Как найти значение функции по значению аргумента
Как найти значение функции по значению аргумента? Это можно сделать с помощью формулы, задающей функцию.
Если функция задана формулой y=f(x), чтобы найти значение функции по данному значению аргумента, надо в формулу функции вместо каждого икса подставить это значение и вычислить значение y.
Пример.
1) Линейная функция задана формулой y=10x-7.
Найти значение функции, соответствующее значению аргумента, равному 3; -2,5; 1,4; 0.
Решение:
При x=3
при x=-2,5
при x=1,4
при x=0
2) Функция задана формулой
Найти значение функции при x, равном 10; -2; 1; 0.
Решение:
При x=10
при x=-2
при x=1
при x=0
Значение функции по данному значению аргумента можно найти также по графику. Как это сделать, мы рассмотрим в следующий раз.
Для начала разберемся с тем, как находить значение функции при заданном значении аргумента. Для того чтобы определить значение функции, зная при этом значение аргумента, необходимо подставит известное нам число в уравнение функции и вычислить то, чему равен y.
Но бывает и такое, что заданное значение аргумента недопустимо, т.е. не входит в область допустимых значений функции. В данном случае значение функции считается неопределенным.
Для закрепления полученного материала приведем пример. Допустим у нас есть функция y = 3x^2 — 4x + 1, где нам необходимо найти y(0); y(1); y(-2); y(3).
Для начала найдем y(0). У нас получится y(0) = 3 * 0^2 — 4 * 0 + 1 = 1.
По такому же принцип найдем и все остальные значения:
y(1) = 3 * 1^2 — 4 * 1 + 1 = 3 — 4 + 1 = 0;
y(-2) = 3 * (-2)^2 — 4 * (-2) + 1 = 12 + 8 + 1 = 21;
y(3) = 3 * 3^2 — 4 * 3 + 1 = 27 — 12 + 1 = 16.
Ответ записывается путем перечисления найденных значений при конкретном аргументе.
Ответ: y(0) = 1; y(1) = 0; y(-2) = 21; y(3) = 16.
Разберем еще один пример, но только теперь с корнем. Например, функция y = √x — 3, для которой необходимо найти y(4); y(7); y(2).
Начнем с условия, при котором аргумент равен 4: y(4) = √4-3 = √1 = 1. При данном решении мы использовали правила, согласно которому корень из 1 равен самой 1. Подобным образом находим значение функции при других аргументах:
y(7) = √7-3 = √4 = 2. Таким образом значение функции при x = 7 равно 2;
y(2) = √2-3 = √-1 — значение не определено, поскольку пользуясь свойствами корней, мы вспоминаем, что отрицательных корней быть не может.
Ответ: y(4) = 1; y(7) = 2; y(2) не существует.
Теперь, разобравшись в том, как найти функцию при известном аргументе, можно перейти к изучению обратного процесса — нахождению значения аргумента при котором функция принимает заданное значение. Данные задачи имеют определенный алгоритм решения, которого стоит придерживаться.
Во-первых, чтобы найти значения x, при которых функция y(x) принимает заданное значение, необходимо правую часть уравнения приравнять к известному по условию числу. Затем мы решаем полученное уравнение и ищем корни переменной x.
А как мы знаем из темы уравнений, то корень может быть как один, так и два, а может быть и не одного верного значения. Последнее происходит в тех случаях, когда функция не принимает указанное значение ни при каком значении аргумента.
Теперь закрепим теорию практикой и рассмотрим пример: y = -x + 5, где y = 3. Пользуясь вышеописанным алгоритмом решения, составим уравнение: -x + 5 = 3. Теперь решим его относительно x:
-x + 5 = 3 — для удобства перенесем -5 в правую сторону;
Итогом предыдущего действия будет: -x = 3-5 или -x = -2. Умножим левую и правую часть уравнения на -1, чтобы избавиться от “-”;
Получим x = 2. Таким образом, при x = 2 функция y = — x + 5 принимает значение 3. Запишем получившийся ответ.
Ответ: при x = 2.
Рассмотрим еще один более трудный пример, где есть степень: y = (x — 2)^2, где y приравнен 1. Как и в предыдущем примере заменим y заданным условием значением. В итоге у нас получится:
(x — 2)^2 = 1. Данное уравнение необходимо решить;
Чтобы избавиться от степени разности, нам необходимо также представить 1 в квадрате и затем опустить его. Итогом данных действий может стать два варианта:
x — 2 = 1 или x — 2 = -1. Рассмотрим каждый по отдельности.
x — 2 = 1;
x = 1 + 2;
x = 3.
В случае же с x — 2 = -1 получится:
x — 2 = -1;
x = -1 + 2;
x = 1.
Осталось только записать ответ.
Ответ: x = 1; x = 3.
Таким образом, данная тема является достаточно простой и доступной, однако, она очень важна в решении многих задач. Самое главное здесь — это знание различных свойств дробей, корней, степеней и т.д. Если вы чувствуете, что не совсем владеете этими темами, то вернитесь к ним и повторите их.
Как найти значение функции по значению аргумента
Как найти значение функции по значению аргумента? Это можно сделать с помощью формулы, задающей функцию.
Если функция задана формулой y=f(x), чтобы найти значение функции по данному значению аргумента, надо в формулу функции вместо каждого икса подставить это значение и вычислить значение y.
Пример.
1) Линейная функция задана формулой y=10x-7.
Найти значение функции, соответствующее значению аргумента, равному 3; -2,5; 1,4; 0.
Решение:
При x=3
при x=-2,5
при x=1,4
при x=0
2) Функция задана формулой
Найти значение функции при x, равном 10; -2; 1; 0.
Решение:
При x=10
при x=-2
при x=1
при x=0
Значение функции по данному значению аргумента можно найти также по графику. Как это сделать, мы рассмотрим в следующий раз.
www.algebraclass.ru
Как найти значение аргумента по значению функции
Как найти значение аргумента по значению функции? Это можно сделать с помощью формулы функции.
Если формула задана формулой вида y=f(x), чтобы найти значение аргумента по значению функции, надо в формулу вместо y подставить заданное значение функции и решить получившееся уравнение относительно икса.
Примеры.
1) Линейная функция задана формулой y=5x-8. Найти значение аргумента, при котором значение функции равно 7; -38;0.
Решение:
При y=7
Поменяем местами левую и правую часть, чтобы запись выглядела в привычном виде (знаки при этом менять не надо):
Это — линейное уравнение. Неизвестное — в одну сторону, известные — в другую (при переносе слагаемых из одной части в другую знаки меняются на противоположные):
Обе части уравнения делим на число, стоящее перед иксом:
Итак, при y=7 x=3.
При y= -38
При y= -38 x= -6.
При y=o
При y=0 x=1,6.
2) При каком значении аргумента значение функции
равно 0; 3?
Решение:
При y=0
Решаем квадратное уравнение.
При y=0 x=3 и x=0,5.
При y=3
Это — неполное квадратное уравнение. Общий множитель x выносим за скобки
и решаем уравнение типа «произведение равно нулю»:
При y=3 x=0 и x=3,5.
Значение аргумента по заданному значению функции можно также найти с помощью графика. О том, как это сделать, мы будем говорить в следующий раз.
www.algebraclass.ru
Как по значению аргумента найти соответствующее значение функции. ?
Как по значению аргумента найти соответствующее значение функции?
Аргумент — х, значение функции — y.
Нам известно некоторое значение аргумента, например, х = 2. Чтобы найти соответствующее ему значение функции нужно в формулу у = 6х + 12 вместо х подставить его значение, в нашем примере это число 2. Получаем:
у = 6*2 + 12 = 12 + 12 = 24
Итак, значению аргумента х = 2 соответствует значение функции у = 24.
Правило: чтобы по значению аргумента найти значение функции надо в формулу данной функции вместо х подставить его числовое значение.
б) Как найти значение аргумента, которому соответствует указанное значение функции?
Нам задано значение функции — y, например y = 6.
Чтобы найти значение аргумента, которому соответствует указанное значение функции нужно в формулу у = 6х + 12 вместо y подставить его значение, в нашем примере это число 6. Получаем уравнение:
6 = 6х + 12
6х = -6
х = -1
Итак, значению функции y = 6 соответствует значение аргумента х = -1.
Правило: чтобы по значению функции найти значение аргумента надо в формулу данной функции вместо y подставить его числовое значение.
подставляй найденный аргумент в условие и останется только одна переменная
Функцыя задана формулой y=5x-1.Найти значение функции, если значение аргумента равно -1.
а по графику как?
Большой ответ*
Надо подставить Х в формулу и решить
(получается уравнение)
touch.otvet.mail.ru
Вычислить значение функции — Мегаобучалка
Если у>0 ,вычислить и напечатать
Если у<0 ,напечатать ,y<0
Если у=0 ,вычислить и напечатать с=
Дано: b, c.
Если b=c, вычислить значения функций
и
где х изменяется на интервале от 0 до 5 с шагом 0,2.
Вывести на печать y,z,x.
Если b>c, вычислить .
Если b<c, вычисления закончить.
Если d 0, вывести на печать значения b,c.
Если d<0, вычисления закончить.
8. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-4
Дано: a, b, x
Если a>b,вычислить и напечатать значение функции
Если ,вычислить z=
Если z=0,напечатать “z=0”
Если z>0,вычислить и напечатать
Если z<0,вычисления закончить.
Дано: y, c, a.
Вычислить .
Если ,вычислить .
Если ,вычислить и ввести на печать только положительные значения функции , где x изменяется на интервале от –1 до 3 с шагом 0,1.
Если , вычисления закончить.
Если ,вывести на печать “d<0”.
9. ВАРИАНТ
1.Вычислить
2.Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
при x=0.2 с заданной точностью e = 10-8
Дано: z, x
Вычислить
Если , вычислить
Если , вычислить
Если вычислить и напечатать
значение функции
Если , вычисления закончить.
4. Дано: а, b.
Вычислить
Если Вычислить
Если , напечатать значения a,b.
Если р>0, вычислить и напечатать
Если р<0, вычислить закончить.
Если P=0,вычислить функцию ,
где x изменяется на интервале от 1 до 5 с шагом 0,25;
Напечатать значения c,x,y.
10. ВАРИАНТ
1.Вычислить
2
. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
при x=0.7 с заданной точностью e = 10-3
(отсчёт начинается с нулевого члена)
Дано:a, b.
Если , вычислить
Если вычислить
Если вычисления закончить.
Если ,вычислить и напечатать
Если ,напечатать “Y ”
Если , вычислить и напечатать
Дано:b,а
Если ,вычислить
Если , вычислить значение функции ,
где x изменяется на интервале от –5 до 7 с шагом 1.
Вывести на печать только y>0.
Если с>11,5 , вычислить и напечатать .
Если ,вычислить и напечатать .
11. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-3
Дано: x ,y.
Вычислить
Если ,вычислить
Если t=0,напечатать x ,y
Если b>0, вычислить и напечатать
Если b<0, вычисления закончить
Еслиb=0, вычислить a=
Если a 0, вычислить и напечатать
Если a<0, вычислить закончить
Дано: а, b.
Если , вычислить
Если , напечатать значения a,b.
Если , вычисления закончить.
Если , вычислить значения функции ,
где х изменяется на интервале от –1 до 2 с шагом 0,1.
12. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-4
Дано:a,b,c
Если a+b c, вычислить r= ,
Если a+b=c, вычисления закончить
Если r<0, вычислить z=
Если r=0, напечатать “r=0”
Если r>0, вычислить y=
Если z ,вычислить и напечатать ,
Если z<15, вычислить и напечатать
Дано: a, b.
Вычислить
Если , вычислить значение функции
где x изменяется на интервале от 0.5 до 1.5 с шагом 0.1
Вывести на печать c, y, x.
Если Z<0, вычислить
Если вычисления закончить.
Если , напечатать “f>0”.
Если , напечатать значение .
13. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
при x=5 с заданной точностью e = 10-4
3. Дано: a, x, t, b, c, k=1, 2, 3,…..
Если , для функции ,
Определить и напечатать k, при котором z становится меньше a
Если b , вычислить y=
Если y< 0, напечатать ”y< 0”.
Если y³0, вычислить и напечатать
Дано: x, b, c.
Вычислить .
Если a>0,вычислить значения функции, ,
где x изменяется на интервале от -2 до 2 с шагом 0,2. Вывести на печать только y<0.
Если a<0,вычисления закончить.
Если a=0,вычислить и напечатать .
14. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-3
Дано: x , y , c .
Если x = 0 . Напечатать “ x = 0 “ .
Если x > 0 . Вычислить
Если x < 0 . Вычисления закончить.
Если a > 0 . Вычислить
Если a 0 . Напечатать x , y , c .
Дано: a, P
Если а<P, вычислить и напечатать
Если а< P, вычислить и напечатать b=0.6
Если а=P, вычислить
Y=
где x изменяется на интервале от -3 до 3 с шагом 0,4
Вывести на печать значения x,y
15. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-3
Дано:a,b,x
Если a>b,вычислить и напечатать значение функции
Если a<=b,вычислить z=
Если z=0,напечатать “z=0”
Если z>0,вычислить и напечатать
Если z<0,вычисления закончить.
Дано: b,а
Если b<a ,вычислить
Если , вычислить значение функции
, где x изменяется на интервале от –5 до 6 с шагом 1.
Вывести на печать только y>0.Если с>12,5 , вычислить и напечатать .
Если с 12,5 ,вычислить и напечатать .
16. ВАРИАНТ
1.Вычислить
2. Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-4
Дано:y,c
Вычислить
Если x=0, напечатать”x=0”
Если x>0, вычислить
Если x<0,вычисления закончить
Если a>=12,5 ,вычислить и напечатать
Если a<12,5 ,вычислить и напечатать b=
Дано: с
Вычислить .
Если а=0, напечатать с
Если a>0, вычислить и напечатать значения функции
, где x изменяется на интервале от –1 до 5 с шагом 0,5,
y изменяется на интервале от 2 до 2 с шагом .
Если a<0, вычислить .
Если P , вычислить .
Если <5,8, вычисления закончить.
17. ВАРИАНТ
1.Вычислить
2.Найти сумму членов ряда. На экран вывести значение суммы, число членов ряда, вошедших в сумму, и последний член ряда, вошедший в сумму. Точность считается достигнутой, если очередной член ряда окажется по модулю меньше заданного e.
с заданной точностью e = 10-2
megaobuchalka.ru
Покажите, как с помощью графика функции можно найти:
а) значение функции, соответствующее заданному значению аргумента;
б) значения аргумента, которым соответствует данное значение функции. Используйте для этого график функции, изображенный на рисунке 15.
reshalka.com
ГДЗ учебник по алгебрее 7 класс Макарычев. § 5. Контрольные вопросы и задания. Номер №4
Решение а
Найдем значение функции при x = 5.
От точки 5 на оси x проведем перпендикуляр к оси x, а затем от точки пересечения данного перпендикуляра с графиком функции проведем перпендикуляр к оси y. Точка пересечения перпендикуляра с осью y и будет значением функции. При х = 5, y = 2.
Решение б
Найдем значение аргумента при y = 1.
От точки 1 на оси y проведем перпендикуляр к оси y, а затем от точки пересечения данного перпендикуляра с графиком функции проведем перпендикуляр к оси x. Точка пересечения перпендикуляра с осью x и будет значением аргумента. При y = 1, x = 3.
Функция. Вычисление значений функции по формуле
План урока
- Зависимость между величинами, независимая и зависимая переменные;
- Функциональная зависимость или функция;
- Область определения функции;
- Вычисление значений функции по формуле.
Цели урока
- Знать, что такое функция, зависимая и независимая переменные;
- Знать, как найти значение функции по графику;
- Знать, что такое область определения функции;
- Уметь находить значение функции по формуле.
Разминка
- От чего зависит время, за которое автомобиль доберется из пункта А в пункт В?
- От чего зависит время, за которое закипит вода в чайнике?
- Что общего между этими зависимостями?
Что такое функция
Как часто в своей жизни вы встречали слово «функция»? Скорее всего, хотя бы раз вы его слышали. В математике тоже есть своя функция, которая отражает зависимость, связь нескольких величин. Например, расстояние зависит от скорости движения и времени, площадь круга зависит от его радиуса, масса воды в бассейне зависит от его объема.
В данной статье будет рассматриваться зависимость между двумя величинами.
К примеру, давайте вспомним, как находится объем куба V. Он зависит от длины его ребра a.
Для каждого значения переменной a можно найти соответствующее ему значение V. Давайте попробуем:
если a=2, то V=a3=23=8;
если a=3, то V=a3=33=27;
если a=0,1, то V=a3=0,13=0,001.
Зависимость переменной V от значения переменной a можно записать формулой:
V=a3
Переменную a, значения которой выбираются произвольно, называют
независимой
переменной, а переменную V, значения которой определяются в зависимости от выбранного значения переменной a, называют
зависимой
переменной.
Одна сторона прямоугольника равна 5 см, другая x см. Выразите зависимость площади прямоугольника от его стороны. Найдите значение площади прямоугольника при x=3; 2,4; 5 см.
Решение
Площадь прямоугольника находится как произведение его длины a на ширину b. Запишем это формулой:
S=ab.
Одна из сторон равна 5 см, другая x см. Подставим их в формулу:
S=5x.
Найдем значение площади прямоугольника при различных значениях переменной x.
При x=3 см, S=5·x=5·3=15 см2
При x=2,4 см, S=5·x=5·2,4=12 см2
При x=5 см, S=5·x=5·5=25 см2
Ответ: S=5x; 15 см2, 12 см2, 25 см2.
На рисунке 1 представлен график зависимости температуры y (в градусах Цельсия) от времени x (в часах). Определите, чему равна температура при x=2,5 ч, x=12,5 ч.
Решение
Рис. 1. График зависимости температуры y от времени x
С помощью графика для каждого момента времени x (в часах) можно найти соответствующую температуру y (в градусах Цельсия).
При x=2,5 ч, температура y=-4℃.
При x=12,5 ч, температура y=2℃.
В данном примере x – независимая переменная, а y – зависимая переменная.
Ответ: -4℃; 2℃.
Функциональной зависимостью
или
функцией
называют зависимость одной переменной от другой. Такую, что каждому значению независимой переменной соответствует единственное значение зависимой переменной.
При этом, независимую переменную называют
аргументом
, а о зависимой переменной говорят, что она является
функцией
от этого аргумента. Значения зависимой переменной называют
значениями функции
, а все значения, которые принимает независимая переменная, образуют
область определения функции
.
1. Маша спешила к Кате на день рождения со скоростью 7 км/ч. Выразите формулой зависимость расстояния S, пройденного Катей, от времени t в пути.
2. Велосипедист, ехал к месту отдыха со скоростью 12 км/ч. Задайте формулой зависимость расстояния S от времени t. Вычислите, какое расстояние велосипедист проехал за 3,5 ч, за 1,5 ч, за 30 минут.
Вычисление значений функции по формуле
Наиболее распространенный способ задания функции – с помощью формулы, т.к. она позволяет для любого значения аргумента находить соответствующее значение функции путем вычислений.
Найдите все значения функции fx=6x-42 при целых значениях аргумента, если -2≤x<4.
Решение
1. Найдем все целые значения аргумента на указанном промежутке: -2, -1, 0, 1, 2, 3.
2. Найдем значения функции при указанных значениях аргумента:
если x=-2, то fx=6x-42=6·(-2)-42=-12-42=-162=-8;
если x=-1, то fx=6x-42=6·(-1)-42=-6-42=-102=-5;
если x=0, то fx=6x-42=6·0-42=-42=-2;
если x=1, то fx=6x-42=6·1-42=6-42=22=1;
если x=2, то fx=6x-42=6·2-42=12-42=82=4;
если x=3, то fx=6x-42=6·3-42=18-42=142=7.
Ответ: -8, -5, -2, 1, 4, 7.
Результаты вычислений в предыдущем примере удобно записать в виде таблицы значений функции (таблица 1). Поскольку мы вычисляли целочисленные значения функции, то выбирали значения с шагом 1.
Таблица 1. Таблица значений функции fx=6x-42
x |
-2 |
-1 |
0 |
1 |
2 |
3 |
f(x) |
-8 |
-5 |
-2 |
1 |
4 |
7 |
В рассмотренном примере был указан промежуток, где функция определена (область определения функции), однако, если она не указана, то считают, что область определения состоит из всех значений независимых переменных, при которых формула имеет смысл.
Например, область определения функции y=x2+4 состоит из всех чисел. А вот область определения функции y=5x-7 состоит из всех чисел, кроме числа 7, т.к. при подстановке числа 7 в формулу, задающую функцию, получим в знаменателе нуль, чего быть не должно, т.к. на нуль делить нельзя.
Найдите значение аргумента, при котором значение функции y=3,5x-12 равно 16.
Решение
1. Подставим значение функции в формулу.
y=3,5x-12
16=3,5x-12
2. Найдем значение аргумента, решив получившееся уравнение.
3,5x-12=16
3,5x=16+12
3,5x=28
x=28∶3,5
x=8
Ответ: 8.
1. Функция задана формулой y=16x. В таблице 2 указаны некоторые значения аргумента. Заполните таблицу, вычислив соответствующие значения функции.
Таблица 2. Таблица значений функции y=16x
x |
-8 |
-4 |
-2 |
1 |
4 |
16 |
y |
2. Катер, двигаясь со скоростью v км/ч в течение 8 часов, прошел путь s км. Задайте формулой зависимость s от v. Пользуясь полученной формулой, найдите: а) s, если v=45 км/ч км/ч; б) v, если s=96 км.
Контрольные вопросы
1. Какая зависимость называется функцией?
2. Как найти значение функции по формуле?
3. Как найти значение аргумента, зная формулу и значение функции?
4. Что такое аргумент и значение функции?
5. Что такое область определения функции?
6. Что такое таблица значений функции и как ее составить?
Ответы
Упражнение 1
1. S=7t.
2. S=12t; 42 км, 18 км, 6 км.
Упражнение 2
1.
x |
-8 |
-4 |
-2 |
1 |
4 |
16 |
y |
-2 |
-4 |
-8 |
16 |
4 |
1 |
2. S=8v, 360 км, 12 км/ч.