Как найти значение выражения 2sin

9. Преобразование числовых и буквенных выражений


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Числовые тригонометрические выражения

(blacktriangleright) Алгоритм применения формул приведения:

Шаг 1: определить, меняется ли функция на кофункцию: [sin
longleftrightarrow cos]
[mathrm{tg} longleftrightarrow mathrm{ctg}]
Шаг 2: определить знак, который имеет изначальная функция, поняв, в какой четверти тригонометрической окружности находится изначальный угол (предполагая, что (alpha) – острый)

(blacktriangleright) Если угол можно представить в виде ((pi npm
alpha))
, где (n) – натуральное, то функция на кофункцию не меняется.
Пример: (sin (pi npm alpha)=bigodot sin alpha), где на месте (bigodot) должен стоять знак синуса для угла ((pi npm alpha))

(blacktriangleright) Если угол можно представить в виде (left(dfrac{pi}2npm alpharight)), где (n) – нечетное число, то функция на кофункцию меняется
Пример: (sin left(dfrac{pi}2npm alpharight)=bigodot cos
alpha)
, где на месте (bigodot) должен стоять знак синуса для угла (left(dfrac{pi}2npm alpharight))

(blacktriangleright) Основные формулы:

[begin{array}{|ccc|}
hline sin^2 alpha+cos^2 alpha =1&& mathrm{tg} alpha cdot
mathrm{ctg}alpha
=1\ &&\
mathrm{tg} alpha=dfrac{sin alpha}{cos alpha}&&mathrm{ctg}
alpha
=dfrac{cos alpha}{sin alpha}\&&\
cos {2alpha}=cos^2 alpha — sin^2 alpha&&cos
{2alpha}=1-2sin^2
alpha\&&\
cos {2alpha}=2cos^2alpha -1&&sin {2alpha}=2sin alpha cos
alpha\
hline
end{array}]


Задание
1

#573

Уровень задания: Легче ЕГЭ

Найдите значение выражения (2sin^2 30^circ + cos^2 30^circ).

Используя основное тригонометрическое тождество, исходное выражение можно преобразовать следующим образом: [2sin^2 30^circ + cos^2 30^circ = sin^2 30^circ + (sin^2 30^circ + cos^2 30^circ) = sin^2 30^circ + 1.] Так как (sin 30^circ = 0,5), то значение исходного выражения равно (0,5^2 + 1 = 1,25).

Ответ: 1,25


Задание
2

#2958

Уровень задания: Равен ЕГЭ

Найдите значение выражения [dfrac{24}{sin^2127^circ+1+sin^2217^circ}]

Заметим, что (217^circ=90^circ+127^circ). Так как по формуле приведения (sin(90^circ+alpha)=cos alpha), то [sin
217^circ=sin (90^circ+127^circ)=cos 127^circ]
Следовательно, выражение можно переписать в виде: [dfrac{24}{sin^2127^circ+cos^2127^circ+1}=dfrac{24}{1+1}=12,] так как по основному тригонометрическому тождеству (sin^2alpha+cos^2alpha=1) для любого угла (alpha).

Ответ: 12


Задание
3

#2626

Уровень задания: Равен ЕГЭ

Найдите значение выражения

[sqrt{48}-sqrt{192}sin^2dfrac{19pi}{12}]

(Задача от подписчиков.)

Заметим, что (192=48cdot 4), следовательно, (sqrt{192}=2sqrt{48}). Таким образом, выражение примет вид (по формуле косинуса двойного угла (cos2x=1-2sin^2x)):

[sqrt{48}left(1-2sin^2dfrac{19pi}{12}right)=
sqrt{48}cdot cosdfrac{19pi}6]

Т.к. (dfrac{19pi}6=dfrac{18pi+pi}6=3pi+dfrac{pi}6), то по формуле приведения:

[sqrt{48}cosleft(3pi+dfrac{pi}6right)=
sqrt{48}cdot left(-cosdfrac{pi}6right)=-sqrt{48}cdot
dfrac{sqrt3}2=-4sqrt3cdot dfrac{sqrt3}2=-6.]

