовой оси и увидеть уравнение таким, каким оно предстаёт в своём мире: в чудесном поле комплексных чисел, в которых любые алгебраические уравнения имеют решения.
Подставим в уравнение вместо переменной x комплексное число в форме :
Теперь раскроем все скобки и приведём подобные слагаемые относительно , не забывая, что
Равенство будет верным, если одновременно и вещественная и мнимая части левой половины равенства обратятся в ноль. Таким образом, мы свели одно уравнение в комплексных числах к системе вещественных уравнений на и
:
Второе уравнение при этом распадается на два: либо , либо
.
Можно изобразить геометрические места точек, удовлетворяющих всем трём уравнениям в плоскости и увидеть, что происходит с корнями. Первое уравнение описывает гиперболы с асимптотами, пересекающимися в точке
и симметрично расходящимися под наклоном
. Ветви гиперболы могут проходить двумя разными способами, в зависимости от знака дискриминанта, либо пересекая ось абсцисс, либо нет. А второе и третье уравнения — это прямые линии, горизонтальная и вертикальная, соответственно.
При положительном дискриминанте гиперболы пересекают вещественную ось, и точки пересечения соответствуют двум вещественным числам. Симметрия гипербол в точности согласуется с симметрией параболы, о которой мы говорили в самом начале.
Когда дискриминант отрицателен, ветви гиперболы проходят выше и ниже вещественной оси и пересекают вертикальную линию в двух точках. Это и есть два комплексных корня с вещественной частью равной
, и мнимой частью, отличающейся от нуля на величину
Нулевому дискриминанту соответствует вырожденная гипербола, совпадающая с асимптотами. Корень при этом кратный, и равен
Но откуда же взялись гиперболы? Квадратное уравнение — это же про параболы?
Истинное лицо квадратного уравнения
На самом деле, вещественная часть уравнения в комплексных числах описывает гиперболический параболоид. Вот как он выглядит:
Эта поверхность замечательна во многих отношениях. Её можно построить с помощью движения прямой или параболы, либо представить, как поверхность, порождённую многообразием парабол, проходящих через одну точку, которая называется седловой, или многообразием гипербол, лежащих в параллельных плоскостях. Наконец, именно такую форму имеют картофельные чипсы известной марки. Прекрасный иллюстрированный рассказ об этом можно найти здесь.
Линии пересечения параболоида с плоскостью это и есть знакомые нам гиперболы — горизонтальные сечения гиперболического параболоида. Теперь на корни квадратного уравнения мы можем взглянуть, увидев их во всей полноте. Плоскости
и
, пересекая параболический гиперболоид в вертикально, образуют две параболы, касающиеся друг друга в седловой точке и расположенные во взаимно перпендикулярных плоскостях. Эти две параболы представляют собой многообразия всех корней квадратного уравнения.
Положение седловой точки гиперболического параболоида это знакомое нам число
Посмотрите, что происходит с поверхностью, при изменении знака дискриминанта. Если мы станем изменять коэффициенты квадратного уравнения, то параболоид станет перемещаться в пространстве
пересечение многообразий корней уравнения с плоскостью
рождает пару чисел, либо вещественных, либо комплексных
Теперь мы с уверенностью можем сказать, что видим, куда деваются вещественные корни уравнения и откуда берутся комплексные!
Параболоид в пространстве квадратных уравнений
Очертания гиперболического параболоида можно разглядеть и в сетке, образованной линиями равных решений в пространстве коэффициентов квадратных уравнений, которую мы построили в предыдущей части. И это, конечно же, не случайно. Мы рассмотрели преобразование Виета, которое строит найти отображение из пространства решений в пространство коэффициентов:
Где же здесь прячется параболоид? Уравнение гиперболического параболоида имеет два канонических вида:
которые переходят друг в друга при линейном преобразовании координат Это преобразование поворачивает и двое уменьшает все фигуры, не меняя их формы. Отсюда следует, что в сердце преобразования между вещественными корнями уравнения и коэффициентами тоже лежит гиперболический параболоид. Вот как выглядит это преобразование геометрически:
Вертикальная ось на этом графике соответствует свободному коэффициенту в уравнении. Коэффициент при линейном члене
, это сумма корней, так что плоскость
представляет собой вертикальную плоскость, параллельную линии кратных корней. Проекцию параболоида на эту плоскость мы и видим, как преобразование Виета.
Параболоид в преобразовании Виета и параболоид, образуемый вещественной частью квадратного уравнения в комплексных числах, это разные фигуры, не связанные друг с другом. Но квадратные уравнения настолько пронизаны параболами, что не удивительно встретить параболоиды в разных частях их теории.
Можно бы завершить рассказ сакраментальной фразой: «Теперь мы знаем о квадратных уравнениях всё». Но, конечно же, главное, это разобраться а зачем нам вообще знать что-то про квадратные уравнения?
Приглашаю вас в свой Дзен-канал Онлайн-кружок математики, в котором различные занимательно-математические материалы появляются в облегчённом варианте, но зато регулярно.
Основные понятия уравнения
Определение
Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.
К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.
Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.
Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.
Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.
Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.
Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.
Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 : f = 2
Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.
Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд.
Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.
Пример:
3 * а = 15 : х — уравнение с двумя переменными:
8 — а = 5 * х — z — уравнение с тремя переменными.
Корень уравнения
Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.
Пример:
В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.
Определение.
Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.
Стоит отметить, что корней может быть несколько или не быть вовсе.
Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.
Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4, можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0, в данном случае три решения ноль, два и один.
Для того чтобы верно записать результат уравнения мы пишем так:
- Если корня нет, пишем уравнение корней не имеет;
- Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: {-2, 3, 5};
- Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5.
- или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
- Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых – Z, действительных — R.
Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения. Рассмотрим определение уравнения с несколькими переменными.
Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.
Примеры:
Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера. А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.
Правила нахождения корней
Таких правил существует несколько рассмотрим их ниже.
Пример 1
Допустим мы имеем уравнение 4 + х = 10, чтобы найти корень уравнения или значение х в данном случае необходимо найти неизвестное слагаемое, для этого есть следующее правило или формула. Для нахождения неизвестного слагаемого, нужно из суммы вычесть известное значение.
Решение:
х = 10 — 4
х = 6
Чтобы проверить является ли 6 решением, мы ставим его на место неизвестной переменной х в исходное уравнение, получаем следующее равенство 4 + 6 = 10, такое равенство является верным, что означает число корня уравнения, равно 6.
Пример 2
Возьмём уравнение вида х — 5 = 3, в данном примере х это неизвестное уменьшаемое, для того чтобы его найти необходимо следовать следующему правилу:
Для нахождения уменьшаемого необходимо сложить разность и вычитаемое.
Решение:
х = 3 + 5
х = 8
Проверяем правильность нахождения корня уравнения, подставляем, вместо переменной неизвестной, найденное число 8, получаем равенство 8 — 5 = 3, так как оно верное, то и корень уравнения найден правильно.
Пример 3
Берём уравнение, в котором неизвестное х будет вычитаемое к примеру: 8 — х = 4. для того чтобы найти х необходимо воспользоваться правилом:
Для нахождения вычитаемого, нужно из уменьшаемого вычесть разность.
Решение:
х = 8 — 4
х = 4
Проверяем правильность нахождения корня уравнения, для этого полученное значение ставим вместо неизвестного вычитаемого в исходный пример, и получаем следующее равенство 8 — 4 = 4, равенство верно, значит и корень найден правильно.
Нет времени решать самому?
Наши эксперты помогут!
Пример 4
Возьмём уравнение вида х * 3 = 9, в данном уравнении неизвестна переменная х, является множимым. Для того, чтобы найти корень такого уравнения необходимо использовать следующее правило.
Для нахождения неизвестного множимого, нужно произведение разделить на множитель.
Решение:
х = 9 : 3
х = 3
Для проверки подставим найденное значение х в исходное уравнение, получим равенство 3 * 3 =9, так как равенство является верным, то и решение уравнения верное.
Такое же правило действует и для множителя, чтобы его найти необходимо произведение разделить на множимое.
Пример 5
Возьмём уравнение следующего вида: х : 2 = 10 , в данном уравнении х- это неизвестное делимое, 2 — делитель, а 10 — частное. Для нахождения неизвестного значения х, воспользуемся правилом:
Чтобы найти делимое, необходимо частное умножить на делитель.
Решение:
х = 10 * 2
х = 20
Проверим, вместо неизвестного х, поставим его значение 20, получим следующее равенство 20: 2 = 10. Равенство верное, значит и решение было верным.
Пример 6
Теперь рассмотрим пример с делителем.
Возьмём уравнение 22: х = 11, где х неизвестный делитель. Для того чтобы его найти существует правило:
При нахождении неизвестного делителя нужно делимое разделить на частное.
Решение:
х = 22 : 11
х = 2
Проверяем, 2 ставим на место неизвестного х в исходное уравнение, получаем равенство 22 : 2 = 11. Так как равенство верно, то мы нашли верный корень уравнения.
Пример применения правил в более сложном уравнении: 2х — 5 =5
Решение:
2х = 5 + 5
2х = 10
х = 10 : 2
х = 5
Проверяем, для этого полученное значение х = 5, ставим в исходное уравнение, получаем равенство 2 * 5 — 5 = 5, так как равенство верно, корень найден правильно.
Квадратные уравнения
Существует также уравнения квадратного вида, например: 2х2 = 32, для того, чтобы найти неизвестное или корень квадратного уравнения, в таком уравнении необходимо:
Решение:
х2 = 32 : 2
х2 = 16
х = √16
х = 4
Проверим, для этого полученное значение подставим в исходное уравнение, и получим равенство 242 = 32. так как равенство верное, то и решение уравнения верно.
Как мы видим нахождение корня уравнения не такой сложный процесс, главное запомнить правила. Стоит отметить, что помимо решения различного вида задач, уравнения применяются в других различных науках. Применение уравнений можно найти в экономике, в физике, химии, биологии и других. При их помощи можно вычислить и описать процессы, происходящие вокруг нас.