Как найти значение выражения отрицательных чисел

План урока:

Сложение отрицательных чисел

Сложение чисел с разными знаками

Вычитание отрицательных чисел и чисел с разными знаками

В субботу, ученики 6 класса договорились встретиться и погулять в парке. Утром Юля выглянула в окошко, ярко светит солнышко, но при этом морозно. Девочка взглянула на термометр. Он показывал -10˚C. Мама попросила Юлю пойти на улицу немного позже, когда на улице потеплеет. Юля расстроилась и стала ждать. Через два часа девочка снова взглянула на термометр. Он показал -3. Ого! Всего  два часа, а так потеплело – обрадовалась девочка и стала одеваться, чтобы идти гулять. В это время в комнату вошла мама и удивленно спросила «Уже потеплело? На сколько градусов?» Дочь не знала, что сказать и как правильно узнать, на сколько градусов стало теплее. Мама пришла на помощь и сообщила, что достаточно от -10 отнять -3, и мы узнаем, на сколько градусов изменилась температура воздуха за окном. Иначе, можно сказать, что шкала термометра поднялась вверх на 7 делений, значит, на улице стало теплее на 7 градусов. Запомнив все, что рассказала мама, Юля побежала в парк делиться новыми знаниями с друзьями.

Сложение  и вычитание отрицательных чисел

Давайте вспомним любимую многими сказку «Буратино» и разберем задачу с участием любимых персонажей.

В театре Карабаса-Барабаса актерам жилось очень сложно, все куклы мечтали  жить на свободе. Актеры тяжело работали,  но долги перед хозяином росли с каждым днем. Злой владелец пообещал отпустить Буратино и Мальвину из своего театра только тогда, когда кукольные герои вернут ему долг. Сколько монет нужно собрать героям, чтобы оказаться на свободе, если у Буратино было -15 монет, а у Мальвины -6?

3sdsd

Чтобы ответить на главный вопрос задачи, нам нужно понимать, о чем идет речь. Изучив условие, возникает вопрос «Как может быть -15 и -6 монет?». В данном случае выходит, что Буратино и Мальвина должны вернуть Карабасу-Барабасу 15 и 6 монет, поэтому перед данными числами и стоит знак «минус». Получается, кукольные персонажи смогут покинуть театр, когда полностью вернут долг. Для этого необходимо узнать общий размер долга Буратино и Мальвины. Чтобы узнать размер долга, суммируем монеты персонажей -15 и -6. Но как их сложить, когда перед слагаемыми стоит «минус»? В подобных ситуациях применяют правило сложения отрицательных чисел.

tab1

Возвращаемся к решению задачи.

Теперь, правильно запишем и суммируем известные данные.

tab2

Получается, что герои имеют -21 монету, следовательно, они должны собрать 21 монету и вернуть долг, только тогда появится возможность покинуть театр Карабаса-Барабаса.

4sdsd
Источник

Рассмотрим еще одно задание.

Найдите результат сложения -24 и -16.

Чтобы вычислить сумму двух значений со знаком «минус», достаточно суммировать их модули, и перед полученной цифрой записать «-».

-24+(-16)=-(24+16)=-40.

Запомни! Если складываем два отрицательных числа, то суммируем их модули, а перед результатом сложения записываем «-».

Сложение чисел с разными знаками

Рассмотрим ситуацию.

Мишин папа навещал бабушку в деревне, обещал привезти гостинец сыну – яблоки. Во дворе Миша рассказал мальчишкам про папино обещание, и решил угостить яблоком, каждого из трех друзей, то есть, у него уже стало -3 яблока. Папа привез сыну 10 яблок и мальчик с радостью поделился фруктами с друзьями. Сколько яблок осталось у мальчика?

Чтобы найти количество яблок у мальчика, нам нужно узнать, чему равна сумма яблок –тех которые были у мальчика(-3), и тех, которые дал папа(10). То есть, чтобы ответить на главный вопрос задачи, достаточно сложить -3 и 10. Но слагаемые имеют разные знаки «+» и «-». Как же выполнить сложение положительного и отрицательного чисел? Запомнив алгоритм сложения положительных и отрицательных чисел сделать это, будет очень просто.

tab3

Используем рассмотренный алгоритм при выполнении действий.

Суммируем-3 и 10. Для этого:

  • определяем модули: -3=|3|, 10=|10|;
  • сравниваем модули, определяя больший: |3|<|10|;
  • от большего отнимаем меньший: 10 – 3=7;
  • так как по условию 10 – число положительное, то и результат будет числом положительным.

Записывается в таком виде:

-3+10=10 – 3=7.

Выходит, у мальчика стало 7 яблок.

6hgjh

Рассмотрим еще один пример сложения чисел с разными знаками.

Вычислите сумму -28 и 11.

Известные слагаемые имеют разные знаки, то есть -28 является значением отрицательным, а 11–положительным. Чтобы суммировать слагаемые, необходимо воспользоваться ранее рассмотренным алгоритмом. Вначале, определяем модули и сравниваем их.

-28=|28|;

11=|11|;

28>11.

Помним, что большее значение модуля имеет отрицательное слагаемое (-28), поэтому перед результатом нужно будет поставить знак «минус». Теперь, находим разность большего и меньшего значения модуля (28-17) и записываем математическое выражение:

-28+11=-(28-11)=-17.

Учитывая рассмотренные примеры, можно сказать, что:

любое числовое значение от прибавления к нему положительного числа, всегда становится больше, а от прибавления отрицательного числа только меньше.

Докажем справедливость данного правила, вычислив выражение и сравнив уменьшаемое с полученной суммой:-150+50.

Чтобы найти значение выражения нужно определить модули (150 и 50), оставив знак«-» модуля большего слагаемого, от большего значения отнимаем меньшее:

-150+50=-(150-50)=-100.

Сравним найденное значение выражения (-100) с уменьшаемым (-150), используя правило сравнения чисел с отрицательным знаком:

При сравнении цифровых значений со знаком «минус», меньшим будет то, чей модуль больше.

-150=|150|;

-100=|100|.

150>100;

-150<-100.

Действительно, при сложении с отрицательным числом уменьшаемое стало только меньше.

Вычитание отрицательных чисел и чисел с разными знаками

Мы уже знаем, как выполнять сложение и вычитание положительных и отрицательных чисел, но хочется сказать, что именно в этом разделе математики, большую роль играют противоположные числа. Для тех, кто забыл, напоминаем, какие числовые значения называются противоположными:

Если два числа отличаются только знаком, то они являются противоположными:-13 и 13, 141 и -141, 1000 и -1000.

Чтобы понять, какие правила необходимо соблюдать при выполнении вычитания чисел с разными знаками, давайте разберем задание.

Определите, чему будет равно значение выражения: от -510 отнять +210.

На первый взгляд задание очень простое и не вызывает никаких проблем. Но стоит записать разность в виде выражения:

-510-(+210)

Сразу возникает вопрос «Как вычитать, если уменьшаемое со знаком «минус», а вычитаемое со знаком «плюс»?».Чтобы решение подобных выражений не вызывало у вас трудностей, возьмите на заметку правило:

Чтобы выполнить вычитание чисел с разными знаками, нужно уменьшаемое оставить без изменений и прибавить к нему число, противоположное вычитаемому.

Например: -5-(+2).

Минус пять оставляем без изменений. Вычитаемое +2, а противоположное ему -2. Складываем уменьшаемое(-5) и число противоположное вычитаемому(-2): -5+(-2).

По правилу сложения отрицательных чисел, складываем модули(5+2) и ставим знак «-»:

-5+(-2)=-(5+2)=-7

Учитывая данное правило, получается, что к уменьшаемому(-510) необходимо прибавить значение,противоположное вычитаемому(210), таким числом будет -210:

Запишем выражение:

-510-(+210)=-510+(-210). Чтобы вычислить полученное выражение нужно сложить отрицательные значения, согласно правилу сложения отрицательных чисел:

-510-(+210)=-510+(-210)=-(510+210)=-720.

Вычисления окончены.

7vcvx
Источник

Рассмотрим следующее задание.

Найдите значение выражения: -248+248.

Используем правило сложения значений с разными знаками.

-248=|248|;

248=|248|;

248 – 248=0.

Следовательно, при сложении противоположных числовых значений в результате всегда будет 0.

Зная правило вычитания отрицательных чисел, можем сделать вывод, что знаки, стоящие перед скобками, могут менять знак числа, находящегося в скобках.

К примеру, в выражении 19-(-4), при вычислении используем правило, согласно которого, к уменьшаемому прибавляем, число противоположное вычитаемому, то есть знак вычитаемого «-» меняем на противоположный «+». Получим:

scrin1

Запомни! Если перед скобкой в математическом выражении стоит знак «минус», то знак числа в скобках меняется на противоположный.

tab4

Ну а сейчас, разберем задание, в котором перед скобкой стоит знак «плюс».

Вычисли: -36+(-7).

В этом задании воспользуемся правилом сложения отрицательных чисел– сложим модули числовых значений, а перед суммой поставим знак «минус»:

tab5

Мы видим, что «плюс» перед скобкой никак не повлиял на знак числа, стоящего в скобках. Запомни! Если перед скобками стоит «плюс», то знак числового значения, стоящего в скобках никак не меняется.

В выполнении рассматриваемых действий нет ничего сложного. Главное запомнить основные требования и придерживаться их в процессе любых вычислений! Если сразу запомнить все правила не получается, заходи на сайт 100уроков.ru и мы всегда с удовольствием напомним нужное правило или алгоритм.

Минутка истории

История математики утверждает, что человечество длительное время не принимало ряд отрицательных числовых значений. Данный вид чисел, казался непонятным и ненужным. Привычных нам знаков «плюс» и «минус» просто не существовало. Если возникала необходимость в записи отрицательно числа, то его записывали следующим образом «долг в 30 монет». И лишь математики Древней Индии и Китая, выполняли записи отрицательных чисел без употребления слова «долг», а просто использовали черные чернила, вместо синих.