Ответ: -6


Задание
4

#2434

Уровень задания: Равен ЕГЭ

Найдите значение выражения

[8left(sindfrac{pi}{12}cosdfrac{pi}{12}-1right)]

По формуле синуса двойного угла (sin2alpha=2sinalphacosalpha) имеем: (sinalphacosalpha=frac12sin2alpha). Следовательно,

[8left(dfrac12sin2cdotdfrac{pi}{12}-1right)=8left(dfrac12sindfrac{pi}6-1right)=
8left(dfrac12cdot dfrac12-1right)=-6.]

Ответ: -6


Задание
5

#2625

Уровень задания: Равен ЕГЭ

Найдите значение выражения

[dfrac{32}{sinleft(-dfrac{35pi}4right)cdot cos dfrac{25pi}4}]

(Задача от подписчиков.)

Т.к. синус — нечетная функция, то есть (sin (-alpha)=-sin
alpha)
, то (sinleft(-frac{35pi}4right)=-sin frac{35pi}4).

Заметим, что :

(dfrac{35pi}4=dfrac{36pi
-pi}4=9pi-dfrac{pi}4)
;

(dfrac{25pi}4=dfrac{24pi+pi}4=6pi+dfrac{pi}4).

Таким образом, по формулам приведения:

(sin
dfrac{35pi}4=sinleft(9pi-dfrac{pi}4right)=sindfrac{pi}4)
;

(cos
dfrac{25pi}4=cosleft(6pi+dfrac{pi}4right)=cosdfrac{pi}4)
.

Следовательно, выражение принимает вид:

[dfrac{32}{-sindfrac{pi}4cosdfrac{pi}4}=
-dfrac{32}{dfrac{sqrt2}2cdot dfrac{sqrt2}2}=-64.]

Ответ: -64


Задание
6

#581

Уровень задания: Равен ЕГЭ

Найдите значение выражения (dfrac{7sin{11^circ}}{cos{79^circ}}).

Используя формулу приведения (sin(90^circ pm alpha) = cos alpha), исходное выражение можно преобразовать следующим образом: [dfrac{7sin{11^circ}}{cos{79^circ}} = dfrac{7sin{(90^circ — 79^circ)}}{cos{79^circ}} = dfrac{7cos{79^circ}}{cos{79^circ}} = 7.]

Ответ: 7


Задание
7

#1841

Уровень задания: Равен ЕГЭ

Найдите значение выражения (dfrac{15}{sin{(-frac{20pi}{3})}
cdot cos{(-frac{43pi}{6})}})
.

Используя формулы приведения, а также четность косинуса и нечетность синуса, исходное выражение можно преобразовать следующим образом: [dfrac{15}{-sin{left(6pi + frac{2pi}{3}right)} cdot
cos{left(7pi + frac{pi}{6}right)}} =
dfrac{15}{-sin{left(frac{2pi}{3}right)} cdot
(-cos{left(frac{pi}{6}right)})} =
dfrac{15}{-frac{sqrt{3}}{2} cdot ({-frac{sqrt{3}}{2})}} = 20.]

Ответ: 20

УСТАЛ? Просто отдохни

Вычислить значение выражения 2sin.

На этой странице находится вопрос Вычислить значение выражения 2sin?. Здесь же – ответы на него,
и похожие вопросы в категории Математика, которые можно найти с помощью
простой в использовании поисковой системы. Уровень сложности вопроса
соответствует уровню подготовки учащихся 5 — 9 классов. В комментариях,
оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С
ними можно обсудить тему вопроса в режиме on-line. Если ни один из
предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой
строке, расположенной вверху, и нажмите кнопку.

Как найти значение выражения

Числовые выражения составляются из чисел, знаков арифметических действий и скобок. Если в таком выражении присутствуют переменные, оно будет называться алгебраическим. Тригонометрическим является выражение, в котором переменная содержится под знаками тригонометрических функций. Задачи на определение значений числового, тригонометрического, алгебраического выражений часто встречаются в школьном курсе математики.

Как найти значение выражения

Инструкция

Чтобы найти значение числового выражения, определите порядок действий в заданном примере. Для удобства обозначьте его карандашом над соответствующими знаками. Выполните все указанные действия в определенном порядке: действия в скобках, возведение в степень, умножение, деление, сложение, вычитание. Полученное число и будет значением числового выражения.

Пример. Найдите значение выражения (34∙10+(489–296)∙8):4–410. Определите порядок действий. Первое действие выполните во внутренних скобках 489–296=193. Затем, умножьте 193∙8=1544 и 34∙10=340. Следующее действие: 340+1544=1884. Далее выполните деление 1884:4=461 и затем вычитание 461–410=60. Вы нашли значение данного выражения.

Чтобы найти значение тригонометрического выражения при известном угле α, предварительно формулы. Вычислите заданные значения тригонометрических функций, подставьте их в пример. Выполните действия.

Пример. Найдите значение выражения 2sin 30º∙cos 30º∙tg 30º∙ctg 30º. Упростите данное выражение. Для этого воспользуйтесь формулой tg α∙ctg α=1. Получите: 2sin 30º∙cos 30º∙1=2sin 30º∙cos 30º. Известно, что sin 30º=1/2 и cos 30º=√3/2. Следовательно, 2sin 30º∙cos 30º=2∙1/2∙√3/2=√3/2. Вы нашли значение данного выражения.

Значение алгебраического выражения зависит от значения переменной. Чтобы найти значение алгебраического выражения при заданных переменных, упростите выражение. Подставьте вместо переменных определенные значения. Выполните необходимые действия. В итоге вы получите число, которое и будет значением алгебраического выражения при заданных переменных.

Пример. Найдите значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10. Упростите данное выражение, получите: a–2y. Подставьте соответствующие значения переменных и вычислите: a–2y=21–2∙10=1. Это и есть значение выражения 7(a+y)–3(2a+3y) при a=21 и y=10.

Обратите внимание

Существуют алгебраические выражения, не имеющие смысла при некоторых значениях переменных. Например, выражение x/(7–a) не имеет смысла, если a=7, т.к. при этом знаменатель дроби обращается в нуль.

Источники:

  • найдите наименьшее значение выражения
  • Найди значения выражений при с 14

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Школьнику.com

Задать вопрос

Вход
Регистрация

Опубликовано 13.06.2017 по предмету Алгебра от Гость
>> <<

Ответ оставил Гость

 frac{2sin( alpha -7 pi) + cos( frac{3 pi}{2} + alpha ) }{sin ( alpha+ pi П)} = frac{ - 2sinalpha +( - sin  alpha )}{- sin  alpha}=  frac{ - 3sinalpha}{- sin  alpha}= 3

Оцени ответ

Подпишись на наш канал в телеграм. Там мы даём ещё больше полезной информации для школьников!

Найти другие ответы

Загрузить картинку

Предметы

  • Алгебра
  • Математика
  • Русский язык
  • Українська мова
  • Информатика
  • Геометрия
  • Химия
  • Физика
  • Экономика
  • Право
  • Английский язык
  • География
  • Биология
  • Другие предметы
  • Обществознание
  • История
  • Литература

Показать ещё

  • 2016-2023 www.shkolniku.com — Готовим домашнее задание вместе!

Пример №1. Найдите значение выражения (-18sqrt{2}sin⁡(-135^°)).

Решение

(-135^°=-90^°-45^°)

пример нахождение синуса и косинуса -135 прям на экзамене

Получается (-18sqrt{2} sin⁡(-135^° )=-18sqrt{2}cdot-frac{sqrt{2}}{2}=)(frac{18cdotsqrt{2}cdotsqrt{2}}{2}=9cdot 2=18.)
Ответ: (18).

Пример №2. Найдите значение выражения (54sqrt{3}cos⁡(510^°)).

Решение

(510^°=360^°+150^°=360^°+180^°-30^°.)

пример нахождение синуса и косинуса 510 градусов на егэ

(54sqrt{3}cos⁡(510^°)=54sqrt{3}cdot(-frac{sqrt{3}}{2})=)(-frac{54cdot sqrt{3}cdot sqrt{3}}{2}=-27cdot 3=-81.)
Ответ: (-81).

Пример №3. Найдите значение выражения (24sqrt{2},cos⁡(-frac{π}{3}),sin⁡(-frac{π}{4})).

