Математика
62. Одно уравнение с тремя неизвестными . Пусть имеем уравнение
На это уравнение можно смотреть, как на запись задачи: найти числовые значения для x, y и z, чтобы трехчлен 3x + 4y – 2z оказался равен числу 11. Таким образом это уравнение является уравнением с тремя неизвестными. Так как мы можем решить одно уравнение с одним неизвестным, то уже с первого взгляда возникает мысль, что 2 неизвестных здесь являются как бы лишними, и им можно давать произвольные значения. И действительно, если, например, взять для y число 3 и для z число 5, то получим уравнение с одним неизвестным:
Возьмем другие числа для y и z. Например, пусть
Тогда получим уравнение:
Продолжая эту работу дальше, мы придем к заключению:
Одно уравнение с тремя неизвестными имеет бесконечно много решений, и для получения их надо двум неизвестным давать произвольные значения.
Результаты этой работы можно записать в таблице (мы, кроме двух уже найденных решений, записали в ней еще одно, которое получится, если положить y = –1 и z = –2):
Так как для y и для z мы берем произвольные значения, то они являются независимыми переменными, а x является зависимым (от них) переменным. Другими словами: x является функциею от y и z.
Чтобы удобнее получать решения этого уравнения, можно определить из него x через y и z. Получим:
3x + 4y – 2z = 11; 3x = 11 – 4y + 2z;
x = (11 – 4y + 2z) / 3.
Дадим, напр., значения: y = 5 и z = 1; получим: x = (11 – 20 + 2) / 3 = –2(1/3) и т. д.
Возьмем еще уравнение
Примем x и y за независимые переменные, а z — за зависимое и определим z через x и y
–2z = 7 – 3x + 5y; 2z = 3x – 5y – 7; z = (3x – 5y – 7) / 2
Система линейных уравнений с тремя переменными
Линейное уравнение с тремя переменными и его решение
Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.
Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; frac<1> <2>x-8y-5z = 7$
Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.
Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$
Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.
Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .
Решение системы линейных уравнений с тремя переменными методом подстановки
Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)
Например: решить систему
$$ <left< begin 3x+2y-z = 8 \ x-y+z = -2 \ 2x-3y-5z = 1 end right.> Rightarrow <left< begin 3(y-z-2)+2y-z = 8 \ x = y-z-2 \ 2(y-z-2)-3y-5z = 1 end right.> Rightarrow $$
$$ Rightarrow <left< begin x = y-z-2 \ 5y-4z = 14 \ -y-7z = 5 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ 5(-7z-5)-4z = 14 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ -39z = 39 end right.> Rightarrow $$
$$ Rightarrow <left< begin x = 2-(-1)-2 = 1 \ y = -7cdot(-1)-5 = 2 \ z = -1 end right.> Rightarrow <left< begin x = 1 \ y = 2 \ z = -1 end right.> $$
Решение системы линейных уравнений с тремя переменными методом Крамера
Для системы с 3-мя переменными действуем по аналогии.
Дана система 3-х линейных уравнений с 3-мя переменными:
$$ <left< begin a_1 x+b_1 y+c_1 z = d_1 \ a_2 x+b_2 y+c_2 z = d_2 \ a_3 x+b_3 y+c_3 z = d_3 end right.> $$
Определим главный определитель системы:
$$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end $$
и вспомогательные определители :
$$ Delta_x = begin d_1 & b_1 & c_1 \ d_2 & b_2 & c_2 \ d_3 & b_3 & c_3 end, Delta_y = begin a_1 & d_1 & c_1 \ a_2 & d_2 & c_2 \ a_3 & d_3 & c_3 end, Delta_z = begin a_1 & b_1 & d_1 \ a_2 & b_2 & d_2 \ a_3 & b_3 & d_3 end $$
Тогда решение системы:
Соотношение значений определителей, расположения плоскостей и количества решений:
Три плоскости пересекаются в одной точке
Три плоскости параллельны
Две или три плоскости совпадают или пересекаются по прямой
Бесконечное множество решений
Осталось определить правило вычисления определителя 3-го порядка.
Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):
$$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end = a_1 = begin b_2 & c_2 \ b_3 & c_3 end — b_1 = begin a_2 & c_2 \ a_3 & c_3 end + c_1 = begin a_2 & b_2 \ a_3 & b_3 end = $$
$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$
Примеры
Пример 1. Найдите решение системы уравнений методом подстановки:
$$<left< begin z = 3x+2y-13 \ 2x-y+3(3x+2y-13) = -2 \ x+2y-(3x+2y-13) = 9 end right.> Rightarrow <left< begin z = 3x+2y-13 \ 11x+5y = 37 \ -2x = -4 end right.> Rightarrow $$
$$Rightarrow <left< begin z = 3cdot2+2cdot3-13 = -1 \ y = frac<37-11cdot2> <5>= 3 \ x = 2 end right.> Rightarrow <left< begin x = 2 \ y = 3 \ z = -1 end right.> $$
$$ <left< begin x = -y-3z+6 \ 2(-y-3z+6)-5y-z = 5\ (-y-3z+6)+2y-5z = -11 end right.> Rightarrow <left< begin x = -y-3z+6 \ -7y-7z = -7 |:(-7) \ y-8z = -17 end right.> Rightarrow $$
$$ Rightarrow <left< begin x = -y-3z+6 \ y+z = 1 \ y-8z = -17 end right.> Rightarrow <left< begin x = -y-3z+6 \ 9z = 18 \ y = 1-z end right.> Rightarrow <left< begin x = 1-6+6 = 1 \ z = 2 \ y = 1-2 = -1 end right.> Rightarrow$$
Пример 2. Найдите решение системы уравнений методом Крамера:
$$ Delta = begin 3 & 2 & -1 \ 2 & -1 & 3\ 1 & 2 & -1 end = 3 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -1 \ 1 & 2 \ end = $$
$$ Delta_x = begin 13 & 2 & -1 \ -2 & -1 & 3 \ 9 & 2 & -1 \ end = 13 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin -2 & 3 \ 9 & -1 \ end — 1 = begin -2 & -1 \ 9 & 2 \ end = $$
$$ Delta_y = begin 3 & 13 & -1 \ 2 & -2 & 3 \ 1 & 9 & -1 \ end = 3 = begin -2 & 3 \ 9 & -1 \ end — 13 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -2 \ 1 & 9 \ end = $$
$$ Delta_z = begin 3 & 2 & 13 \ 2 & -1 & -2 \ 1 & 2 & 9 \ end = 3 = begin -1 & -2 \ 2 & 9 \ end — 2 = begin 2 & -2 \ 1 & 9 \ end + 13 = begin 2 & -1 \ 1 & 2 \ end = $$
$$ Delta = begin 1 & 1 & 3 \ 2 & -5 & -1\ 1 & 2 & -5 end = 1 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & -5 \ 1 & 2 \ end = $$
$$ Delta_x = begin 6 & 1 & 3 \ 5 & -5 & -1 \ -11 & 2 & -5 \ end = 6 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 5 & -1 \ -11 & -5 \ end + 3 = begin 5 & -5 \ -11 & 2 \ end = $$
$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$
$$ Delta_y = begin 1 & 16 & 3 \ 2 & 5 & -1 \ 1 & -11 & -5 \ end = 1 = begin 5 & -1 \ -11 & -5 \ end — 6 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & 5 \ 1 & -11 \ end = $$
$$ Delta_z = begin 1 & 1 & 6 \ 2 & -5 & 5 \ 1 & 2 & -11 \ end = 1 = begin -5 & 5 \ 2 & -11 \ end — 1 = begin 2 & 5 \ 1 & -11 \ end + 6 = begin 2 & -5 \ 1 & 2 \ end = $$
Пример 3*. Решите систему уравнений относительно x,y,и z:
$$ a neq b, b neq c, a neq c $$
Решаем методом замены:
$$ <left< begin z = -(a^3+a^2 x+ay)\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 end right.> Rightarrow <left< beginz = -(a^3+a^2 x+ay)\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \ (c^2-a^2 )x+(c-a)y = a^3-c^3 end right.> $$
Т.к. $ a neq b$ второе уравнение можно сократить на $(a-b) neq 0$
Т.к.$ a neq c$ третье уравнение можно сократить на $(a-с) neq 0 $. В третьем уравнении после сокращения поменяем знаки:
Из второго уравнения получаем:
Т.к. $b neq c$ можно сократить на $(b-c) neq 0$:
$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$
$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$
Системы линейных уравнений с тремя переменными
Линейным уравнением называется уравнение вида:
В этом уравнении — неизвестные, а — действительные (или комплексные) числа. При этом называются коэффициентами уравнения, а — свободным членом.