Только в 3 веке греческий ученый Диофант, стал обозначать знак «минус» вот таким символом   .

Привычные нам знаки «+» и «-» появились в Германии в конце 15 века. Чешский ученый Ян Видман, отразил данные знаки в своей книге-пособии, помогающей подсчитывать прибыль и убытки чешским купцам. Стоит заметить, что данная книга была написана от руки и имела огромную популярность среди богатых людей того времени.

Сложение и вычитание отрицательных и положительных чисел — правило, формулы и примеры

Впервые знакомство с отрицательными числами происходит в школьном курсе в 6 классе, иногда раньше. Число со знаком «+» называется положительным, противоположное — отрицательным.

Правило сложения отрицательных чисел и чисел с разными знаками

Для суммирования двух отрицательных чисел, необходимо:

суммировать их модули;

перед полученной суммой поставить знак «минус».

В данном случае, складываем модули 9 и 6, и перед получившимся натуральным числом 15 ставим знак «-«.

221edf97fc8d859cc3359bf88e214abd

Сложение рациональных или дробных чисел выполняется аналогичным способом:

К 26,35 прибавляем 25,35 (т. е. мы складываем модули), в итоге получаем 51,75 с отрицательным значением. Перед ним ставим знак «минус».

Для суммирования натуральных чисел со знаками «+» и «-», надо:

из слагаемого с большим значением модуля вычесть слагаемое с меньшим значением;

перед полученным результатом поставить знак того слагаемого, которое имело большее значение.

61,2 + (-31,5) = + (61,2 — 31,5) = 30,5

Модуль большего числа со знаком «+», соответственно, сумма получилась положительная:

Большее число со знаком «-», поэтому заменяем плюс на минус и получаем отрицательный ответ.

Как вычитать отрицательные и положительные числа

Для нахождения разности противоположных чисел, надо к уменьшаемому прибавить вычитаемое с противоположным знаком, то есть заменить разность суммой.

Наглядно данное действие лучше представить в виде формулы:

То есть любое выражение, содержащее знаки сложения и вычитания, следует решать как сумму чисел.

ec1544f347e4e2284e58864528710c85

-6,1 + 5,6 = 5,6 + (-6,3) = 0,5.

Разность выражения будет положительной, если уменьшаемое больше вычитаемого, и отрицательной, если значение модуля уменьшаемого меньше вычитаемого. В случае, когда уменьшаемое и вычитаемое одинаковые, их разность будет равна нулю.

15 — 6 = 15 + (-6) = 9 — уменьшаемое 15, больше вычитаемого, поэтому ответ положительный;

Если нужно отнять отрицательное число, то два знака «минус» подряд дают знак «плюс».

Все вышеперечисленные действия возможно выполнить на калькуляторе. Для этого достаточно ввести сначала модуль числа, потом нажать кнопку изменения знака «+/-».

Заключение

Для закрепления изученных правил можно использовать различные методы проверки знаний. На первом этапе лучшим вариантом будет тренажер, с помощью которого решение подобных примеров можно довести до автоматизма.

Так же для закрепления материала подойдет тестирование. Его можно провести в виде самостоятельной работы. В конце изучения всех правил применяется контрольная работа, задания для которой можно подобрать из различных дидактических материалов.

Источник

Математика

План урока:

Сложение и вычитание отрицательных чисел

Давайте вспомним любимую многими сказку «Буратино» и разберем задачу с участием любимых персонажей.

Возвращаемся к решению задачи.

Теперь, правильно запишем и суммируем известные данные.

Рассмотрим еще одно задание.

Чтобы вычислить сумму двух значений со знаком «минус», достаточно суммировать их модули, и перед полученной цифрой записать «-».

Запомни! Если складываем два отрицательных числа, то суммируем их модули, а перед результатом сложения записываем «-».

Сложение чисел с разными знаками

Используем рассмотренный алгоритм при выполнении действий.

Суммируем-3 и 10. Для этого:

Помним, что большее значение модуля имеет отрицательное слагаемое (-28), поэтому перед результатом нужно будет поставить знак «минус». Теперь, находим разность большего и меньшего значения модуля (28-17) и записываем математическое выражение:

Учитывая рассмотренные примеры, можно сказать, что:

любое числовое значение от прибавления к нему положительного числа, всегда становится больше, а от прибавления отрицательного числа только меньше.

Докажем справедливость данного правила, вычислив выражение и сравнив уменьшаемое с полученной суммой:-150+50.

Чтобы найти значение выражения нужно определить модули (150 и 50), оставив знак«-» модуля большего слагаемого, от большего значения отнимаем меньшее:

Сравним найденное значение выражения (-100) с уменьшаемым (-150), используя правило сравнения чисел с отрицательным знаком:

При сравнении цифровых значений со знаком «минус», меньшим будет то, чей модуль больше.

-150 1 Сложить их модули, а перед результатом поставить знак «плюс»

Источник

Правило сложения отрицательных чисел и чисел с разными знаками

Для суммирования двух отрицательных чисел, необходимо:

суммировать их модули;

перед полученной суммой поставить знак «минус».

В данном случае, складываем модули 9 и 6, и перед получившимся натуральным числом 15 ставим знак «-«.

Сложение рациональных или дробных чисел выполняется аналогичным способом:

К 26,35 прибавляем 25,35 (т. е. мы складываем модули), в итоге получаем 51,75 с отрицательным значением. Перед ним ставим знак «минус».

Для суммирования натуральных чисел со знаками «+» и «-», надо:

из слагаемого с большим значением модуля вычесть слагаемое с меньшим значением;

перед полученным результатом поставить знак того слагаемого, которое имело большее значение.

61,2 + (-31,5) = + (61,2 — 31,5) = 30,5

Модуль большего числа со знаком «+», соответственно, сумма получилась положительная:

Большее число со знаком «-», поэтому заменяем плюс на минус и получаем отрицательный ответ.

Как вычитать отрицательные и положительные числа

Для нахождения разности противоположных чисел, надо к уменьшаемому прибавить вычитаемое с противоположным знаком, то есть заменить разность суммой.

Наглядно данное действие лучше представить в виде формулы:

То есть любое выражение, содержащее знаки сложения и вычитания, следует решать как сумму чисел.

-6,1 + 5,6 = 5,6 + (-6,3) = 0,5.

Разность выражения будет положительной, если уменьшаемое больше вычитаемого, и отрицательной, если значение модуля уменьшаемого меньше вычитаемого. В случае, когда уменьшаемое и вычитаемое одинаковые, их разность будет равна нулю.

Если нужно отнять отрицательное число, то два знака «минус» подряд дают знак «плюс».

Все вышеперечисленные действия возможно выполнить на калькуляторе. Для этого достаточно ввести сначала модуль числа, потом нажать кнопку изменения знака «+/-».

Заключение

Для закрепления изученных правил можно использовать различные методы проверки знаний. На первом этапе лучшим вариантом будет тренажер, с помощью которого решение подобных примеров можно довести до автоматизма.

Так же для закрепления материала подойдет тестирование. Его можно провести в виде самостоятельной работы. В конце изучения всех правил применяется контрольная работа, задания для которой можно подобрать из различных дидактических материалов.

Источник

Алгебра

Отрицательные числа. Целые отрицательные числа.

Дробные отрицательные числа. Положительные числа.

Отрицательные числа появляются, когда из меньшего числа вычитают большее, например:

Знак «минус» перед 5 показывает, что это число отрицательное.

Было 10 рублей. Купили некую вещь за 15, одолжив 5 руб. Теперь имеем минус 5 руб., которые позже потребуется вернуть. А можно представить графически, на линейке:

Ряд целых отрицательных чисел бесконечен:

Целые числа — это натуральные числа, целые отрицательные числа и ноль:

Дробные отрицательные числа появляются, например, когда из меньшего дробного числа вычитают большее:

Можно также сказать, что дробные отрицательные числа появляются в результате деления целого отрицательного числа на натуральное:

Положительные числа ( целые и дробные ) в противоположность отрицательным числам ( целым и дробным )рассматриваются в арифметике.

Рациональные числа – это положительные и отрицательные числа (целые и дробные) и ноль. Более точное определение рациональных чисел, принятое в математике, следующее:

Действия с отрицательными и положительными числами

Абсолютная величина (модуль). Сложение.

Вычитание. Умножение. Деление.

Абсолютная величина ( модуль ). Для отрицательного числа – это положительное число, получаемое от перемены его знака с « – » на « + »; для положительного числа и нуля – само это число.

Для обозначения абсолютной величины (модуля) числа используются две прямые черты, внутри которых записывается это число.

П р и м е р ы : | – 5 | = 5, | 7 | = 7, | 0 | = 0.

Сложение:

1) при сложении двух чисел с одинаковыми знаками складываются

их абсолютные величины и перед суммой ставится общий знак.

( – 6 ) + ( – 5 ) = – 11 .

2) при сложении двух чисел с разными знаками их абсолютные

величины вычитаются ( из большей меньшая ) и ставится знак

числа с большей абсолютной величиной.

( – 6 ) + ( + 3 ) = – 3 .

Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.

( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3;

( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13;

( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3;

( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13;

Полезна следующая схема (правила знаков при умножении):

Надо просто посчитать количество сомножителей с минусом. Если их количество кратно двум, результат умножения будет положительным. Каждый добавленный отрицательный сомножитель меняет знак результата:

Здесь действуют те же правила знаков, что и при умножении:

Понятно почему: деление можно заменить умножением на обратное число.

П р и м е р : ( – 12 ) : ( + 4 ) = – 3

Принципиальной разницы между делением и умножением нет. Отсюда понятно, что знак результата умножения и деления нескольких чисел также будет зависеть от того четно или нечетно количество отрицательных сомножителей и делителей (делимых).

Одночлен. Коэффициент. Числовой множитель. Подобные одночлены.

Степень одночлена. Сложение одночленов. Приведение подобных членов.

Вынесение за скобки. Умножение одночленов. Деление одночленов.

Многочлен. Степень многочлена. Умножение сумм и многочленов.

Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например,

Единственное число или единственная буква также могут считаться одночленом. Любой множитель в одночлене называется коэффициентом. Часто коэффициентом называют лишь числовой множитель.

Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами.

8 a 2 и 3 a 2

Поэтому, если два или несколько одночленов имеют одинаковые буквы или их степени, они также подобны.

Степень одночлена – это сумма показателей степеней всех его букв.

Сложение одночленов. Если среди суммы одночленов есть подобные, то сумма может быть приведена к более простому виду:

Эта операция называется приведением подобных членов. Выполненное здесь действие называется также вынесением за скобки.

Можно рассуждать так: произведение x 3 y 2 равно какому-то числу, допустим, z. Заменим в вышеприведенном уравнении x 3 y 2 на z:

a x 3 y 2 – 5 b 3 x 3 y 2 + c 5 x 3 y 2 = a z – 5 b 3 z + c 5 z.

Теперь этот z, пользуясь распределительным законом, можно вынести за скобки:

( a – 5 b 3 + c 5 ) z.

Теперь, заменив z обратно на x 3 y 2 :

( a – 5 b 3 + c 5 ) x 3 y 2

То есть, выражением x 3 y 2 мы оперируем как единым (одним) числом.

Умножение одночленов. Произведение нескольких одночленов можно упростить, если только оно содержит степени одних и тех же букв или числовые коэффициенты. В этом случае показатели степеней складываются, а числовые коэффициенты перемножаются.

Здесь тоже никакой засады: независимо от скобок мы перемножаем одинаковые буквы:

Деление одночленов. Частное двух одночленов можно упростить, если делимое и делитель имеют некоторые степени одних и тех же букв или числовые коэффициенты. В этом случае показатель степени делителя вычитается из показателя степени делимого, а числовой коэффициент делимого делится на числовой коэффициент делителя.

Умножение сумм и многочленов. Произведение суммы двух или нескольких выражений на любое выражение равно сумме произведений каждого из слагаемых на это выражение:

Вместо букв p, q, r, a может быть взято любое выражение.

( x+ y+ z )( a+ b ) = x( a+ b ) + y( a+ b ) + z( a+ b ) =

Произведение сумм равно сумме всех возможных произведений каждого слагаемого одной суммы на каждое слагаемое другой суммы.

Докажем:

площадь прямоугольника равна произведению сумм отрезков x + y + z и

Из правил умножения сумм и многочленов легко получить следующие семь формул сокращённого умножения.

Их следует знать наизусть, так как они применяются практически во всех задачах по математике.

Тут соображения те же, что и в предыдущем примере со сложением площадей внутренних прямоугольников. Разница лишь в том, что два внутренних прямоугольника одинаковы. Их суммарная площадь и записывается как 2ab.

Здесь получается так:

Преобразованная же формула 2ab + b² , показывает процесс нахождения этой площади, без нахождения длины c.

[3] ( a + b ) ( a b ) = a² b²,

Р е ш е н и е : 99³ = (100 – 1)³ = 1000000 – 3 · 10000 · 1 + 3 · 100 · 1 – 1 = 970299.

1) имеет место равенство: MQ + N = P ;

2) степень многочлена N меньше степени многочлена Q.

Деление многочленов может быть выполнено по следующей схеме:

Источник

Действия с отрицательными и положительными числами

Абсолютная величина (модуль). Для отрицательного числа – это положительное число, получаемое от перемены его знака с « – » на « +»; для положительного числа и нуля – само это число. Для обозначения абсолютной величины (модуля) числа используются две прямые черты, внутри которых записывается это число.

П р и м е р ы: | – 5 | = 5, | 7 | = 7, | 0 | = 0.

1) при сложении двух чисел с одинаковыми знаками складываются их абсолютные величины и перед суммой ставится общий знак.

П р и м е р ы: (+ 6) + (+ 5) = 11;

2) при сложении двух чисел с разными знаками их абсолютные величины вычитаются (из большей меньшая) и ставится знак числа с большей абсолютной величиной.

П р и м е р ы: (– 6) + (+ 9) = 3;

Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.

П р и м е р ы: (+ 8) – (+ 5) = (+ 8) + (– 5) = 3;

(– 8) – (+ 5) = (– 8) + (– 5) = – 13;

Умножение. Деление. При умножении (делении) двух чисел их абсолютные величины умножаются (делится), а результат принимает знак «+», если знаки сомножителей одинаковы, и знак « – », если знаки сомножителей разные.

Полезна следующая схема (правила знаков): (+) · (+) = (+)

Разделить один многочлен P на другой Q – значит найти многочлены М (частное) и N (остаток), удовлетворяющие двум требованиям:

1) имеет место равенство: MQ + N = P;

2) степень многочлена N меньше степени многочлена Q.

Деление многочленов может быть выполнено по следующей схеме:

1331

1) Делим первый член 16a? делимого на первый член 4a? делителя; результат 4a является первым членом частного.

2) Умножаем полученное выражение 4a на делитель 4a? – a + 2, записываем результат

16a? – 4a? + 8a под делимым (один подобный член под другим).

3) Вычитаем почленно этот результат из делимого и сносим вниз следующий по порядку член делимого 7; получаем остаток 12a? –13a + 7.

4) Делим первый член 12a? этого выражения на первый член 4a? делителя; результат 3 – это второй член частного.

5) Умножаем этот второй член частного 3 на делитель 4a? – a + 2 и вновь записываем результат 12a? – 3a + 6 под делимым (один подобный член под другим).

6) Вычитаем почленно полученный результат из предыдущего остатка и получаем второй остаток: – 10a + 1. Его степень меньше степени делителя, поэтому деление заканчивается.

В результате получили частное 4a + 3 и остаток –10 a + 1.

Cледствием теоремы Безу являются следующие признаки делимости двучленов:

1) Разность одинаковых степеней двух чисел делится без остатка на разность этих же чисел,

т.e. x m – a m делится на x – a.

2) Разность одинаковых чётных степеней двух чисел делится без остатка как на разность этих чисел, так и на их сумму, т.е. если m – чётное число, то двучлен

x m – a m делится как на x – a так и на x + a.

Разность одинаковых нечётных степеней двух чисел не делится на сумму этих чисел.

3) Сумма одинаковых степеней двух чисел никогда не делится на разность этих чисел.

4) Сумма одинаковых нечётных степеней двух чисел делится без остатка на сумму этих чисел.

5) Сумма одинаковых чётных степеней двух чисел никогда не делится как на разность этих чисел, так и на их сумму.

П р и м е р ы: (x2 – a2): (x – a) = x + a;

(x3 – a3): (x – a) = x2 + a x+ a2;

(x5 – a5): (x – a) = x4 + a x3 + a2 x2 + a3 x + a4.

Источник

Существуют разные типы чисел — четные числа, нечетные числа, простые числа, составные числа. Также на основе знака числа могут быть двух видов —

положительные числа

и

отрицательные числа

. Эти числа могут быть представлены на числовой линией. Среднее число в этой строке равно нулю. С левой стороны от нуля находятся отрицательные числа, а с правой стороны — положительные.

Отрицательные и положительные числа

Ноль — это нейтральный элемент относительно сложения целых чисел. В основном в этой статье мы будем изучать операции сложения и вычитания с отрицательными числами. Существуют определенные правила для знаков при сложении и вычитании:

Правила для знаков при сложении и вычитании

  • Для того чтобы сложить два отрицательных числа, надо сложить два числа и поставить знак минус.

((-2)+(-3)=-5)

  • Если первое число положительное, а второе отрицательное, смотрим, какое число по модулю больше, отнимаем от большего меньшее число и ставим знак большего числа:

((-8)+4=4-8=-4)

(9+(-4)=9-4=5)

Для каждого числа кроме (0) существует противоположный элемент, при сумме с ним образуется ноль:

(-9+9=0)     (7,1+(-7,1)=0)

  • При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс. То есть, если стоят рядом два минуса, в сумме получается плюс.

((-7)-(-6)=(-7)+6=(-1))

  • Если первое число положительное, а второе отрицательное, вычитаем по тому же принципу, что и складываем: смотрим, какое число по модулю больше, отнимаем от большего меньшее число и ставим знак большего числа.

(7-9=-2) так как (9>7)

  • Также не стоит забывать минус на минус дает плюс:

(7-(-9)=7+9=16)

  1.  (4+(-5))
  2.  (-36+15)
  3. ((-17)+(-45))
  4. (-9+(-1))

Решение:

  1.  (4+(-5)=4-5=-1)
  2.  (-36+15=-21)
  3. ((-17)+(-45)) (=-17-45=-62)
  4. (-9+(-1)=-9-1=-10)
  1. (3-(-6))
  2.  (-16-35)
  3. (-27-(-5))
  4.  (-94-(-61))

Решение:

  1.  (3-(-6)=3+6=9)
  2. (-16-35=-51)
  3.  (-27-(-5)=-27+5=-22)
  4.  (-94-(-61)=-94+61=-33)

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Сложение и вычитание отрицательных и положительных чисел — правило, формулы и примеры

Впервые знакомство с отрицательными числами происходит в школьном курсе в 6 классе, иногда раньше. Число со знаком «+» называется положительным, противоположное — отрицательным.

Чтобы понять, что такое сложение и вычитание положительных и отрицательных чисел, достаточно воспользоваться координатной прямой. Например, сумма чисел -18 и 2. Сначала отмечаем на координатном отрезке число (-18), откладываем от него вправо, соответствующие масштабу, 2 единичных отрезка, и получаем на координатном луче число -16.

Правило сложения отрицательных чисел и чисел с разными знаками

Для суммирования двух отрицательных чисел, необходимо:

суммировать их модули;

перед полученной суммой поставить знак «минус».

Например, сложение чисел -9 и -6 будет выглядеть следующим образом:

В данном случае, складываем модули 9 и 6, и перед получившимся натуральным числом 15 ставим знак «-«.

Сложение рациональных или дробных чисел выполняется аналогичным способом:

-26,35 + (-25,35) = -(26,35 + 25,35) = -51,75

К 26,35 прибавляем 25,35 (т. е. мы складываем модули), в итоге получаем 51,75 с отрицательным значением. Перед ним ставим знак «минус».

Для суммирования натуральных чисел со знаками «+» и «-», надо:

из слагаемого с большим значением модуля вычесть слагаемое с меньшим значением;

перед полученным результатом поставить знак того слагаемого, которое имело большее значение.

61,2 + (-31,5) = + (61,2 — 31,5) = 30,5

Модуль большего числа со знаком «+», соответственно, сумма получилась положительная:

-81 + 35 = -(81 — 35) = 46

Большее число со знаком «-», поэтому заменяем плюс на минус и получаем отрицательный ответ.

Как вычитать отрицательные и положительные числа

Для нахождения разности противоположных чисел, надо к уменьшаемому прибавить вычитаемое с противоположным знаком, то есть заменить разность суммой.

Наглядно данное действие лучше представить в виде формулы:

То есть любое выражение, содержащее знаки сложения и вычитания, следует решать как сумму чисел.

-20 — 14 = -20 + (-14) = -34;

-6,1 + 5,6 = 5,6 + (-6,3) = 0,5.

Разность выражения будет положительной, если уменьшаемое больше вычитаемого, и отрицательной, если значение модуля уменьшаемого меньше вычитаемого. В случае, когда уменьшаемое и вычитаемое одинаковые, их разность будет равна нулю.

15 — 6 = 15 + (-6) = 9 — уменьшаемое 15, больше вычитаемого, поэтому ответ положительный;

-15 — 6 = -15 + (-6) = -21 — уменьшаемое -15, меньше вычитаемого, следовательно, ответ отрицательный.

Если нужно отнять отрицательное число, то два знака «минус» подряд дают знак «плюс».

10 — (-5) = 10 + 5 = 15;

— 10 — (-5) = -10 + 5 = 5 — 10 = -5.

Все вышеперечисленные действия возможно выполнить на калькуляторе. Для этого достаточно ввести сначала модуль числа, потом нажать кнопку изменения знака «+/-».

Например, чтобы задать число -81,73, надо в следующем порядке нажать кнопки: «8», «1», «,», «7». «3», «+/-». А решать пример с отрицательными числами следует в том же порядке, что и с положительными.

Заключение

Для закрепления изученных правил можно использовать различные методы проверки знаний. На первом этапе лучшим вариантом будет тренажер, с помощью которого решение подобных примеров можно довести до автоматизма.

Так же для закрепления материала подойдет тестирование. Его можно провести в виде самостоятельной работы. В конце изучения всех правил применяется контрольная работа, задания для которой можно подобрать из различных дидактических материалов.

Как объяснить уравнения с х (икс) школьнику в 4 классе?

Автор: Творческая Анна

Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.

У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.

Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.

Объяснение примеров с левой стороны, на правую сторону.

Пример № 1

Пример уравнения для 4 класса со знаком плюс.

Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.

Х + 320 = 560 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.

Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.

Всё верно! Значит мы решили уравнение правильно!

Пример № 2

Пример уравнения для 4 класса со знаком минус.

Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.

Х – 180 = 80 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.

Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

Пример № 3

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

400 – х = 275 + 25 Складываем числа.

400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.

400 — 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.

Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.

Проверка:

400 – 100 = 275 + 25 Считаем.

Пример № 4

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

72 – х = 18 * 3 Выполняем умножение. Переписываем пример.

72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.

72 – 54 = х Считаем.

18 = х Меняем местами, для удобства.

Проверка:

Пример № 5

Пример уравнения с х с вычитанием и сложением для 4 класса.

Х – 290 = 470 + 230 Складываем.

Х – 290 = 700 Выставляем числа с одной стороны.

Х = 700 + 290 Считаем.

Проверка:

990 – 290 = 470 + 230 Выполняем сложение.

Пример № 6

Пример уравнения с х на умножение и деление для 4 класса.

15 * х = 630/70 Выполняем деление. Переписываем уравнение.

15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.

Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.

Проверка:

15*6 = 630 / 7 Выполняем умножение и вычитание.

Теперь озвучиваем основные правила:

  1. Умножаем, складываем, делим или вычитаем;

Выполняем то, что можно сделать, уравнение станет немного короче.

Х в одну сторону, цифры в другую.

Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.

При переносе х или цифры через знак равенства, их знак меняется на противоположный.

Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.

  • Если в конце уравнение начинается с числа, то просто меняем местами.
  • Всегда делаем проверку!
  • При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.

    Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.

    Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.

    Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.

    Данное подробное описание, как объяснить уравнения с х школьнику для:

    • родителей;
    • школьников;
    • репетиторов;
    • бабушек и дедушек;
    • учителей;

    Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.

    Из своей практики

    Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

    При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

    В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

    Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

    Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

    Что такое уравнение с минусами и плюсами?

    Математика | 1 — 4 классы

    Что такое уравнение с минусами и плюсами.

    Еще в начальной школе учат, как складывать и вычитать числа.

    Для того чтобы научиться это делать, необходимо выучить таблицу сложения и основанную на ней таблицу вычитания.

    Получается, первоклашка сможет из семнадцати вычесть девять или решить любой подобный пример.

    Однако завести в тупик его сможет пример обратного характера : как вычесть из девяти семнадцать.

    Примерыс отрицательными числами даются по школьной программе много позже, когда человек созревает до абстрактного мышления.

    1)Математических действий существует четыре вида : сложение, вычитание, умножение и деление.

    Поэтому примеров сминусамибудет четыре типа.

    Отрицательные числа внутри примера выделяются скобками для того, чтобы не перепутать математическое действие.

    Например, 6 — ( — 7), 5 + ( — 9), — 4 * ( — 3) или 34 : ( — 17).

    Данное действие может иметь вид : 1) 3 + ( — 6) = 3 — 6 = — 3.

    Замена действия : сначала раскрываются скобки, знак » + » меняется на противоположный, далее из большего (по модулю) числа «6» отнимается меньшее — «3», после чего ответу присваивается знак большего, то есть » — «.

    Этот пример можно записать по — другому («6 — 3») или решать по принципу «из большего отнимать меньшее и присваивать ответу знак большего».

    3. — 3 + ( — 6) = — 3 — 6 = — 9.

    При раскрытии скобок происходит замена действия сложения на вычитание, затем суммируются модули чисел и результату ставиться знак «минус».

    1) 8 — ( — 5) = 8 + 5 = 13.

    Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.

    Элементы примера складываются и ответ получает общий знак » — «.

    3. — 10 — ( — 5) = — 10 + 5 = — 5.

    При раскрытии скобок снова меняется знак на » + «, далее из большего числа отнимается меньшее и у ответа — знак большего числа.

    Умножение и деление.

    При выполнении умножения или деления знак не влияет на само действие.

    При произведении или делении чисел с разными знаками ответу присваивается знак «минус», если числа с одинаковыми знаками — у результата всегда знак «плюс».

    источники:

    http://jliza.ru/uravneniya-x.html

    http://matematika.my-dict.ru/q/2725566_cto-takoe-uravnenie-s-minusami-i/

    Основные правила сложения и вычитания положительных и отрицательных чисел

    В зависимости от знака различают положительные и отрицательные числа. Их можно расположить на координатной прямой, где началом отсчета будет ноль, который не относится ни к положительным, ни к отрицательным значениям.

    Определение

    Положительные числа — это числа со знаком «+», который обычно не пишется. Положительные значения располагаются на числовой линии справа от нуля.

    Определение

    Отрицательные числа — это числа со знаком «−», расположенные слева от нуля на координатной прямой.

    Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

    Основные правила сложения и вычитания отрицательных чисел:

    1. При сложении двух отрицательных чисел, необходимо суммировать их модули, затем перед полученным результатом приписать знак минус.

    (-a;+;(-b);=;-;(vert-avert;+;vert-bvert);=;-;(a;+;b))

    1. Разность двух отрицательных чисел находится по правилу «минус на минус дает плюс».

    ((-a);-;(-b);=;(-a);+;b;=;b;-;a)

    Сложение чисел с разными знаками

    При складывании двух слагаемых, одно из которых с плюсом, а другое — с минусом, необходимо сравнить их модульные значения. От слагаемого с большим модулем нужно отнять слагаемое с меньшим модулем, далее перед полученным результатом поставить знак слагаемого, большего по модульному значению.

    Примечание:

    Каждая положительная величина имеет противоположный элемент с отрицательным символом. В сумме эти пары образуют 0:

    (a;+;(-a);=;a;-;a;=;0)

    Вычитание чисел с разными знаками

    Вычитание положительных и отрицательных элементов обладает свойством, которое позволяет свести данное действие к сложению:

    (а;–;b;=;a;+;(–b))

    Расшифровка этой формулы дает следующее правило: 

    Вычитание одного числа из другого равно сумме уменьшаемого и числа, противоположного вычитаемому.

    Для того, чтобы найти разность двух чисел с разными знаками, необходимо следовать алгоритму суммирования положительной и отрицательной величины: сравнить модули уменьшаемого и вычитаемого, из числа с большим модулем нужно вычесть меньшее модульное значение, затем перед полученным результатом поставить знак большего по значения.

    Примеры упражнений

    Пример 1.

    Сложение двух отрицательных элементов: 

    − 89 + (− 125) = − (89 + 125) = − 214

    Пример 2.

    Вычитание двух отрицательных чисел:

    − 134 − (− 357) = − 134 + 357 = 357 − 134 = 223

    Пример 3.

    Сложение двух чисел с разными знаками:

    − 876 + 543

    |− 876| > |543|

    − 876 + 543 = − (|− 876| − |543|) = − (876 − 543) = − 333

    Пример 4.

    Вычитание двух элементов с разными знаками:

     678 − 943

    |678| < |− 943| 

    678 − 943 = − (|− 943| − |678|) = − (943 − 678) = − 265

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как исправить подпорченное мясо свинины
  • Как можно работу найти строительный
  • Как можно найти усилитель
  • Process explorer как найти майнер
  • Как найти слово покупатель

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии