A(-5;7), B(7;-2), C(11;20) Даны вершины треугольника АВС. Найти:
1)Длину стороны АВ. 2) внутренний угол А в радианах с точностью до двух знаков после запятой. 3) уравнение медианы СМ. 4) уравнение высоты СК. 5) точку пересечения высот (т. F). 6) площадь треугольника АВС. Сделать чертеж.
Оцените сложность задачи:
0 голосов, средняя сложность: 0.0000
Решения задачи
Изобразим на рисунке условия задачи
Длина стороны треугольника находится по формуле
$ |AB| = sqrt{(x_{B}-x_{A})^{2}+(y_{B}-y_{A})^{2}} $
подставляем в формулу значения координат
$ |AB| = sqrt{(7+5)^{2}+(-2-7)^{2}}=sqrt{(12)^{2}+(-9)^{2}}=15 $
Чтобы найти угол A, необходимо узнать длину стороны AC
$ |AC| = sqrt{(11+5)^{2}+(20-7)^{2}}=sqrt{(16)^{2}+(13)^{2}}=20,61 $
формула 4
$ vect{AB} = (7+5; -2-7)=(12; -9) $
формула 5
$ vect{AC} = (11+5; 20-7)=(16; 13) $
формула 6
$cos(⦟A)=cos(vect{AB}^vect{AC})=frac{vect{AB}×vect{AC}}{|AB|×|AC|}=frac{12×16+(-9)×13}{15×20,61}=0,24$
формула 7
$ ⦟A = arccos(⦟A)=arccos(0.24)=1,33 рад $
Переводим радианы в градусы
$ ⦟A = frac{0,90×180}{3,14}=76.24° $
Находим координаты точки M
$ x_{M} = frac{x_{A}+x_{B}}{2}=frac{-5+7}{2}=1 $
и
$ y_{M} = frac{7+(-2)}{2}=2,5 $
$ M(1; 2,5) $
Уравнение прямой через две точки (медианы CM)
$ CM = frac{x-x_{C}}{x_{M}-x_{C}}=frac{y-y_{C}}{y_{M}-y_{C}} $
подставив значения координат, получаем
$ frac{x-11}}{1-11}=frac{y-20}}{frac{5}{2}-20} $
Откуда находим
$ y=(x-11)(5-40)=-20(y-20) $
Раскрываем скобки
$ -35x+385=-20y+400 $
Откуда находим
$ 20y-35x-15=0 $
Делим левую и правую части уравнения на 5
$ 4y-7x-3=0 $
Ответ:
$ Длина стороны AB равна 15; $
$ Внутренний угол при вершине A равен 76,24°; $
$ Уравнение медианы CM: y=frac{7}{4}x+frac{3}{4}. $
Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь
Нахождение угла между векторами
Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.
Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →
Углом между векторами a → и b → называется угол между лучами О А и О В .
Полученный угол будем обозначать следующим образом: a → , b → ^
Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.
a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.
Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.
Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.
Нахождение угла между векторами
Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.
Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .
Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:
cos a → , b → ^ = a → , b → a → · b →
Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.
Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.
Решение
Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,
Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4
Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4
Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.
Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:
cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2
А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2
Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.
Решение
- Для решения задачи можем сразу применить формулу:
cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70
- Также можно определить угол по формуле:
cos a → , b → ^ = ( a → , b → ) a → · b → ,
но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70
Ответ: a → , b → ^ = — a r c cos 1 70
Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.
Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .
Решение
Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )
Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13
Ответ: cos A C → , B C → ^ = 3 13
Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,
b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^
и отсюда выведем формулу косинуса угла:
cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →
Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.
Хотя указанный способ имеет место быть, все же чаще применяют формулу:
Угол между векторами.
Формула вычисления угла между векторами
cos α = | a · b |
| a |·| b | |
Примеры задач на вычисление угла между векторами
Примеры вычисления угла между векторами для плоских задачи
Решение: Найдем скалярное произведение векторов:
a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.
Найдем модули векторов:
| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5
Найдем угол между векторами:
cos α = | a · b | = | 24 | = | 24 | = 0.96 |
| a | · | b | | 5 · 5 | 25 |
Решение: Найдем скалярное произведение векторов:
a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.
Найдем модули векторов:
| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2
Найдем угол между векторами:
cos α = | a · b | = | 40 | = | 40 | = | 4 | = 0.8 |
| a | · | b | | 5√ 2 · 5√ 2 | 50 | 5 |
Примеры вычисления угла между векторами для пространственных задач
Решение: Найдем скалярное произведение векторов:
a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.
Найдем модули векторов:
| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6
Найдем угол между векторами:
cos α = | a · b | = | 28 | = | 14 |
| a | · | b | | 5 · 6 | 15 |
Решение: Найдем скалярное произведение векторов:
a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.
Найдем модули векторов:
| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2
Найдем угол между векторами:
cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Как найти угол между векторами
Вы будете перенаправлены на Автор24
Угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.
Пусть нам даны два вектора $overline<α>$ и $overline<β>$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline<α>=overline$ и $overline<β>=overline$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).
Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ
Причем мы будем считать, что если векторы $overline<α>$ и $overline<β>$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.
Нахождение угла между векторами в пространстве с помощью скалярного произведения
Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.
Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.
Математически это может выглядеть следующим образом:
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.
Скалярное произведение двух данных векторов $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.
Математически выглядит следующим образом
$overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$
Готовые работы на аналогичную тему
Обозначение: $overline<δ>cdot overline<β>$.
С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что
Из теоремы 1 мы знаем, что $overline<δ>cdot overline<β>=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно
Расписывая по формуле длины вектора значения $|overline<δ>|$ и $|overline<β>|$, окончательно получим
Найдя значение косинуса, мы легко найдем и значение самого угла.
Найти косинус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.
Решение.
Найдем скалярное произведение между данными векторами через координаты:
$overline<δ>cdot overline<β>=1cdot 3+(-2)cdot 0+2cdot 4=11$
Найдем длины этих векторов:
В результате, получим
Нахождение угла между векторами с помощью векторного произведения
Вспомним сначала, определение векторного произведения и каким образом его можно находить.
Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.
Математически это выглядит следующим образом:
- $|overline<δ>хoverline<β>|=|overline<δ>||overline<β>|sin∠(overline<δ>,overline<β>)$
- $overline<δ>хoverline<β>⊥overline<δ>$, $overline<δ>хoverline<β>⊥overline<β>$
- $(overline<δ>хoverline<β>,overline<δ>,overline<β>)$ и $(overline,overline,overline)$ одинаково ориентированы (рис. 2)
Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ
Для нахождения вектора векторного произведения можно пользоваться следующей формулой:
С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline<δ>$ и $overline<β>$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что
Найдем вектор векторного произведения по формуле:
$overline<δ>хoverline<β>=beginoverline&overline&overline\δ_1&δ_2&δ_3\β_1&β_2&β_3end=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$
Расписывая по формуле длины вектора значения $|overline<δ>|$, $|overline<β>|$ и $|overline<δ>хoverline<β>|$, окончательно получим
Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.
Найти синус угла между векторами $overline<δ>$ и $overline<β>$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.
Решение.
Найдем вектор векторного произведения между данными векторами по формуле:
Найдем длины этих векторов:
В результате, получим
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 20 07 2022
http://ru.onlinemschool.com/math/library/vector/angl/
http://spravochnick.ru/geometriya/metod_koordinat_v_prostranstve/kak_nayti_ugol_mezhdu_vektorami/
Содержание:
Тригонометрические функции произвольного угла
Угол поворота
До недавнего времени говоря об угле мы имели в виду угол, полученный между двумя неподвижными сторонами. Угол также можно рассматривать как измерение поворота. Например, радиус колеса, расположенного по горизонтали при вращении вокруг неподвижной оси, через определённое время относительно начального положения образует некоторый угол. К тому же значение угла зависит от направления поворота. Любой угол можно рассматривать как фигуру, полученную вращением луча вокруг начальной точки.
Начальное положение луча соответствует одной стороне угла, конечное положение — другой стороне. При вращении луча на координатной плоскости относительно начала координат в направлении по часовой стрелке или против часовой стрелки, можно получить различные углы.
Начальная сторона угла поворота совпадает с положительным направлением оси абсцисс. Сторону, полученную при вращении относительно начала координат (вершины угла), назовём конечной стороной. Принято считать, что если поворот происходит в направлении против часовой стрелки, то угол имеет положительное значение, при повороте в направлении по часовой стрелке, угол имеет отрицательное значение,
положительный угол отрицательный угол
Координатные оси разбивают координатную плоскость на 4 четверти. Значение угла, в зависимости от того, в какой четверти расположена его конечная сторона, меняется в определенном интервале.
Конечная сторона угла может совершить один или несколько оборотов относительно начала координат. Один полный оборот соответствует углу 360°. Существует бесконечное число углов поворота, у которых начальная и конечная стороны совпадают. Например, конечные стороны углов 30°и 390° совпадают. В общем, для углов поворота и
(здесь
произвольное целое число) конечные стороны совпадают.
Радианная и градусная мера угла
Пример 1. Нарисуйте угол заданной величины. Определите какой четверти принадлежит конечная сторона угла.
Пример 2. На координатной плоскости покажите и запишите градусные меры двух положительных и одного отрицательного угла поворота, конечные стороны которых совпадают с конечной стороной угла 60°.
Радианное измерение углов
Угол в один радиан-это центральный угол, у которого длина дуги равна радиусу. Радианная мера угла есть отношение длины соответствующей дуги к радиусу окружности: . Величина угла, выраженная в радианах не зависит от длины радиуса (объясните, воспользуясь подобием фигур на рисунке).
Пример 1. Сколько радиан составляет центральный угол, длина дуги которого равна 12 см, если радиус окружности равен 4 см?
Решение: 1 радиан соответствует длине дуги 4 см. Дуге длиной 12 см будет соответствовать угол 12 : 4 = 3 радиан. Длина окружности . Если центральный угол, соответствующий дуге окружности радиуса
равен 1 радиану, то дуге, равной
; соответствует центральный угол
. Ниже показаны радианные меры углов поворота.
Радианная мера одного целого оборота равна , градусная мера 360°. То есть,
радиан = 360°. Отсюда можно установить следующую связь между радианной и градусной мерой. Преобразование радиан в градусы:
Преобразование градусов в радианы:
Таким образом, рад = 180°. Обозначение «рад’ часто опускают. Вместо
рад = 180° обычно пишут
= 180°. Отсюда получаем, что
Используя соответствующие радианные и градусные меры углов, расположенных в первой четверти, можно найти увеличенные в разы значения других углов. Например, если 30° = , тогда 150° =
Пример 2. Выразите углы, заданные в градусах радианами, а углы, заданные радианами в градусах, а) 60° ; б)
Решение.
а)60° = радиан
— радиан
1,047 радиан
б)
радиан
Пример 3. Выразите углы, конечная сторона которых совпадает с углом 45°, в градусах и радианах.
Решение: Конечная сторона угла 45°совпадает с углами 405° и 315°, а также существует бесконечно много углов, конечные стороны которых совпадают с конечной стороной угла 45°: ;
,
или
,
.
В радианах это можно записать как
и т.д. Все углы, конечные стороны которых совпадают с углом
в общем виде записываются так:
Пример, а)
Все углы поворота, конечные стороны которых совпадают с углом
можно найти но формуле .
Как видно, в заданном интервале, расположен всего один угол 425°. Пример. д) Все углы поворота, конечные стороны которых, совпадают с этим углом можно найти по формуле
.
Интервалу принадлежат углы
Длина дуги
Запишем формулу нахождения длины дуги, соответствующей центральному углу окружности радиуса
. Используя радианную меру длину окружности можно найти ещё проще. По определению радиана, если
, тогда длина дуги равна произведению радиуса и радианной меры угла:
Длина дуги окружности находится с радиусом в прямо пропорциональной зависимости.
Площадь сектора
Центральному углу соответствует сектор площадь которого равна
. Учитывая что радиальная мера центрального угла равна
и обозначив её через
, запишем формулу нахождения площади сектора
. Пример 1. Длина секундной стрелки часов равна 12 см. Определите длину дуги, которую описывает конец секундной стрелки за 15 секунд.
Решение. Секундная стрелка за 60 минут совершают один полный оборот. Это соответствует радианам. 15 секунд соответствуют
части полного оборота:
радиан. То есть, минутная стрелка за 15 секунд чертит дугу, соответствующую центральному углу
. Длина этой дуги:
Пример 2. Найдите площадь и периметр закрашенного сектора на рисунке, если радиус круга равен 8 см. Закрашенной части круга соответствует центральный угол:
Площадь сектора равна:
(см2).
Периметр сектора равен сумме длин двух радиусов и длины дуги: (см)
Линейная скорость и угловая скорость
Скорость при движении по окружности, например, скорость движения произвольной точки Р колеса, которое вращается вокруг точки О, может быть вычислена двумя способами.
В первом случае, её можно найти используя расстояние и время. Эта скорость называется линейной скоростью. Во втором случае — используя угол поворота (центральный угол). Эта скорость называется угловой скоростью.
Если тело движется но окружности, то линейная скорость равна отношению пройденного пути (длины дуги окружности) к промежутку времени.
Если тело движется по окружности, то угловая скорость равна отношению угла поворота к промежутку времени.
Здесь
(в радианах) — угол вращения за промежуток времени
. Между линейной и угловой скоростью существует следующая связь:
линейная скорость = угловая скорость
Пример 3. Карусель совершает за минуту 8 полных оборотов.
а)Чему равна угловая скорость карусели за минуту(в радианах)?
б)На сколько метров за минуту передвигается лошадь, которая находится на расстоянии 3 м от центра окружности?
в)На сколько метров за минуту передвигается лошадь, которая находится на расстоянии 2 м от центра окружности?
Решение:
а) Один целый оборот при вращении соответствует центральному углу . За 8 оборотов этот угол равен
. Угловая скорость за минуту равна
радиан/мин.
б)Если лошадь находится на расстоянии 3 м от центра, то она движется по окружности радиуса 3 м.
Линейная скорость:м/мин
в)Если лошадь находится на расстоянии 2 м от центра, то она движется по окружности радиуса 2 м.
Линейная скорость:м/мин
Тригонометрические функции
Тригонометрические отношении для угла зависят только от значения угла.
Пусть конечная сторона угла а при повороте пересекается с окружностью радиусом г, центр которой находится в начале координат, в точке Р(х; у).
Отношение ординаты точки Р к длине радиуса называется синусом угла
:
Отношение абсциссы точки Р к длине радиуса называется косинусом угла
:
Отношение ординаты точки Р к абсциссе называется тангенсом угла
:
(здесь
, то есть точка Р не расположена на оси ординат)
Отношение абсциссы точки Р к ординате называется котангенсом угла
:
(здесь
, то есть точка Р не расположена на оси абсцисс)
Косинусом угла
называется обратное значение для синуса:
(здесь
)
Секансом угла
называется обратное значение для косинуса:
(здесь
)
Пример 1. Точка А (- 3; 4) расположена на конечной стороне угла поворота .
а) Изобразите решение примера.
б) Определите значения тригонометрических отношений для угла поворота .
Решение:
а)
б)
Координаты точки на окружности
Если заданная точка Р окружности находится на конечной стороне угла поворота , то она имеет координаты
.
Пример 2. По данным рисунка найдите координаты точки Р.
Точка Р находится во II четверти и косинус отрицательный.
Для некоторых углов, конечная сторона расположена на одной из координатной оси. В этом случае, градусная мера угла поворота равна:
или
радиан,
или
радиан,
или
радиан,
или
радиан.
В этом случае координаты х или у равны или нулю, или абсолютному значению длины радиуса.
Пример 3. Найдём значения тригонометрических отношений для:
а) а = 90° ; б) а = 180°; в) а = 270° .
При всех допустимых значениях, каждому значению , соответствует единственное значение
. Поэтому тригонометрические отношения являются функциями угла
и называются тригонометрическими функциями.
Так как , то знак косинуса совпадает со знаком х.
Так как , то знак синуса совпадает со знаком у.
Тригонометрические функции произвольного угла. Нахождение значений тригонометрических функций произвольного угла при помощи острого угла
Чтобы вычислить тригонометрические отношения для углов больше 90°, удобно использовать тригонометрические отношения острого угла.
Для любого угла поворота существует
образованный конечной стороной и прямой, содержащий ось абсцисс.
Используя соответствующие острые углы можно определить тригонометрические отношения для любого произвольного угла. Эти значения можно вычислить точно для углов 30°, 45°, 60°, а для остальных острых углов — при помощи калькулятора.
Пример 1. Для следующих углов, определите острые углы:
а) б)
Решение:
а) конечная сторона угла 300° расположена в IV четверти. Соответствующий острый угол равен: 360°- 300° = 60°
б) конечная сторона угла расположена в III четверти. Соответствующий
острый угол равен:
Пример 2. Найдём значение основных тригонометрических функций для угла . Шаги решения:
1.Найдём наименьший положительный угол, конечная сторона которого совпадает с заданным углом и дополняет его до 360°: -135° + 360° = 225°
2.Для угла 225° найдём соответствующий острый угол 225° — 180° = 45°.
3.Определим какой четверти принадлежит угол -135° — угол III четверти.
4.Найдём значение тригонометрических функций для угла 45° и учтём знак этих функций в III четверти. Получим:
Тригонометрические функции для произвольного угла можно определить следующим образом:
•определяем соответствующий острый угол;
•находим значение тригонометрических функций для этого угла;
•определяем знак значения тригонометрических функций в зависимости от четверти.
Так как конечные стороны углов и
совпадают, то значения тригонометрических функций этих углов одинаковы. Если угол изменяется на целое число оборотов, то значение тригонометрических функций не меняется.
Заметим, что если угол меняется на пол оборота, то значения тангенса и котангенса не изменяются.
На самом деле, если углу поворота соответствует точка
, а углу поворота
(или
) соответствует точка
, то :
В общем случае
выполняются равенство:
Пример 3. Найдём допустимые значения , если
. Так как в I и во II четвертях синус положителен.
, значит если
, то
Абсцисса этой точки
Тогда или
Единичная окружность и тригонометрические функции
Значения тригонометрических функций зависят только от значения угла и не зависят от радиуса окружности. Поэтому, не нарушая общности, можно принять
. Окружность, центр которой находится в начале координат, с радиусом равным единице, называется единичной окружностью. Координаты точки, принадлежащей окружности удовлетворяют уравнению
.
Если точка является точкой пересечения единичной окружности и конечной стороны угла поворота
, то между ней и тригонометрическими функциями существует следующая связь:
Таким образом, координаты точки принадлежащей единичной окружности, можно записать как:
.
Также по заданным координатам можно найти следующие тригонометрические функции: .
Зная, что
при определённом повороте на единичной окружности, можно найти соответствующие координаты точки.
Для этого надо выполнить следующие шаги:
1) На единичной окружности отметим точки, соотвегствующие углу поворота , найдём координаты этих точек по формуле:
.
2)Для некоторой точки, принадлежащей единичной окружности, например ,определите координаты симметричной точки. Как видно но рисунку, существует 3 точки, симметричные точке А, которые расположены во II, III и IV четвертях.
Точка В симметрична точке А относительно оси у, точка С — относительно начала координат, а точка D — относительно оси х. Абсолютные значения координат этих точек равны и отличаются только знаком.
3)Таким образом, можно определить координаты новых точек, зная координаты точки, принадлежащей I четверти. Т.е. получаем единичную окружность, на которой отмечены углы поворота и координаты точек.
- Заказать решение задач по высшей математике
Единичная окружность и тригонометрические функции произвольного угла
Так как координаты точек на единичной окружности удовлетворяют условиям , то
Наибольшее значение
и
равно 1, а наименьшее значение равно -1.
Пример 1. Для угла поворота вычислите значения основных тригонометрических функций.
Решение: Конечная сторона угла поворота расположена в III четверти. Этому углу соответствует острый угол
. Точка пересечения конечной стороны угла
с единичной окружностью симметрична точке
относительно начала координат и соответствует точке
.
Тогда ,
Пример 2. Точка А, с абсциссой расположена в III четверти и пересекается с единичной окружностью на стороне угла
.
а)Найдём ординату точки А.
б)Изобразим рисунок, соответствующий условию и для угла найдём значения шести тригонометрических функций.
Решение:
а),
. Так как точка расположена в III четверти
.
б),
,
,
,
,
.
Пример 3. Найдём наибольшее и наименьшее значение выражения .
Решение:
Таким образом, для выражения a НМЗ равно 1, а НБЗ равно 5.
Формулы приведения
Если объект находится в I четверти, то симметричный ему относительно оси у объект находится во II четверти. Симметричный последнему относительно оси х, объект находится в III четверти, и он совпадает с объектом, симметричным начальному объекту из I относительно начала координат. Обратите внимание, что отображение относительно оси у и отображение, относительно оси х, совпадают с поворотом на 180°.
При отображении относительно оси х, точка расположенная на конечной стороне угла изменяет координаты, как показано на рисунке.
То есть, при этом знак меняет только координата у. Таким образом, так как косинус зависит от х он не меняется, зато меняется знак синуса. Отсюда, для углов можно записать следующие зависимости между тригонометрическими функциями.
То есть, синус, тангенс и котангенс нечётные функции, косинус-чётная.
Пример 1:
Конечные стороны углов поворота
и 360° —
симметричны относительно оси х. То есть
.
Отсюда получаем:
Запишем для углов и 90° —
прямоугольного треугольника с острым углом
тригонометрические отношения:
При попарном сравнении равенств можно увидеть следующую связь-между значениями тригонометрических функций углов и 90° —
.
Повернём конечную сторону угла поворота ещё на 90°. При этом точка Р(х; у), расположенная на стороне преобразуется в точку
. По определению тригонометрических функций:
Запишем эти формулы в следующем виде:
Как видно но рисунку отображения относительно оси у и оси х эквивалентны повороту на 180°. Изменение координат, можно записать следующим образом:
Как видно по рисунку, при повороте угла а на 180° конечная сторона расположена в противоположных четвертях, но на одной прямой.
Пример 2.
Для получения аналогичных формул тригонометрических функций угла поворота достаточно записать
и применить последовательность соответствующих формул.
Например:
Теперь запишем соответствующие формулы для угла поворота . Например:
При помощи полученных формул можно найти значения тригонометрических функций произвольного угла, зная значения для соответствующего острого угла. Эти формулы называются формулами приведения. Для формул приведений можно легко увидеть следующую закономерность
1)Если аргумент имеет вид или
, то функция преобразуется в «сопряжённую» функцию (то есть синус в косинус или наоборот, а тангенс в котангенс или наоборот) угла
.
2)Если аргумент имеет вид 180° ± или 360° ±
, то функция преобразуется в одноимённую функцию угла
.
В каждом из обоих случаев, знак полученной в результате преобразования функции имеет одинаковое значение со знаком острого угла в соответствующей четверти.
Тригонометрические тождества
Для острого угла прямоугольного треугольника покажите, что
, выполнив следующие шаги:
1)Запишите теорему Пифагора:
2)Каждую из сторон равенства разделите на с2:
3)Примените свойство степени:
4) Примите во внимание, что:
Связь между тригонометрическими функциями одного и того же угла
Тождество можно доказать и при помощи координат точки, принадлежащей единичной окружности.
По координатам точки на единичной окружности и по определениям тригонометрических функций имеем:
Для всех значений , при которых
Для всех значений , при которых
Из данных равенств имеем,что если для угла одновременно выполняются условия
и
, то справедливо тождество
Разделив обе чаете равенства поочередно на
и на
будем иметь:
Полученные выше равенства являются тождествами. Их называют основными тригонометрическими тождествами. На основании основных тригонометрических можно написать:
При помощи основных тригонометрических тождеств можно упрощать тригонометрические выражения и вычислять модуль значения всех остальных функций, зная значение одной из них.
Пример 1. Используя основные тригонометрические тождества, докажите,что:
Доказательство:
Пример 2. Зная, что и угол
принадлежит III четверти, найдите
остальные тригонометрические функции.
Из формул получаем:
Так как угол принадлежит III четверти, то
Тогда:
Формулы сложения
Практическая работа .
1)Покажем по шагам, равенство выражения
a)Для значений и
, вычислим значения выражения в левой части.
б)Для значений
и
, вычислим значения выражения в правой части.
2)Как можно вычислить значение тригонометрических функций для угла 15°, используя разность значений углов 45° и 30°(15° = 45° — 30°)?
Тригонометрические функции суммы и разности двух углов.
Сначала докажем тождество
На рисунке
а)для угла координаты точки Р1, взятой на единичной окружности равны
, а для угла
координаты точки Р2 равны
. Разместим углы
—
, как показано на рисунке б).
Тогда, для угла координаты точки Рз будут
. Из того, что
(по признаку СУС ) следует, что
.
Доказательство тождества
учитывая, что
справедливость тождества доказана.
Доказательство тождества
no формулам приведения группируя
no формуле косинуса разности с учётом формул приведения.
Доказательство тождества
:
Пример 1. Найдём значение выражения если
Решение.
Пример 2.
Найдём значение выражения если
.
Решение.
Известно что . Если углу
соответствует острый угол
, то
. Так как противолежащий катет равен 3, а гипотенуза 5, тогда прилежащий катет равен
и учитывая, что
угол III четверти, получим:
.
Аналогично, если зная, что , получаем,
что .
Можно записать формулы сложения для тангенса и котангенса:
no определению no формулам сложения
Аналогичным образом можно показать, что :
Следствия из формул сложения
Практическая работа.
Преобразуйте сумму в произведение, выполнив следующие шаги:
1)
решив систему уравнений найдите такие углы, чтобы их сумма была равна 70°, а разность
2)Запишите следующее 70° = 40° + 30°, 10° = 40° — 30° и упростите
Преобразование суммы(разности) в произведение
Формулы преобразования произведения
Справедливость данных тождеств можно показать при помощи формул сложения:
почленно складываем почленно складываем
Следующее тождество можно доказать аналогичным образом.
Тригонометрические функции двойного аргумента
Формулы сложения позволяют выразить через тригонометрические функции угла
.
Таким образом, получаем тождества, которые называются формулами двойного аргумента:
Формулы половинного аргумента
Имеем, что
Отсюда: Заменяем в данной формуле
на
получаем:
Для половинных аргументов справедливы тождества. Знак в правой части в данном равенстве зависит от того, в какой четверги находится угол
.
Пример 1. Упростим выражение .
Решение.
Пример 2. He используя калькулятор, вычислим значения и
, зная, что угол
принадлежит IV четверти и
Решение.
Пример 3. Найдём значений .
Решение:
Используем формулу половинного аргумента
угол I четверти и в этой четверти косинус положителен.
Упрощение тригонометрических выражений
Пример 1. Раскроем скобки и упростим выражение.
Пример 2. Разложим на множители и упростим выражение.
Пример 3. Упростим рациональное выражение, содержащее тригонометрические функции.
Пример 4. Освободим знаменатель от радикала
Здесь .
- Теоремы синусов и косинусов
- Система показательных уравнений
- Непрерывные функции и их свойства
- Правило Лопиталя
- Решение уравнений высших степеней
- Системы неравенств
- Квадратные неравенства
- Точка, прямая и плоскость в пространстве
Радианная мера угла
3 ноября 2011
В школьном курсе математики есть два определения основных тригонометрических функций — синуса, косинуса, тангенса и котангенса:
- Геометрический подход — основан на сторонах прямоугольного треугольника и их соотношениях. В этом случае все синусы и косинусы положительны, поскольку длина отрезка всегда задается положительным числом;
- Алгебраический подход — работа ведется на тригонометрической окружности. Такой подход возникает на стыке 9—10 классов, и с этого момента синусы и косинусы вполне могут быть отрицательными. А «старые» геометрические определения становятся лишь частным случаем.
Для решения задачи B11 нужен именно алгебраический подход. Чуть позже мы убедимся, что такие задачи решаются элементарно — буквально с помощью одной формулы. Но для начала научимся быстро (буквально на лету) определять координатную четверть, в которой расположен искомый угол. В этом нам помогут следующие правила.
Переход от радианной меры к градусной
Вспомните: в 8—9 классах мы работали лишь с несколькими стандартными углами. А именно: 30°, 45° и 60°. В особо продвинутых случаях учителя рассказывали еще об углах 90° и 0°. Любые другие значения назывались «сложными», и возникновение таких углов, скорее всего, указывало на ошибку в решении.
С введением тригонометрической окружности все ограничения на углы отпадают. Здесь я не буду рассказывать, как устроена тригонометрическая окружность — все это подробно описано в любом учебнике по математике. Вместо этого предлагаю обсудить другой вопрос — более важный, но которому почему-то не уделяется достаточно внимания. Речь идет о переходе от радианной меры угла к градусной.
Исторически так сложилось (и небезосновательно), что углы на тригонометрической окружности измеряют в радианах. Например, полный оборот — 360° — обозначается как 2π радиан. А всеми любимый (или ненавидимый) угол 45° равен π/4 радиан.
У многих возникает вопрос: при чем здесь число π? Ведь π ≈ 3,14. Так вот, чтобы избежать путаницы, запомните простое, но очень важное правило:
Во всех тригонометрических функциях — синусе, косинусе, тангенсе и котангенсе — можно без ущерба для здоровья заменять число π на 180°. Пишется это так: π → 180°.
Обратите внимание: данное правило работает только для тригонометрических функций! Например, мы спокойно можем записать sin π = sin 180°. Но если мы хотим найти примерную длину отрезка l = 5π, придется считать: l = 5 · π ≈ 5 · 3,14 = 15,7.
Разумеется, существует и обратное правило — переход от градусной меры угла к радианной. Однако нас это сейчас не интересует, поскольку в задачах B11 такой переход не встречается.
Теперь взгляните на конкретные примеры:
Задача. Перейдите от радианной меры угла к градусной (значение тригонометрических функций вычислять не надо):
- sin π/3;
- cos 7π/6;
- tg π;
- sin π/4;
- tg 2π/3;
- ctg π/2;
- sin 3π/2;
- cos 5π/4.
Итак, перед нами восемь тригонометрических функций, аргументы которых заданы в радианах. Мы можем перейти от радианной меры аргументов к градусной по правилу: π → 180°. Имеем:
- sin π/3 = sin 180/3 = sin 60°;
- cos 7π/6 = cos (7 · 180/6) = cos 210°;
- tg π = tg 180°;
- sin π/4 = sin 180/4 = sin 45°;
- tg 2π/3 = tg (2 · 180/3) = tg 120°;
- ctg π/2 = ctg 180/2 = ctg 90°;
- sin 3π/2 = sin (3 · 180/2) = sin 270°;
- cos 5π/4 = cos (5 · 180/4) = cos 225°.
- α ∈ (0°; 90°) ⇒ это угол I координатной четверти;
- α ∈ (90°; 180°) ⇒ II координатная четверть;
- α ∈ (180°; 270°) ⇒ III координатная четверть;
- α ∈ (270°; 360°) ⇒ IV координатная четверть.
- sin 8π/9;
- tg 12π/15;
- cos 9π/10;
- cos 7π/18;
- sin 3π/5;
- ctg 5π/3;
- tg 4π/9;
- cos 9π/20.
- sin 8π/9 = sin (8 · 180/9) = sin 160°; т.к. 160° ∈ [90°; 180°], это II четверть;
- tg 12π/15 = tg (12 · 180/15) = tg 144°; т.к. 144° ∈ [90°; 180°], это II четверть;
- cos 9π/10 = cos (9 · 180/10) = cos 162°; т.к. 162° ∈ [90°; 180°], это II четверть;
- cos 7π/18 = cos (7 · 180/18) = cos 70°; т.к. 70° ∈ [0°; 90°], это I четверть;
- sin 3π/5 = sin (3 · 180/5) = sin 108°; т.к. 108° ∈ [90°; 180°], это II четверть;
- ctg 5π/3 = ctg (5 · 180/3) = ctg 300°; т.к. 300° ∈ [270°; 360°], это IV четверть;
- tg 4π/9 = tg (4 · 180/9) = tg 80°; т.к. 80° ∈ [0°; 90°], это I четверть;
- cos 9π/20 = cos (9 · 180/20) = cos 81°; т.к. 81° ∈ [0°; 90°], это I четверть.
- Перейти от радианной меры угла к градусной. Для этого достаточно сделать замену: π → 180°;
- Если полученный угол оказался больше 360°, отнимаем от него по 360° до тех пор, пока новый угол не окажется на отрезке [0°; 360°];
- Аналогично, если угол будет отрицательным, увеличиваем его на 360° до тех пор, пока он не попадет в отрезок [0°; 360°];
- Выясняем, в какой координатной четверти находится полученный угол, ориентируясь на стандартные границы: 90°, 180°, 270° и 360°.
- sin 21π/6;
- cos 19π/3;
- sin (−25π/9);
- tg (−11π/4).
- sin 21π/6 = sin (23 · 180/6) = sin 690°. Очевидно, что 690° > 360°, поэтому выполняем преобразование: sin 690° → sin (690° − 360°) = sin 330°. Но 330° ∈ [270°; 360°], это IV четверть;
- cos 19π/3 = cos (19 · 180/3) = cos 1140°. Поскольку 1140° > 360°, имеем: cos 1140° → cos (1140° − 360°) = cos 780° → cos (780° − 360°) = cos 420° → cos (420° − 360°) = cos 60°. Т.к. 60° ∈ [0°; 90°], это I четверть;
- sin (−7π/9) = sin (−7 · 180/9) = sin (−140°). Но −140° < 0°, поэтому увеличиваем угол: sin (−140°) → sin (−140° + 360°) = sin 220°. Поскольку 220° ∈ [180°; 270°], это III четверть;
- tg (−11π/4) = tg (−11 · 180/4) = tg (−495°). Т.к. −495° < 0°, начинаем увеличивать угол: tg (−495°) → tg (−495° + 360°) = tg (−135°) → tg (−135° + 360°) = tg 225°. Это уже нормальный угол. Т.к. 225° ∈ [180°; 270°], это III четверть.
>
Итак, вместо непонятного множителя π мы получаем вполне вменяемое число, которое можно умножать и делить по стандартным правилам.
Границы координатных четвертей
Теперь, когда мы умеем заменять радианную меру углов градусной, попробуем переписать всю тригонометрическую окружность. Это будет ключом к решению задачи B11. Основные правила останутся прежними: «нулевой градус» совпадает с положительным направлением оси ОХ, а углы откладываются в направлении против часовой стрелки. Но числа, стоящие на границах координатных четвертей, станут другими. Взгляните:
Отныне вместо непонятных «пи» и «пи-пополам» используйте простую и понятную шкалу:
Хорошая новость состоит в том, что эти правила очень быстро откладываются в голове — стоит лишь немного потренироваться. И вы точно не забудете эти числа на ЕГЭ по математике, чего нельзя сказать про радианную меру.
Если же память на числа плохая, могу посоветовать одну хитрость. Взгляните еще раз на границы координатных четвертей: 90°, 180°, 270° и 360°. Первая из них — 90° — это прямой угол, знакомый еще из курса средней школы. Его вы точно не забудете. Остальные углы отличаются друг от друга на эти же самые 90°. Взгляните: 90° + 90° = 180°; 180° + 90° = 270°; 270° + 90° = 360°. Таким образом, даже если вы забудете эти числа, их всегда можно восстановить, если просто запомнить, что прямой угол — это 90°.
А теперь разберем конкретные примеры. Будем учиться искать координатные четверти быстро, поскольку от этого умения напрямую зависит решение задачи B11.
Задача. Определите, в какой координатной четверти находится аргумент тригонометрической функции:
Для начала переведем все углы из радиан в градусы по правилу: π → 180°. А затем найдем координатную четверть, ориентируясь по границам: 90°, 180°, 270°, 360°. Имеем:
Как видите, далеко не всегда можно найти значение самой тригонометрической функции. Например, попробуйте вычислить cos 162° или sin 108°. Зато мы всегда можем определить, в какой координатной четверти находится данный угол.
Нестандартные углы и периодичность
До сих пор мы рассматривали углы α ∈ [0°; 360°]. Но что произойдет, если, например, угол α = 420°? А как насчет отрицательных углов? Такие углы редко встречаются на ЕГЭ по математике (по крайней мере, в части B), но лучше застраховать себя от подобных «неожиданностей», поэтому предлагаю разобрать и такие задачи. Тем более, схема решения практически ничем не отличается от «стандартных» углов.
Итак, что если угол α > 360°? Судя по тригонометрической окружности, точка сделает полный оборот — а затем пройдет еще чуть-чуть. Это самое «чуть-чуть» вычисляется очень просто. Достаточно отнять от исходного угла величину 360° (иногда это приходится делать несколько раз).
С отрицательными углами работаем аналогично. Если добавлять к отрицательному углу величину 360°, мы очень скоро получим новый угол α ∈ [0°; 360°]. Таким образом, вся схема решения выглядит следующим образом:
Задача. Определите, в какой координатной четверти находится аргумент тригонометрической функции:
Снова переводим все углы из радиан в градусы по правилу: π → 180°. Дальше уменьшаем или увеличиваем аргумент на 360° до тех пор, пока он не окажется на отрезке [0°; 360°]. И только затем выясняем координатную четверть. Получим:
Вот и все! Обратите внимание: во втором пункте пришлось вычитать 360° три раза — и только затем получился нормальный угол. Аналогично, в четвертом пункте пришлось прибавлять два раза по 360°, чтобы выйти на положительный угол. Таким образом, добавлять и вычитать углы иногда приходится много раз — это не должно настораживать.
В заключение хочу добавить, что если вы хорошо знаете математику и быстро ориентируетесь в радианных углах, то совсем необязательно переводить их в градусы. Однако большинство людей (и не только школьники) предпочитают именно градусную меру — знакомую еще со средней школы и, как следствие, более понятную.
Смотрите также:
- Тест к уроку «Знаки тригонометрических функций» (1 вариант)
- Знаки тригонометрических функций
- Что такое логарифм
- Комбинированные задачи B12
- Задача B2: лекарство и таблетки
- ЕГЭ 2022, задание 6. Касательная и уравнение с параметром
Укажите размерность пространства
Укажите форму представления первого вектора
Укажите форму представления второго вектора
Задайте координаты первого вектора
a̅ =
{
;
}
Задайте координаты вектора b
b̅ =
{
;
}
Как найти угол между векторами
Чтобы вычислить угол между векторами a и b, где a = {ax; ay} и b = {bx; by} необходимо:
1.Вычислить скалярное произведение векторов a и b.
2. Вычислить длину вектора a.
3. Вычислить длину вектора b.
4. Вычислить произведение длин векторов a и b.
5. Вычислить косинус α. Разделить скалярное произведение векторов на произведение длин векторов.
6. Вычислить арккосинус α.
Формулы вычисления угла между векторами
Если векторы a и b заданы координатами, где a = {ax; ay} и b = {bx; by}, то косинус угла α вычисляется по формуле:
a = {ax; ay}
b = {bx; by}
Если векторы a и b заданы координатами, где a = {ax; ay} и b = {bx; by}, то угол в радианах вычисляется по формуле:
a = {ax; ay}
b = {bx; by}
Если векторы a и b заданы координатами, где a = {ax; ay; az} и b = {bx; by; bz}, то косинус угла α вычисляется по формуле:
a = {ax; ay; az}
b = {bx; by; bz}
Если векторы a и b заданы координатами, где a = {ax; ay; az} и b = {bx; by; bz}, то угол в радианах вычисляется по формуле:
a = {ax; ay; az}
b = {bx; by; bz}
Если координаты обоих векторов заданы точками – вектора a задан точками A(x, y) и B(x, y), вектор b задан точками C(x, y) и D(x, y), то косинус угла α вычисляется по формуле:
A = (Ax; Ay)
B = (Bx; By)
C = (Cx; Cy)
D = (Dx; Dy)
Если координаты обоих векторов заданы точками – вектора a задан точками A(x, y) и B(x, y), вектор b задан точками C(x, y) и D(x, y), то угол α в радианах вычисляется по формуле:
A = (Ax; Ay)
B = (Bx; By)
C = (Cx; Cy)
D = (Dx; Dy)
Если координаты обоих векторов заданы точками – вектора a задан точками A(x, y, z) и B(x, y, z), вектор b задан точками C(x, y, z) и D(x, y, z), то косинус угла α вычисляется по формуле:
A = (Ax; Ay; Az)
B = (Bx; By; Bz)
C = (Cx; Cy; Cz)
D = (Dx; Dy; Dz)
Если координаты обоих векторов заданы точками – вектора a задан точками A(x, y, z) и B(x, y, z), вектор b задан точками C(x, y, z) и D(x, y, z), то угол α в радианах вычисляется по формуле:
A = (Ax; Ay; Az)
B = (Bx; By; Bz)
C = (Cx; Cy; Cz)
D = (Dx; Dy; Dz)
Если необходимо вычислить значение угла в градусах, то необходимо значение угла между векторами умножить на 180 и получившееся значение разделить на π
Примеры вычисления угла между векторами
Пример 1. Найдем угол между векторами плоскости. Координаты обоих векторов заданны точками.
Координаты точки А вектора AB: (5 ; 9)
Координаты точки B вектора AB: (-2 ; 11)
Координаты точки C вектора CD: (0 ; 12)
Координаты точки D вектора CD: (-3 ; 1)
cos α = | AB ⋅ CD | |
|AB| ⋅ |CD| |
Решение:
1) Вычислим модуль (длину) первого и второго векторов:
|AB| =
(Bx — Ax)2 + (By — Ay)2
=
(-2 — 5)2 + (11 — 9)2
=
(-7)2 + 22
=
49 + 4
=
53
= 7.28010988928052
|CD| =
(Dx — Cx)2 + (Dy — Cy)2
=
(-3 — 0)2 + (1 — 12)2
=
(-3)2 + (-11)2
=
9 + 121
=
130
= 11.4017542509914
2) Вычислим произведение модулей векторов:
|AB| ⋅ |CD| =
53
⋅
130
=
6890
3) Вычислим координаты первого вектора по двум точкам A и B:
AB = {Bx — Ax ; By — Ay} = {-2 — 5 ; 11 — 9} = {-7 ; 2}
4) Вычислим координаты второго вектора по двум точкам C и D:
CD = {Dx — Cx ; Dy — Cy} = {-3 — 0 ; 1 — 12} = {-3 ; -11}
5) Найдем скалярное произведение векторов: AB и CD
AB ⋅ CD = ABxCDx + AByCDy = -7 ⋅ (-3) + 2 ⋅ (-11) = 21 + (-22) = -1
6) Вычислим косинус угла между векторами:
cos α = | AB ⋅ CD | = |
|AB| ⋅ |CD| |
-1 /
6890 = -0.0120473184147734 |
||
7) Вычислим значение угла ∠α между векторами:
∠α = 1.58284393664908 Radians
∠α = 90.6902771978651° Degrees
Пример 2. Найдем угол между векторами плоскости.
Координаты вектора a: (5 ; 9)
Координаты вектора b: (-1 ; 7)
Решение:
1) Вычислим модуль (длину) первого и второго векторов:
|a| =
ax2 + ay2
=
52 + 92
=
25 + 81
=
106
= 10.295630140987
|b| =
bx2 + by2
=
(-1)2 + 72
=
1 + 49
=
50
= 5
2
= 7.07106781186548
2) Вычислим произведение модулей векторов:
|a| ⋅ |b| =
106
⋅
50
=
5300
3) Найдем скалярное произведение векторов: a и b
a ⋅ b = axbx + ayby = 5 ⋅ (-1) + 9 ⋅ 7 = -5 + 63 = 58
4) Вычислим косинус угла между векторами:
cos α = | a ⋅ b | = |
|a| ⋅ |b| |
58 /
5300 = 0.796691270902396 |
||
5) Вычислим значение угла ∠α между векторами:
∠α = 0.648995558996501 Radians
∠α = 37.1847064532332° Degrees
Пример 3. Найдем угол между векторами пространства. Координаты обоих векторов заданны точками.
Координаты точки А вектора AB: (7; 0.2 ; 69)
Координаты точки B вектора AB: (-1 ; 0 ; 2/8)
Координаты точки C вектора CD: (-4 ; -6 ; 2)
Координаты точки D вектора CD: (3 ; 0 ; 9)
cos α = | AB ⋅ CD | |
|AB| ⋅ |CD| |
Решение:
1) Вычислим модуль (длину) первого и второго векторов:
|AB| =
(Bx — Ax)2 + (By — Ay)2 + (Bz — Az)2
=
(-1 — 7)2 + (0 — 0.2)2 + (2/8 — 69)2
=
(-8)2 + (-0.2)2 + (-275/4)2
=
64 + 0.04 + (75625/16)
=
|CD| =
(Dx — Cx)2 + (Dy — Cy)2 + (Dz — Cz)2
=
(3 — (-4))2 + (0 — (-6))2 + (9 — 2)2
=
72 + 62 + 72
=
49 + 36 + 49
=
134
= 11.5758369027902
2) Вычислим произведение модулей векторов:
|AB| ⋅ |CD| =
1916241/400
⋅
134
=
641940.735
3) Вычислим координаты первого вектора по двум точкам A и B:
AB = {Bx — Ax ; By — Ay; Bz — Az} = {-1 — 7 ; 0 — 0.2 ; 2/8 — 69} = {-8 ; -1/5 ; -275/4}
4) Вычислим координаты второго вектора по двум точкам C и D:
CD = {Dx — Cx ; Dy — Cy; Dz — Cz} = {3 — (-4) ; 0 — (-6) ; 9 — 2} = {7 ; 6 ; 7}
5) Найдем скалярное произведение векторов: AB и CD
AB ⋅ CD = ABxCDx + AByCDy + ABzCDz = -8 ⋅ 7 + (-1/5) ⋅ 6 + (-275/4) ⋅ 7 = -56 + (-6/5) + (-1925/4) = -10769/20 = -538.45
6) Вычислим косинус угла между векторами:
cos α = | AB ⋅ CD | = |
|AB| ⋅ |CD| |
-538.45 /
641940.735 = -0.672044318228661 |
||
7) Вычислим значение угла ∠α между векторами:
∠α = 2.30776235411475 Radians
∠α = 132.225043009951° Degrees
Пример 4. Найдем угол между векторами пространства.
Координаты вектора a: (5 ; 1 ; 7)
Координаты вектора b: (2 ; 4 ; 6)
Решение:
1) Вычислим модуль (длину) первого и второго векторов:
|a| =
ax2 + ay2 + az2
=
52 + 12 + 72
=
25 + 1 + 49
=
75
= 5
3
= 8.66025403784439
|b| =
bx2 + by2 + bz2
=
22 + 42 + 62
=
4 + 16 + 36
=
56
= 2
14
= 7.48331477354788
2) Вычислим произведение модулей векторов:
|a| ⋅ |b| =
75
⋅
56
=
4200
3) Найдем скалярное произведение векторов: a и b
a ⋅ b = axbx + ayby + azbz = 5 ⋅ 2 + 1 ⋅ 4 + 7 ⋅ 6 = 10 + 4 + 42 = 56
4) Вычислим косинус угла между векторами:
cos α = | a ⋅ b | = |
|a| ⋅ |b| |
56 /
4200 = 0.864098759787715 |
||
5) Вычислим значение угла ∠α между векторами:
∠α = 0.527439299499548 Radians
∠α = 30.2200458106607° Degrees