Рассмотрим систему трех линейных уравнений с тремя неизвестными:
Из трех способов решения этих систем: графического, способа подстановки и способа сложения остается два последних способа. Графический способ уже не проходит, так как пришлось бы находить точку пересечения трех плоскостей. А это трудно изобразить.
Способ подстановки для трех уравнений похож на способ подстановки для двух уравнений с двумя неизвестными, только у этого способа на один шаг больше. Первое: выражаем одно из неизвестных из одного уравнения через два остальных неизвестных и подставляем это выражение в оставшиеся два уравнения. Эти оставшиеся два уравнения составляют систему из двух уравнений с двумя неизвестными. А дальше решаем эту полученную систему и находим два неизвестных, а затем, зная их, и третье неизвестное.
Пример 1 Решить систему уравнений: способом подстановки.
Выразим из первого уравнения через остальные неизвестные и свободный член. Найденное выражение подставим в остальные уравнения.
Далее, оставляя первое уравнение в покое, решаем систему из двух получившихся уравнений с неизвестными и (предварительно разделив обе части второго уравнения на ).
Получили единственное решение системы
Рассмотрим теперь способ сложения. Так же как и для двух уравнений с двумя неизвестными, нужно при помощи сложения уравнений добиться, чтобы одно из неизвестных пропало.Приведем пример.
Пример 2 Решить систему уравнений: способом сложения.
Постараемся получить два уравнения с двумя неизвестными. Избавимся от неизвестной . Для этого удвоенное первое уравнение сложим почленно с удвоенным вторым уравнением, а удвоенное второе уравнение прибавим к третьему уравнению:
Далее производим почленное сложение двух уравнений с двумя неизвестными, исключая неизвестную :
Из последнего уравнения системы находим . Подставляя найденное значение во второе уравнение, находим . Наконец из первого уравнения находим . Итак — единственное решение системы.
В заключении решим задачу, которая приводится к системе с тремя неизвестными.
Задача В трех урнах — шариков. В первой урне шариков больше чем во второй на столько, сколько шариков в третьей урне. Число шариков во второй урне относится к числу шариков в третьей урне как . Сколько шариков в каждой урне?
Обозначим число шариков в 1-й, 2-й и 3-й урнах через соответственно. Тогда первое условие задачи дает уравнение , второе условие — , а третье условие — . Запишем три полученные уравнения в систему, сделав предварительно третье уравнение линейным:
Складывая почленно первые два уравнения находим .Решаем систему из двух оставшихся уравнений:
Итак, в урнах соответственно и шариков.
Длины волн инфракрасного света достаточно велики, чтобы перемещаться сквозь облака, которые в противном случае блокировали бы наш обзор. Используя большие инфракра сные телескопы, астрономы смогли заглянуть в ядро нашей галактики. Большое количество звезд излучают часть своей электромагнитной энергии в виде видимого света, крошечной части спектра, к которой чувствительны наши глаза.
Так как длина волны коррелирует с энергией, цвет звезды говорит нам, насколько она горячая. Используя телескопы, чувствительные к различным диапазонам длин волн спектра, астрономы получают представление о широком круге объектов и явлений во вселенной.
Пример №1 Постройте центральную симметрию тетраэдра, относительно точки O, изображенных на рисунке 3.
Для построения такой центральной симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет проходить через точку O. На них построим отрезки, удовлетворяющие условиям |AO|=|A?O|, |BO|=|B?O|, |CO|=|C?O|, |DO|=|D?O| Таким образом, и получим искомую симметрию (рис. 4).
В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени.
В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.
Совет №1 Велосипедист, имеющий скорость 300 м/с, или идеальный газ, оказывающий давление 100 паскалей в большой тепловой машине — это странно.
Нужна помощь с курсовой или дипломной работой?
http://reshator.com/sprav/algebra/7-klass/sistema-linejnyh-uravnenij-s-tremya-peremennymi/
http://khab.work5.ru/spravochnik/matematika/sistemy-linejnykh-uravnenij-s-tremya-peremennymi
Уравнение с тремя неизвестными
62. Одно уравнение с тремя неизвестными. Пусть имеем уравнение
3x + 4y – 2z = 11.
На это уравнение можно смотреть, как на запись задачи: найти числовые значения для x, y и z, чтобы трехчлен 3x + 4y – 2z оказался равен числу 11. Таким образом это уравнение является уравнением с тремя неизвестными. Так как мы можем решить одно уравнение с одним неизвестным, то уже с первого взгляда возникает мысль, что 2 неизвестных здесь являются как бы лишними, и им можно давать произвольные значения. И действительно, если, например, взять для y число 3 и для z число 5, то получим уравнение с одним неизвестным:
3x + 12 – 10 = 11,
откуда
3x = 9 и x = 3.
Возьмем другие числа для y и z. Например, пусть
y = –1 и z = 0.
Тогда получим уравнение:
3x – 4 = 11,
откуда
3x = 15 и x = 5.
Продолжая эту работу дальше, мы придем к заключению:
Одно уравнение с тремя неизвестными имеет бесконечно много решений, и для получения их надо двум неизвестным давать произвольные значения.
Результаты этой работы можно записать в таблице (мы, кроме двух уже найденных решений, записали в ней еще одно, которое получится, если положить y = –1 и z = –2):
Так как для y и для z мы берем произвольные значения, то они являются независимыми переменными, а x является зависимым (от них) переменным. Другими словами: x является функциею от y и z.
Чтобы удобнее получать решения этого уравнения, можно определить из него x через y и z. Получим:
3x + 4y – 2z = 11; 3x = 11 – 4y + 2z;
x = (11 – 4y + 2z) / 3.
Дадим, напр., значения: y = 5 и z = 1; получим: x = (11 – 20 + 2) / 3 = –2(1/3) и т. д.
Возьмем еще уравнение
3x – 5y – 2z = 7.
Примем x и y за независимые переменные, а z — за зависимое и определим z через x и y
–2z = 7 – 3x + 5y; 2z = 3x – 5y – 7; z = (3x – 5y – 7) / 2
Теперь легко составить таблицу решений:
Если уравнений с тремя неизвестными три или более, то такая система уравнений решается различными способами. Можно производить последовательную подстановку переменных для однозначного выражения одной из них. Можно решать такие системы методом Гаусса, методом Крамера, методом сложения… Вариантов множество. Задачи подобного вида являются стандартными и их решение, как правило, трудностей не вызывает.
Рассмотрим одно уравнение с тремя неизвестными, где x,y,z-неизвестные величины. Уравнение будет однозначно разрешимо, если количество переменных в нём не более одной. Действительно, уравнение вида x+y=c, где с — известная константа, имеет бесконечно много решений. Если мы выразим х, то
х=с-у.
При фиксированном с, количество решений будет определяться количеством значений у, которые мы можем подставить в уравнение, следовательно однозначно решение не определено. Отсюда следует вывод, что для количества переменных более одной уравнение однозначно неразрешимо.
Но, не всё так безысходно. Можно попытаться уравнение с тремя переменными привести к стандартному виду канонического уравнения какой-нибудь поверхности вторго порядка (элипсоид, гиперболоид итд).
Рассмотрим пример.
Дано уравнение 4x^2+2y^2+8z^2=16
Разделим обе части на 16
(x^2)/4+(y^2)/8+(z^2)/2=1
Получили уравнение элипсоида с центром в начале координат. То есть все решения данного уравнения будут находится на поверхности этого элипсоида.
Ещё пример.
5(x^2-3)+3(y^2)-15(z^2)=-45
Разделим на 45 обе части уравнения
(x^2-3)/9+(y^2)/15-(z^2)/3=-1
Получили уравнение двухполостного гиперболоида с центром в точке (-3;0;0). То есть все решения данного уравнения будут находится на поверхности этого двухполостного гиперболоида.
Примеры довольно простые, так как придуманны только для иллюстрации. В реальности же, приходится попотеть, что бы привести уравнение к какому-нибудь красивому виду. Порой этого не удаётся. К каждому нестандартному уравнению нужен свой особый подход.
Как решить систему с тремя неизвестными
Линейная система с тремя неизвестными имеет несколько способов решения. Найти решение системы можно с помощью правила Кремера через определители, методом Гаусса или используя простой способ подстановки. Метод подстановки является основным для решения систем линейных уравнений небольшого порядка. Он заключается в поочередном выражении из каждого уравнения системы одной неизвестной переменной, подстановки ее в следующее уравнение и упрощение получаемых выражений.
Инструкция
Запишите исходную систему уравнений третьего порядка. Из первого уравнения системы выразите первую неизвестную переменную х. Для этого перенесите члены, содержащие другие переменные за знак равенства. Перенесенным членам поменяйте знак на противоположный.
Если при множителе с выражаемой переменной присутствует коэффициент отличный от единицы, поделите на его значение все уравнение. Таким образом, вы получите переменную х, выраженную через остальные члены уравнения.
Подставьте во второе уравнение вместо х то выражение, которое вы получили из первого уравнения. Упростите полученную запись, произведя сложение или вычитание подобных членов. Аналогично предыдущему шагу выразите из второго уравнения следующую неизвестную переменную у. Также перенесите все другие члены за знак равенства и поделите все уравнение на коэффициент при у.
В последнее третье уравнение подставьте вместо двух неизвестных переменных х и у выраженные значения из первого и второго уравнений системы. Причем в выражении х также замените переменную у. Упростите полученное уравнение. В нем в качестве неизвестной величины останется лишь третья переменная z. Выразите ее из уравнения, как описано выше, и высчитайте ее значение.
В выражение у из второго уравнения подставьте известное значение переменной z. Подсчитайте значение переменной у. Далее в выражение переменной х подставьте значения переменных у и z. Вычислите х. Запишите полученные значения х, у и z – это и есть решение системы с тремя неизвестными.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Решение систем линейных уравнений следует после изучения основ решения простых уравнений. Системы уравнений применяют в том случае, когда в задании более одного неизвестного.
Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.
Как правило, если в задании необходимо найти два неизвестных, то необходимо решение систем, состоящих из двух линейных уравнений, три неизвестных — из трех уравнений и т.д. Отметим, что не всегда количество неизвестных будет совпадать с количеством уравнений в системе (такие системы уравнений рассматривают в старших классах).
В данной статье речь пойдет о решении систем двух уравнений с двумя переменными, за исключением пункта «решение систем линейных уравнений методом Гаусса», где мы рассмотрим систему с тремя переменными.
Линейное уравнение с двумя переменными
Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения является любая пара чисел (x; y), которая обращает уравнение в верное числовое равенство.
- Если рассматривать одно уравнение ax + by + c = 0, то к нему можно подобрать бесконечное множество корней.
- Если рассматривать систему уравнений, состоящую из двух уравнений, то неизвестные х и у будут связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем.
Графически это можно представить так:
- Каждое линейное уравнение представляет собой множество точек, которые лежат на одной прямой. Таким образом: первому уравнению соответствует одна прямая, второму — другая прямая.
- Если эти прямые пересекаются — у системы есть единственное решение.
Если две прямые параллельны — значит они не пересекаются и система не будет иметь решений.
Если две прямые совпадают — каждая точка будет решением, а у системы будет бесчисленное множество решений.
Рассмотрим способы решения систем уравнений.
Метод подстановки
Метод подстановки знаком из курса школьной математики, его изучают в 7 классе. Это самый лёгкий способ решения систем линейных уравнений.
Алгоритм решения:
- Выразить одну переменную через другую из более простого уравнения системы.
- Подставить это выражение в другое уравнение системы вместо этой переменной.
- Решить полученное уравнение с одной переменной.
- Подставить значение полученной переменной (шаг 3) в выражение другой переменной (из шага 1).
Пример 1:
- Выразим x из первого уравнения:
x = 4 + y - Подставим получившееся выражение во второе уравнение вместо x:
x + 2y = 10 → 4 + y + 2y = 10 - >Решим второе уравнение относительно переменной y:
4+y+2y=10 → 4+3y=10 → 3y=10−4 → 3y=6 → y=6:3 → y=2 - Полученное значение подставим в первое уравнение вместо y и решим уравнение:
x=4+y → x=4+2 → x=6 - Ответ: (6; 2).
Пример 2:
- Выразим переменную x из первого уравнения: x = 7−5y
- Выражение (7−5y) подставим вместо переменной x во второе уравнение:
3x=4+2y → 3*(7−5y)=4+2y - Решим второе линейное уравнение в системе:
3*(7−5y)=4+2y → 21−15y=4+2y → 21−17y = 4 → 17y=21−4 → 17y=17 → y = 1 - Подставим значение y в первое уравнение и найдем значение x:
x+5y=7 → x+5=7 → x=7−5 → x=2 - Ответ: (2; 1).
Метод сложения
Алгоритм решения:
- Умножить уравнения системы, подбирая множители так, чтобы коэффициенты для одной из переменных стали противоположными числами (при необходимости).
- Сложить почленно левые и правые части уравнений системы.
- Решить получившееся уравнение с одной переменной.
- Найти соответствующие значения второй переменной.
Пример 3:
- Умножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:
- Сложим уравнения, получим: -2x+2x+6y+4y=−22-8 → 10y=-30
- Получаем: y = -3, x = 2
- Ответ: (2; -3).
Решение систем линейных уравнений с тремя переменными
Уравнение с тремя переменными имеет вид: ax + by + cz = d.
В них присутствуют три неизвестных с коэффициентами и свободный член.
Системы с тремя переменными решают так же, как и с двумя.
Ответ принято записывать в виде тройки значений (x; y; z).
Если x, y, z связаны между собой тремя уравнениями, то получается система трех уравнений с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.
Пример 4:
{ | x + 2y +z = 8 |
3y + 2z = 12 | |
3y = 6 |
- Находим значение y из третьего уравнения: y=2
- Найдем z из второго уравнения:
3y+2z=12 → 6+2z=12 → 2z=6 → x=3 - Подставляем значения y и z в первое уравнение и находим x:
x+2*2+2*3=8 → x+4+6=8 → x+10=8 → x=-2
Таким образом, мы рассмотрели в статье решение систем линейных уравнений. Решение более сложных уравнений без знания данного материала практически невозможно.
Повторить пройденный материал: решение простых уравнений и решение квадратных уравнений.
Для решения уравнений вам также могут понадобится темы: раскрытие скобок и порядок действий в примерах.