Решение

(24sqrt{2},cos⁡(-frac{π}{3}),sin⁡(-frac{π}{4})=)(-24sqrt{2},cos⁡frac{π}{3},sin⁡frac{π}{4}).

косинус пи на 3, синус пи на4

Из рисунка видно, что и косинус, и синус положителен. Косинус из трех стандартных значений (frac{1}{2}), (frac{sqrt{2}}{2}), (frac{sqrt{3}}{2}) принимает наименьшее т.е. (cos,⁡frac{π}{3}=frac{1}{2}). Синус из трех стандартных значений будет равен среднему т.е. (sin⁡,frac{π}{4}=frac{sqrt{2}}{2}). Получается:

(-24sqrt{2},cos⁡frac{π}{3},sin⁡frac{π}{4}=-24sqrt{2}cdot)(frac{1}{2})(cdot)(frac{sqrt{2}}{2})(=)(frac{-24sqrt{2}cdotsqrt{2}}{4})(=)(frac{-24cdot 2}{4})(=-6cdot2=-12)

Ответ: (-12).

Пример №4. Найдите значение выражения (frac{8}{sin⁡(-frac{27π}{4}) cos⁡(frac{31π}{4})}) .

Решение

(-frac{27π}{4}=-frac{28π}{4}+frac{π}{4}=-7π+frac{π}{4}).
(frac{31π}{4}=frac{32π}{4}-frac{π}{4}=8π-frac{π}{4}).

как рисовать тригонометрический круг

(sin⁡(-frac{27π}{4})=-frac{sqrt{2}}{2}),      (cos⁡(frac{31π}{4})=frac{sqrt{2}}{2}).

(frac{8}{sin⁡(-frac{27π}{4}) cos⁡(frac{31π}{4})})(=) (frac{ 8}{-frac{sqrt{2}}{2}cdotfrac{sqrt{2}}{2}})(=-8:frac{2}{4}=-8cdotfrac{2}{1}=-16).

Ответ: (-16).

Пример №5. Найдите значение выражения (44sqrt{3},tg,(-480^° )).

Решение

(44sqrt{3},tg(-480^° )=-44sqrt{3},tg(480^° )=)(-44sqrt{3},tg(360^°+120^° )=)(-44sqrt{3},tg(360^°+90^°+30^°)).

Находим (480^°) на окружности:

тангенс 480 градусов

Соединяем точку, соответствующую (480^°) и центр окружности, и продляем до оси тангенсов:

тангенс 480 градусов

Мы попадаем в самое маленькое (из стандартных) значение тангенса.
Значит, (tg(480^° )=-sqrt{3}).
В итоге имеем: (44sqrt{3} tg(-480^° )=-44sqrt{3}cdot(-sqrt{3})=)(44cdot 3=132).
Ответ: (132).

Пример №6. Найдите значение выражения (2sqrt{3} tg,(-300^°)).

Решение

(-300^°=-360^°+60^°).

вычисляем тангенс и котангенс -300 градусов

(2sqrt{3}tg(-300^° )=2sqrt{3}cdotsqrt{3}=2cdot 3=6).
Ответ: (6).

Пример №7. Найдите значение выражения (36sqrt{6}, tg,frac{π}{6} sin⁡,frac{π}{4}).

Решение

решенеие задания из ЕГЭ

(36sqrt{6}cdotfrac{sqrt{2}}{2}cdotfrac{1}{sqrt{3}}=)(frac{36sqrt{6}sqrt{2}}{2sqrt{3}}=frac{18sqrt{12}}{sqrt{3}}=)(frac{18sqrt{4}}{1}=18cdot2=36).

Ответ: (36).

Пример №8. Найдите (5sin⁡α), если (cosα=frac{2sqrt{6}}{5}) и (α∈(frac{3π}{2};2π)).

Решение

Нам известен косинус, найти надо синус. А что связывает синус и косинус? Основное тригонометрическое тождество:

(sin^2α+cos^2⁡α=1).

Подставим вместо косинуса его значение:

(sin^2⁡α+)((frac{2sqrt{6}}{5}))(^2=1)
(sin^2⁡α+)(frac{4cdot 6}{25})(=1)
(sin^2⁡α+)(frac{24}{25})(=1)
(sin^2⁡α=1-)(frac{24}{25})
(sin^2⁡α=)(frac{1}{25})
(sin⁡α=±)(frac{1}{5})

Внимание! Последняя строчка – место, где теряется огромное количество баллов на ЕГЭ! Это одна из самых популярных ошибок – забыть отрицательный корень. Пожалуйста, раз и навсегда запомните, что у неполного квадратного уравнения вида (x^2=a) (при (a>0)) два корня (x_1=sqrt{a})  и (x_2=-sqrt{a}). Пусть двойка над иксом (та которая «квадрат») будет вам вечным маяком, сигнализирующим: «тут ДВА корня! Два! Не забудь!»

Вернемся к задаче. Получилось, что синус может иметь значение (frac{1}{5}), а может (-)(frac{1}{5}). И какое значение нам надо выбрать — с минусом или плюсом? Тут нам на помощь приходит информация, что (α∈(frac{3π}{2};2π)). Давайте нарисуем числовую окружность и отметим отрезок ((frac{3π}{2};2π)).

от 3пи на 2 до 2 пи

Обратите внимание – в этой четверти синус принимает только отрицательные значения (можно провести перпендикуляры до оси синусов и убедиться, что это так).

определяем знак синуса в четвертой четверти

Значит, в нашем случае (sinα=-frac{1}{5}) т.е. (5sin⁡α=5cdot(-frac{1}{5})=-1).

Ответ: (-1).

Пример №9. Найдите (tg,α), если (cos,⁡α=)(frac{sqrt{10}}{10}) и (α∈(frac{3π}{2};2π)). 

Решение

Есть 2 пути решения этой задачи:

— напрямую вычислить тангенс через формулу (tg^2α+1=)(frac{1}{cos^2⁡α});
— сначала с помощью тождества (sin^2⁡α+cos^2⁡α=1) найти (sin⁡,α), а потом через формулу (tg,α=)(frac{sin⁡,α}{cos⁡,α}) получить тангенс.

В учебниках обычно идут первым путем, поэтому мы пойдем вторым.

Вычисляем синус:

(sin^2⁡α+)((frac{sqrt{10}}{10})^2)(=1)
(sin^2⁡α+)(frac{10}{100})(=1)
(sin^2⁡α+)(frac{1}{10})(=1)
(sin^2⁡α=1-)(frac{1}{10})
(sin^2⁡α=)(frac{9}{10});
(sin⁡,α=±)(frac{3}{sqrt{10}})

Опять (α∈(frac{3π}{2};2π)), значит в итоге синус может быть только отрицательным. То есть, (sin⁡,α=-)(frac{3}{sqrt{10}}).
А теперь вычисляем тангенс: (tg,α=-)(frac{3}{sqrt{10}})(:)(frac{sqrt{10}}{10})(=)(-frac{3}{sqrt{10}}cdotfrac{10}{sqrt{10}})(=-)(frac{30}{10})(=-3).

Ответ: (-3).

Пример №10. Найдите (tg^2 α), если (5 sin^2⁡α+13 cos^2⁡α=6).

Решение

Давайте пойдем от того, что известно. В равенстве (5 sin^2⁡α+13 cos^2⁡α=6) синус заменим на косинус:

(5(1-cos^2⁡α)+13 cos^2⁡α=6)
(5-5 cos^2⁡α+13 cos^2⁡α=6)
(5+8 cos^2⁡α=6)
(8 cos^2⁡α=1)
(cos^2⁡α=)(frac{1}{8})

Поняли почему именно синус заменили на косинус, а не наоборот? И почему не надо извлекать корень, досчитывая до «чистого» косинуса? Потому что для нахождения (tg^2α) хорошо подходит формула (tg^2α+1=)(frac{1}{cos^2⁡α}) :

(tg^2 α+1=1:)(frac{1}{8})
(tg^2 α+1=1cdot)(frac{8}{1})
(tg^2 α+1=8)
(tg^2 α=7)

Ответ: (7).

Пример №11. Найдите (frac{2cos,α-7sin,α}{2sin,α-2cos,α}), если (tg,⁡α=2).

Пример №12. Найдите (tg,⁡α), если (frac{2cos,α+4sin,α}{5sin,α-16cos,α})(=1).

Пример №13. Найдите значение выражения (frac{18 cos {⁡{41}^°} }{sin⁡ {{49}^°}}).

Решение

Решение задач на формулы приведения

Пример №14. Найдите значение выражения (frac{5 tg {⁡{163}^°} }{tg {{17}^°}}).

Пример №15. Найдите значение выражения (-19,tg,101^°cdot tg,191^°).

Пример №16. Найдите значение выражения (frac{-12}{sin^2{⁡131^°} + sin^2⁡{221^°} }).

Пример №17. Найдите (26cos⁡(frac{3π}{2}+α)), если (cos⁡α=frac{12}{13}) и (α∈(frac{3π}{2};2π)).

Решение:

Очевидно, что к исходному выражению можно применить формулу приведения (26cos⁡(frac{3π}{2}+α)=26sin⁡α). Задача свелась к нахождению синуса по косинусу, много похожих заданий было разобрано в статье «формулы связи».

(sin^2⁡α+cos^2⁡α=1)
(sin^2⁡α+(frac{12}{13})^2=1)
(sin^2⁡α+frac{144}{169}=1)
(sin^2⁡α=1-frac{144}{169})
(sin^2⁡α=frac{169-144}{169})
(sin^2⁡α=frac{25}{169})
(sin⁡,α=±frac{5}{13})

С учетом того, что (α∈(frac{3π}{2};2π)), то есть в четвертой четверти, (sin,⁡α=-frac{5}{13}).

(26cos⁡(frac{3π}{2}+α)=26sin⁡α=26cdot (-frac{5}{13})=-frac{26cdot 5}{13}=-2cdot 5=-10).

Ответ:  (-10).

Пример №18. Вычислить, чему равен (ctg,(-a-frac{7π}{2})), если (tg⁡,a=2).

Пример №19. Найдите значение выражения (frac{12 sin⁡11^° cdot,cos⁡11^°}{sin ⁡22^° }).

Решение

решение задачи из егэ на формулу двойного угла

Пример №20. Найдите значение выражения (sin{frac{23π}{12}}cos{frac{23π}{12}}).

Решение

произведение синуса и косинуса

Пример №21. Найдите значение выражения (sqrt{3}cos^2frac{5π}{12}-sqrt{3}sin^2frac{5π}{12}).

Решение

(sqrt{3}cos^2frac{5π}{12}-sqrt{3}sin^2frac{5π}{12}=sqrt{3}(cos^2frac{5π}{12}-sin^2frac{5π}{12})=sqrt{3}cos(2cdotfrac{5π}{12})=sqrt{3}cosfrac{5π}{6})

Вычислим (cos⁡frac{5π}{6}) с помощью тригонометрического круга. Сначала найдем (frac{5π}{6}) на круге:

(frac{5π}{6}=frac{6π-π}{6}=π-frac{π}{6})

формулы двойного угла.jpg

Теперь видно, что (cos⁡frac{5π}{6}=-frac{sqrt{3}}{2})
(sqrt{3}cos⁡ frac{5π}{6}=sqrt{3}cdot(-frac{sqrt{3}}{2})=-frac{3}{2}=-1,5).

Пример №22. Найдите значение выражения (frac{24(sin^2 17^°- cos^2⁡ 17^°)}{cos⁡34^°}).

Пример №23. Найдите (16cos2α), если (cosα=frac{3}{4}).

Решение

9 задача - решение (3).png

Пример №24. Найдите значение выражения (frac{7sin6α}{5cos⁡3α}), если (sin3α=0,2).

Решение

9 задача - решение (4).png

Пример №25. Найдите значение выражения (frac{5sin98^°}{sin⁡49^°sin41^°}).

Пример №26. Найдите значение выражения (sqrt{12}cos^2⁡frac{5π}{12}-sqrt{3}).

Пример №27. Найдите значение выражения (sqrt{32}⁡-sqrt{128}sin^2frac{7π}{8}).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти количество тепла формула
  • Как исправить раздачу на торренте
  • Как исправить проблему с dns сервером windows 10
  • Как найти черновик объявления на авито
  • Вопрос как найти дело по душе обществознание

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии