Как найти зависимость между числами

Как решать IQ задачи? Многие IQ задачи  подчинены общим  закономерностям. Уже само по себе прохождение iq теста раз за разом ведет к улучшению результата. Решая  iq-задачи, вы вырабатываете  iq навыки и  умение правильно распределять время.

Существуют несколько основных типов  задач. Попробуем их систематизировать. В большинстве задач на  iq надо найти зависимость чисел, даже если это задание на связь букв.  Зависимость между числами может быть подчинена не одной, а нескольким закономерностям.

Найти пропущенное число:

1) 2    6   10     …    18

Показать решение

Заменить вопрос числом:

  2  3  6  15  42  ?

Показать решение

Определить закономерность и найти число:

2  3  8  27  112  ?

Показать решение

Найти недостающее число:

1)  17;  13;   11;   ?;   5;   3;   2

Показать решение

2)  81;  49;  25;  ?;  1

Показать решение

Как научить ребенка решать iq задачи? Для начала предложите ему поискать решение самостоятельно. Если найти зависимость между числами ему не удается, обсудите, какая числовая  закономерность  была использована в каждом конкретном случае. Постарайтесь не просто рассказывать ребенку решение, но, задавая наводящие вопросы, подводите его к самостоятельным выводам.  Теперь попросите ребенка  придумать для вас подобные задания. Отнеситесь к их разгадке со всей серьезностью. Расскажите ему, что зависимость чисел в каждом тесте может быть самая разная и надо пробовать использовать различные подходы, чтобы найти верное  решение.

Регулярная IQ-тренировка — один из действенных способов развития логического мышления.

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Отношения и пропорции
  5. Прямая и обратная пропорциональные зависимости

Прямая пропорциональная зависимость

Две величины называют прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Примеры:

1) — периметр квадрата, — его сторона.

= 4.

Если = 1 см, то = 41 = 4 (см).

Если = 2 см, то = 42 = 8 (см).

Если = 4 см, то = 44 = 16 (см).

Получаем, что каждый раз, увеличивая сторону квадрата в 2 раза, его периметр также будет увеличиваться в 2 раза. Аналогично, если сторону квадрата будем уменьшать в какое-то число раз, то и периметр квадрата будет уменьшаться в это же число раз. Следовательно, величины и прямо пропорциональны. Можно сказать еще и так: «величина прямо пропорциональна величине » или «зависимость между величинами и является прямой пропорциональностью«.

2) При движении с постоянной скоростью, пройденный путь и время движения прямо пропорциональны, т.к. пройденный путь равен произведению скорости и времени движения.

Пусть скорость движения пешехода 8 км/ч.

Если = 1 ч, то = 81 = 8 (км).

Если = 3 ч, то = 83 = 24 (км).

Если = 9 ч, то = 89 = 72 (км).

Получаем, что каждый раз, увеличивая время в пути в 3 раза, путь также будет увеличиваться в 3 раза, а это и говорит о том, что зависимость между величинами и является прямой пропорциональностью, при условии движения с постоянной скоростью.

Свойство прямо пропорциональных величин:

Если две величины прямо пропорциональны, то отношение соответствующих значений этих величин равно одному и тому же, постоянному для данных величин, числу.

В рассмотренных выше примерах для величин и это число равно 4, т.к. : = 4 : 1 = 8 : 2 = 16 : 4 = 4, а для величин и это число равно 8, т.к. : = 8 : 1 = 24 : 3 = 72 : 9 = 8.

Обратная пропорциональная зависимость

Две величины называют обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

Примеры:

1) Если расстояние является постоянной величиной, то скорость и время движения обратно пропорциональны, т.к. время движения равно частному от деления расстояния на скорость движения.

Пусть расстояние равно 80 км.

Если = 10 км/ч, то = 80 : 10 = 8 (ч).

Если = 20 км/ч, то = 80 : 20 = 4 (ч).

Если = 40 км/ч, то = 80 : 40 = 2 (ч).

Получаем, что каждый раз, увеличивая скорость движения в 2 раза, время движения будет уменьшаться в 2 раза, а это и говорит о том, что зависимость между величинами и является обратной пропорциональностью, при том условии, что расстояние нужно проехать одинаковое.

2) и — стороны прямоугольника, а его площадь 36 см2.

Если = 3 см, то = 36 : 3 = 12 (см).

Если = 6 см, то = 36 : 6 = 6 (см).

Получаем, что величины и обратно пропорциональны, т.к. увеличивая (уменьшая) одну сторону прямоугольника в 2 раза, чтобы его площадь не изменилась, вторую сторону нужно уменьшить (увеличить) в 2 раза.

Свойство обратно пропорциональных величин:

Если две величины обратно пропорциональны, то произведение соответствующих значений этих величин равно одному и тому же для данных величин числу.

В рассмотренных выше примерах для величин и это число равно 80, т.к. = 108 = 204 = 402 = 80, а для величин и это число равно 12, т.к. = 312 = 66 = 36.

Не всякие величины являются прямо пропорциональными или обратно пропорциональными. Например, размер обуви человека увеличивается при увеличении его возраста, но эти величины не являются пропорциональными, т.к. при удвоении возраста размер обуви человека не удваивается.

Пусть нам дана задача:

Украшение состоит из белого и желтого золота массой 192 г. При этом масса белого золота относится к массе желтого золота как 5 : 7. Надо найти массу белого и желтого золота, из которых сделано украшение.

Решение:

Мы можем считать, что все украшение состоит из 5 + 7 = 12 частей одинаковой массы. По условию масса украшения равна 192 г, а значит, масса одной части украшения равна 192 : 12 = 16 г.

Белое золото соответствует 5 частям, то есть имеет массу 516 = 80 г, а желтое золото соответствует 7 частям, то есть имеет массу 716 = 112 г.

Итак мы получили, что украшение состоит из 80 г белого золота и 112 г желтого золота.

То есть мы число 192 (масса украшения) представить в виде суммы двух слагаемых — 80 и 112, отношение которых равно 5 : 7.

В этом случае говорят, что число 192 разделили в отношении 5 : 7, или по-другому, число 192 представили в виде суммы двух слагаемых, пропорциональных числам 5 и 7.

Советуем посмотреть:

Отношения

Пропорции

Длина окружности и площадь круга

Отношения и пропорции


Правило встречается в следующих упражнениях:

6 класс

Номер 672,
Мерзляк, Полонский, Якир, Учебник

Номер 674,
Мерзляк, Полонский, Якир, Учебник

Номер 687,
Мерзляк, Полонский, Якир, Учебник

Номер 688,
Мерзляк, Полонский, Якир, Учебник

Номер 7,
Мерзляк, Полонский, Якир, Учебник

Задание 785,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 788,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 812,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1258,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1500,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 846,
Мерзляк, Полонский, Якир, Учебник

Номер 847,
Мерзляк, Полонский, Якир, Учебник

Номер 1000,
Мерзляк, Полонский, Якир, Учебник

Номер 1235,
Мерзляк, Полонский, Якир, Учебник


Прямая и обратная пропорциональность

  • Прямая пропорциональность
  • Формула прямой пропорциональности
  • Обратная пропорциональность
  • Формула обратной пропорциональности

Пропорциональность — это зависимость одной величины от другой, при которой изменение одной величины приводит к изменению другой во столько же раз.

Пропорциональность величин может быть прямой и обратной.

Прямая пропорциональность

Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным. Такие величины называются прямо пропорциональными или просто пропорциональными.

Рассмотрим пример прямой пропорциональности на формуле пути:

s = vt,

где  s  — это путь,  v  — скорость, а  t  — время.

При равномерном движении путь пропорционален времени движения. Если взять скорость  v  равной  5 км/ч,  то пройденный путь  s  будет зависеть только от времени движения  t:

Скорость v = 5 км/ч
Время t (ч) 1 2 4 8 16
Путь s (км) 5 10 20 40 80

Из примера видно, что во сколько раз увеличивается время движения  t,  во столько же раз увеличивается пройденное расстояние  s.  В примере мы увеличивали время каждый раз в 2 раза, так как скорость не менялась, то и расстояние увеличивалось тоже в два раза.

В данном случае скорость  (v = 5 км/ч)  является коэффициентом прямой пропорциональности, то есть отношением пути ко времени, которое остаётся неизменным:

следовательно,

5  =  10  =  20  =  40  =  80  = 5.
1 2 4 8 16

Если время движения остаётся неизменным, то при равномерном движении расстояние будет пропорционально скорости:

Время  t = 2 ч
Скорость  v (км/ч) 5 15 45 90
Расстояние  s (км) 10 30 90 180

В этом примере коэффициентом прямой пропорциональности, то есть, отношением пути к скорости, которое остаётся неизменным, является время  (t = 2 ч):

следовательно,

10  =  30  =  90  =  180  = 2.
5 15 45 90

Из данных примеров следует, что две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз другая увеличивается (или уменьшается) во столько же раз.

Формула прямой пропорциональности

Формула прямой пропорциональности:

y = kx,

где  y  и  x  — это переменные величины, а  k  — это постоянная величина, называемая коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных  y  и  x  равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Обратная пропорциональность

Обратная пропорциональность — это зависимость двух величин, при которой увеличение одной величины приводит к пропорциональному уменьшению другой. Такие величины называются обратно пропорциональными.

Рассмотрим пример обратной пропорциональности на формуле пути:

s = vt,

где  s  — это путь,  v  — скорость, а  t  — время.

При прохождении одного и того же пути с разной скоростью движения время будет обратно пропорционально скорости. Если взять путь  s  равным  120 км,  то потраченное на преодоление этого пути время  t  будет зависеть только от скорости движения  v:

Путь  s = 120 км
Скорость  v (км/ч) 10 20 40 80
Время  t (ч) 12 6 3 1,5

Из примера видно, что во сколько раз увеличивается скорость движения  v,  во столько же раз уменьшается время  t.  В примере мы увеличивали скорость движения каждый раз в 2 раза, а так как расстояние, которое нужно преодолеть, не менялось, то количество времени на преодоление данного расстояния сокращалось тоже в два раза.

В данном случае путь (s = 120 км) является коэффициентом обратной пропорциональности, то есть произведением скорости на время:

s = vt,

следовательно,

10 · 12 = 20 · 6 = 40 · 3 = 80 · 1,5 = 120.

Из данного примера следует, что две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Формула обратной пропорциональности

Формула обратной пропорциональности:

где  y  и  x  — это переменные величины, а  k  — это постоянная величина, называемая коэффициентом обратной пропорциональности.

Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных  y  и  x,  равное одному и тому же числу.

Формула коэффициента обратной пропорциональности:

xy = k.

На этом уроке мы рассмотрим, что такое прямая и обратная пропорциональные зависимости, научимся оформлять и решать задачи с помощью пропорции, устанавливая пропорциональную зависимость между величинами в ней, рассмотрим примеры задач на прямую и обратную пропорциональную зависимость.

Эта информация доступна зарегистрированным пользователям

Давайте сначала разберемся, что такое пропорциональность.

Пропорциональность — это зависимость двух величин друг от друга таким образом, что значение отношения этих величин остается постоянным.

Зависимость величин друг от друга может быть прямой и обратной.

Отношение между величинами описываются прямой или обратной пропорциональностью.

Прямая пропорциональность выражается так: (mathbf{y = kx})

Обратная пропорциональность выражается так: (mathbf{y = frac{k}{x}})

где — это число, которое называют коэффициентом пропорциональности.

x и y величины, зависящие друг от друга.

Пример

Площадь прямоугольника равна (mathbf{S = a cdot b}), где S— это площадь прямоугольника, а — длина прямоугольника, b — ширина прямоугольника.

Если один из множителей произведения — постоянная величина, то произведение прямо пропорционально второму множителю.

Если постоянно значение произведения, то множители зависят друг от друга обратно пропорционально.

По формуле видно, что площадь квадрата зависит от длины (ширины) его стороны, а длина стороны (ширина) зависит от его площади.

Какова эта зависимость, сейчас и рассмотрим.

(mathbf{S = a cdot b})

Зависимость площади прямоугольника от длины при постоянном значении ширины является прямо пропорциональной зависимостью этих величин.

Зависимость площади прямоугольника от ширины при постоянном значении длины является прямо пропорциональной зависимостью этих величин.

(mathbf{a = frac {S}{b}}) или (mathbf{b = frac {S}{a}})

Пусть одна клетка равна 1 см. Рассмотрим рисунок:

Эта информация доступна зарегистрированным пользователям

Ширина прямоугольника b постоянная величина

b = 4 см

a1 = 6 см

Увеличим ширину прямоугольника — сторону a1 на 1 см, получим

a2 = 7 см

Эта информация доступна зарегистрированным пользователям

Найдем площади прямоугольников S1 и S2

(mathbf{S_{1} = a_{1} cdot b = 6 cdot 4 = 24}) см2

(mathbf{S_{2} = a_{2} cdot b = 7 cdot 4 = 28})  см2

Вывод: при увеличении стороны прямоугольника увеличилась площадь прямоугольника.

Рассмотрим другой вариант зависимости

Зависимость одной из сторон прямоугольника от второй стороны при постоянном значении площади прямоугольника является обратно пропорциональной зависимостью. Пусть одна клетка равна 1 см

Эта информация доступна зарегистрированным пользователям

Площадь прямоугольника S постоянная величина

S = 24 см2

b1 = 4 см

(mathbf{a_{1} = frac{S}{b_{1}} = 6}) (см)

Увеличим высоту прямоугольника- сторону прямоугольника b1 на 2 см, получим

b2 = 6 см

Найдем ширину прямоугольника- сторону a2

(mathbf{a_{2} = frac{S}{b_{2}} = 4}) (см)

Эта информация доступна зарегистрированным пользователям

Вывод: при увеличении одной стороны прямоугольника и постоянном значении площади, вторая сторона уменьшается.

Таким образом, мы подошли к основным понятиям пропорциональной зависимости. Чтобы было легко разобраться в несложных схемах ниже, мы дадим пояснение символам:

Эта информация доступна зарегистрированным пользователям

Итак:

1)    Две величины прямо пропорциональны друг другу, если при увеличении (уменьшении) одной величины в n количество раз, другая величина, зависящая от первой, так же увеличивается (уменьшается) в n количество раз.

Эта информация доступна зарегистрированным пользователям

2)    Две величины обратно пропорциональны друг другу, если при увеличении (уменьшении) одной величины в n количество раз, другая величина, зависящая от первой, уменьшается (увеличивается) в n количество раз.

Эта информация доступна зарегистрированным пользователям

Примеров прямой и обратной пропорциональности множество.

Однако не все величины зависят друг от друга прямо пропорционально или обратно пропорционально, встречаются и более простые и более сложные зависимости величин.

Надо понимать, что даже если какие-нибудь две величины возрастают или убывают, то между ними не обязательно существует пропорциональная зависимость.

Например, с течением времени увеличивается возраст человека и его размер ноги, но эти величины не являются пропорциональными, так как при удвоении возраста размер ноги человека не удваивается

Эта информация доступна зарегистрированным пользователям

Алгоритм решения задач на пропорциональную зависимость состоит из нескольких основных пунктов:

  1. Обозначить буквой значение неизвестной величины (чаще всего для этого выбирают латинскую букву Х)
  2. Проанализировать задачу и кратко записать ее условия (краткую запись можно делать в виде таблицы или изображать в виде логической схемы)
  3. Установить зависимость между величинами
  4. В краткой записи задачи обозначить стрелками пропорциональную зависимость

— Стрелки, которые направлены в одну сторону, обозначают прямую пропорциональную зависимость величин

— Стрелки, которые направлены в разные стороны, обозначают обратную пропорциональную зависимость величин.

        5. Записать пропорцию, учитывая характер пропорциональности величин

        6. Составить уравнение

        7. Найти неизвестный член уравнения (искомую величину)

        8. Записать ответ задачи

Важно помнить, что при составлении краткой записи задачи величины с одинаковыми единицами измерения записывают друг под другом.

Если между величинами прямая пропорциональная зависимость, то пропорция составляется точно в соответствии с краткой записью задачи.

Если между величинами обратная пропорциональная зависимость, то при составлении пропорции одноименные величины меняются местами в одном любом из столбцов таблицы (логической схемы) краткой записи задачи.

Другими словами, при прямо пропорциональной зависимости отношение значений одной величины равно отношению соответствующих значений другой величины.

При обратно пропорциональной зависимости отношение значений одной величины будет равно обратному отношению соответствующих значений другой величины.

Эта информация доступна зарегистрированным пользователям

Рассмотрим некоторые варианты задач на пропорциональную зависимость, в которых величины зависят прямо пропорционально одна от другой.

Задача 1

Для приготовления из 3 кг черной смородины по рецепту требуется 3,3 кг сахара.

Сколько сахара потребуется для приготовления варенья из 5 кг черной смородины?

Эта информация доступна зарегистрированным пользователям

Решение:

Пусть х (кг) сахара потребуется для приготовления варенья из 5 кг ягод.

Составим краткую запись задачи в виде таблицы:

Эта информация доступна зарегистрированным пользователям

Определим, как зависят масса сахара и масса ягод.

Чем больше ягод, тем больше нужно сахара, следовательно, между величинами прямо пропорциональная зависимость.

В таблице вертикальными стрелками изображаем прямо пропорциональную зависимость величин.

Так как зависимость величин прямо пропорциональная, составим пропорцию в точном соответствии с таблицей.

Отношение значений одной величины равно отношению соответствующих значений другой величины.

Получим (mathbf{frac{3,3}{x} = frac{3}{5}})

Составим уравнение, используя основное свойство пропорции:

(mathbf{{3}cdot{x} = {5}cdot{3,3}})

(mathbf{ {x} = {(5}cdot{3,3)}div{3}})

(mathbf{ {x} = {5,5}}) (кг) сахара потребуется для приготовления варенья из 5 кг ягод.

Ответ: (mathbf{ {x} = {5,5}})  (кг)

Задача 2

Автомобиль, двигаясь с постоянной скоростью, проехал 400 км за 5 часов.

За какое время автомобиль проедет 600 км?

Эта информация доступна зарегистрированным пользователям

Решение:

Пусть х (ч) – время, за которое автомобиль проедет 600 км.

Составим краткую запись задачи в виде таблицы:

Эта информация доступна зарегистрированным пользователям

Определим, как зависят величины S от t, где — это путь, а — это время.

Так как движение происходит с постоянной скоростью, то (mathbf{ {S} = {V}cdot{t}}).

Чем больше расстояние, тем больше требуется времени для преодоления этого расстояния, значит, зависимость между величинами S и t прямо пропорциональная.

Изображаем в таблице краткой записи задачи вертикальными стрелками прямо пропорциональную зависимость величин.

Так как зависимость величин прямо пропорциональная, составим пропорцию в точном соответствии с таблицей.

Отношение значений одной величины равно отношению соответствующих значений другой величины.

Получим (mathbf{frac{5}{x} = frac{400}{600}})

Составим уравнение, используя основное свойство пропорции:

(mathbf{ {400}cdot{x} = {5}cdot{600}})

(mathbf{ {x} = {(5}cdot{600)}div{400}})

(mathbf{ {x} = {7,5}})   (ч) время, за которое автомобиль проедет 600 км

Ответ: (mathbf{ {x} = {7,5}})  (ч)

Примеры решения задач, в которых величины зависят обратно пропорционально одна от другой.

Задача 1

Для перевозки гравия потребовалось 42 машины грузоподъемностью т.

Сколько нужно машин грузоподъемностью т, чтобы перевезти тот же объем гравия?

Эта информация доступна зарегистрированным пользователям

Решение:

Пусть х (шт) — это количество машин грузоподъемностью 7 т, необходимых для перевозки груза.

Краткую запись задачи оформим в виде таблицы:

Эта информация доступна зарегистрированным пользователям

Определим, как зависят величины друг от друга.

Чем больше грузоподъемность машины, тем меньше машин потребуется для перевозки груза.

Получаем обратно пропорциональную зависимость.

Изображаем на краткой записи задачи вертикальными стрелками, направленными в разные стороны, обратно пропорциональную зависимость величин.

При обратно пропорциональной зависимости отношение значений одной величины будет равно обратному отношению соответствующих значений другой величины.

А это значит, что при составлении пропорции одно из отношений получится перевернутым.

Получим (mathbf{frac{42}{x} = frac{7}{5}})

Составим уравнение, используя основное свойство пропорции:

(mathbf{ {7}cdot{x} = {42}cdot{5}})

(mathbf{ {x} = {(42}cdot{5)}div{7}})

(mathbf{ {x} = {30}}) (шт.) машин грузоподъёмностью 7 т понадобится для перевозки гравия.

Ответ: (mathbf{ {x} = {30}})  (шт.)

Задача 2

Велосипедист проехал путь от дачи до дома за час со скоростью 10 км/ч. Сколько понадобится времени велосипедисту на преодоление этого пути со скоростью 20 км/ч?

Эта информация доступна зарегистрированным пользователям

Решение:

Пусть х (ч) время велосипедиста, если он будет двигаться со скоростью 20 км/ч. Составим краткую запись задачи в виде таблицы:

Эта информация доступна зарегистрированным пользователям

Определим, как зависят V и t, где V— скорость движения велосипедиста, t— время движения.

Чем больше скорость велосипедиста, тем меньше времени ему потребуется для преодоления пути.

Получаем обратно пропорциональную зависимость величин друг от друга.

Изображаем на краткой записи задачи вертикальными стрелками, направленными в разные стороны, обратно пропорциональную зависимость величин.

При обратно пропорциональной зависимости отношение значений одной величины будет равно обратному отношению соответствующих значений другой величины.

А это значит, при составлении пропорции одно из отношений получаем перевернутым.

Получим  (mathbf{frac{x}{1} = frac{10}{20}})

Составим уравнение, используя основное свойство пропорции:

(mathbf{ {20}cdot{x} = {10}cdot{1}})

(mathbf{ {x} = {(10}cdot{1)}div{20}})

(mathbf{ {x} = {0,5}}) (ч) время велосипедиста, если он будет двигаться со скоростью 20 км/ч.

Ответ: (mathbf{ {x} = {0,5}}) (ч)

Эта информация доступна зарегистрированным пользователям

Если зависимость может быть любая (например, числа фиббоначи) — то никак. Можно поискать последовательность на oeis.org

Если же возможна только зависимость вида +a_0, +a_1, +a_2,…, +a_k, +a_0, +a_1… т.е. повторяющийся фиксированный паттерн приращений, то есть быстрое и простое решение.

Во первых, если вам дано 10 чисел, то всегда можно сказать, что есть паттерн длиной в 9 приращений.
Но можно найти кратчайший паттерн с помощью алгоритма поиска периода в строке. Буквально, по определению, нужный вам кратчайший паттерн (типа {+3, -2} для второго примера) будет периодом строки. Правда, тут не строка, а массив чисел, но это вообще никак не меняет алгоритмы. Просто у вас алфавит нестандартный.

Сначала от массива чисел перейдите к массиву приращений.

Потом можно применить жадное наивное решение — просто перебираете все возможные значения периода от 1 до n/2 и проверяете, что a[i] == a[i+str] для всех i. Как только все совпало — вы нашли период. Это решение за квадрат. Если чисел вам задано много, то можно применить префикс функцию: найдите значение префикс функции (p) для всей строки и, если ее значение больше половины длины строки, то у строки есть период n-p. Это будет линейное решение.

Еще можно применить алгоритм Дюваля. Тоже линейное решение, но более сложное в реализации и понимании.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти место встречи по физике
  • Как найти перимт треугольника
  • Installing drivers failed samfirm как исправить
  • Как найти сторону через коэффициент подобия треугольников
  • Как найти пропорции лица

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии