Как найти заряд если известна масса

Как найти заряд

В задачах по физике иногда нужно найти заряд какого-либо тела на основе его взаимодействия с электрическим полем или другими телами. В большинстве случаев размерами самого тела пренебрегают, чтобы не рассчитывать распределение элементарных зарядов по его массе или поверхности.

Нахождение величины элементарного заряда

Инструкция

Например, как найти заряд пылинки массой 1 мг, которая влетела в однородное электрическое поле напряженностью 100 кВ/м, пролетела 4 см и при этом ее скорость увеличилась с 1 м/с до 3 м/с?

Сделайте краткую запись условий поставленной задачи: m=1 мг,V1=1 м/с, V2=3 м/с, S=4см, E=кВ/м, q-?

Приравняйте силу, сообщающую пылинке ускорение, к силе, действующей на пылинку со стороны однородного электрического поля. Из этого равенства алгебраически выразите заряд пылинки: получается, что произведение массы пылинки и ускорения пылинки равно произведению напряженности электрического поля и заряда; в итоге заряд пылинки находится как отношение произведения массы пылинки и ускорения к величине напряженности электрического поля.

Запишите кинематическое уравнение для определения ускорения пылинки: ускорение определяется как отношение разности квадратов конечной и начальной скорости к удвоенному значению пройденного пылинкой пути.

Подставьте это уравнение в выражение для определения заряда пылинки. В окончательном варианте заряд пылинки равен отношению произведения массы пылинки и разности квадратов конечной и начальной скоростей к удвоенному произведению пройденного пути и напряженности электрического поля.

Проверьте размерность искомой величины: для этого в конечную формулу для определения заряда вместо букв, обозначающих физические величины, подставьте единицы физических величин, выраженные в системе СИ: единица измерения заряда определится как отношение произведения кг•(м/с)2 к произведению м•В/м; сократите в этой дроби одинаковые единицы измерения; используйте определение физических величин 1 Ньютон и 1 Джоуль и замените ими определенные комбинации физических величин.

Подставив числовые значения, вычислите заряд пылинки. Получится q=10 нКл

Видео по теме

Полезный совет

Пояснения: согласно второму закону Ньютона ускорение пылинке сообщает равнодействующая всех сил, действующих на пылинку; так как о сопротивлении движению пылинки не упомянуто, на нее действует единственная сила – со стороны электрического поля.

1 Ньютон: [1Н] = [кг∙м/с2]; [Дж] =[Н∙м]; [Дж/В]=[Кл]

При подстановке числовых значений переведите значения всех физических величин в систему СИ; при переводе некоторых величин для исключения очень громоздких чисел или неудобных десятичных дробей используйте в качестве множителя число 10 в положительной или отрицательной степени.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Запишем формулу напряжённости электрического поля E = frac{F}{q}, где q — точечный заряд (Кл), а F — деёствующая сила, которую можно расписать как F = m*g, m- масса (кг), g — ускорение свободного падения (g = 9.8 м/с²). Тогда из формулы

E = frac{m*g}{q}, выражаем заряд (q) ⇒ q = frac{m*g}{E}. Подставляем численные данные и вычисляем q = frac{10^{-7}*9,8}{10^5} = 4,9*10^{-12}(Kylon).

Ответ: Заряд q = 4,9*10⁻¹² Кл.

В рамках физики и химии 100 лет как доказано, что материя состоит из электронов, протонов и нейтронов. Эксперименты демонстируют, что свободные нейтроны за 614 сек наполовину распадаются на электроны и протоны. Инерциальные свойства электронов протонов и нейтронов определяются методом масс — спектрометрии. Масс-спектрометр — прибор для определения масс заряженных частиц и массы атомов (молекул) по характеру движения их ионов в электрическом и магнитном полях.

Массу нейтрального атома нельзя измерить традиционной масс-спектрометрией. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в йон, характер движения которого в этих полях будет определяться его массой и электрическим зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к электрическому заряду. Если заряд известен, то однозначно определяется масса иона, а значит, можно вычислить массу нейтрального атома и его ядра. Конструктивно масс-спектрометры могут сильно отличаться друг от друга. В них могут использоваться как статичные поля, так и изменяющиеся во времени поля, магнитные и/или электрические.

Рассмотрим один из наиболее простых вариантов определения массы частицы.

Масс-спектрометр состоит из следующих основных частей:

Из ионного источника 1 ускоренные ионы через щель 2 попадают в область 3 постоянного и однородного электрического и магнитного полей. Направление электрического поля задаётся положением пластин конденсатора и показано стрелками. Магнитное поле направлено перпендикулярно плоскости рисунка.

В области 3 электрическое и магнитное поле отклоняют ионы в противоположные стороны и величины напряжённостей этих полей Е и Н1 подобраны так, чтобы силы их действия на ионы (соответственно и qvН1, где q — заряд, а v — скорость иона) компенсировали друг друга, т.е. было qЕ = qvН1. Создается монохроматичный пучок ионов. При скорости иона v = Е/Н1 он движется не отклоняясь в области 3 и проходит через вторую щель 4, попадая в область 5 однородного и постоянного магнитного поля напряжённостью Н2. В этом поле ион движется по окружности 6, радиус R которой определяется из соотношения mv 2 /R = qvH2, где m — масса иона. Так как v = Е/Н1, масса частицы определяется из соотношения

Таким образом, при известном заряде иона его масса определяется радиусом R круговой орбиты в области 5.

Схема масс-спектрометра:

  1. — ионный источник,
  2. — щелеваяе диафрагма,
  3. — область однородных и постоянных электрического и магнитного полей (силовые линии электрического поля направлены вдоль плоскости рисунка м показаны стрелками, область магнитного поля показана штриховкой, его силовые линии перпендикулярны плоскости рисунка),
  4. — щелевая диафрагма
  5. — область однородного и постоянного магнитного поля (силовые линии перпендикулярны плоскости рисунка),
  6. — траектория иона,
  7. — детектор.

Если в качестве детектора ионов (7) использовать фотопластинку, то этот радиус с высокой точностью покажет чёрную точку в том месте проявленной фотопластинки, куда попадал пучок ионов. В современных масс-спектрометрах в качестве детекторов обычно используют электронные умножители или микроканальные пластинки. Масс-спектрометр позволяет определять массы с очень высокой относительной точностью Δm/m = 10 -8 — 10 -7 .

Анализ масс-спектрометром смеси атомов различной массы позволяет также определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.

Согласно принятой обработке эксперимента инерциальные силы полностью обусловлены инерциальными свойствами ньютоновской массы (m) — нейтральной, не несущей заряда материи. Однако, в эксперименте все анализируемые частицы несут заряды. Заряды, согласно электродинамике, обладают инерциальными свойствами без относительно к механической массе.

Cила Лоренца вызывает изменение магнитного поля, изменение которого, в свою очередь, вызывает появление ЭДС пропорциональной скорости изменения магнитного потока (ускорению).

εi= ∫ Ebdl = — — L dt

где dФ/dt -скорость изменения магнитного поля. Сопротивление изменению скорости и есть проявление инерции.

В тоже время при обработке результатов эксперимента инерциальные свойства, обусловленные наличием заряда, совершенно не учитываются. В 2012 году масс — спектроскопии исполнится 100 лет, но до настоящего времени не появилось ни одной работы, содержащей критические замечания, касающиеся обработки результатов эксперимента и, соответственно, ответов на следующий вопрос:

Почему не учитываются инерциальные свойства электрического заряда иона?

Соответственно, мы считаем необходимым предложить альтернативные варианты обработки экспериментальных данных, полученных в результате масс — спектроскопии микрочастиц.

Целью данной работы является изучение движения элементарных частиц в электрическом и магнитном полях, экспериментальное определение удельного заряда электрона с помощью магнетрона.

Электрон является носителем элементарного отрицательного заряда е (e = –1,6∙10 —19 Кл). Отношение его заряда к массе e/m называется удельным зарядом электрона. Удельный заряд может быть экспериментально определён различными методами. Все они основаны на поведении электрона в электрическом и магнитном полях.

В электрическом поле напряжённостью (рис .4) на электрон действует сила

, (2.9.1)

которая сообщает электрону ускорение и направлена против поля.

Под действием этой силы электрон, пройдя расстояние между точками с разностью потенциалов U, приобретает кинетическую энергию

. (2.9.2)

Движение электрона в однородном магнитном поле происходит под действием силы Лоренца

, (2.9.3)

где — вектор скорости электрона; — вектор индукции магнитного поля; е – заряд электрона.

Сила Лоренца перпендикулярна как скорости электрона, так и направлению магнитного поля. Она не меняет модуля скорости и кинетической энергии частицы.

Модуль силы Лоренца

, (2.9.4)

где a — угол между векторами и .

Сила Лоренца сообщает электрону нормальное (центростремительное) ускорение и вызывает движение его по окружности радиуса R, если угол a составляет 90 o (рис. 5). Таким образом, по второму закону Ньютона:

, (2.9.5)

откуда радиус окружности

. (2.9.6)

Из формулы (2.9.6) видно, что радиус окружности зависит от удельного заряда e/m. Этот факт и положен в основу метода определения удельного заряда с помощью магнетрона.

Магнетрон представляет собой высоковакуумную элек­тронную трубку, имеющую пря­мую металлическую нить (ка­тод), расположенную по оси ци­линдрического анода.

Для нашей работы магнетрон с успехом можно заменить обычной электронной лампой с цилиндрическим анодом, на оси которого расположен катод (рис. 6, а). Лампа помещается внутри длинного соленоида, при помощи которого параллельно оси создаётся магнитное поле напряжённостью .

Катод нагревается электрическим током и испускает электроны, которые под действием электрического поля движутся к аноду. Когда магнитное поле отсутствует, электроны движутся по радиу

сам цилиндрического анода (рис. 6 б, линия 1).

Если включить магнитное поле, траектория движения искривляется, и тем больше, чем сильнее поле (рис. 6, б, линия 2). Все электроны достигают анода, и величина анодного тока в цепи практически не изменяется до определённого момента, когда при дальнейшем увеличении магнитного поля радиус траектории всё больше уменьшается и при некотором критическом значении Вкр, электроны, не достигнув анода, вернутся обратно к катоду (рис. 6, б, линия 3).

При выполнении условия В > Вкр электроны уже не будут попадать на анод, и ток станет равен нулю (рис. 6, б, линия 4).

На рис. 7 приведен график зависимости анодного тока IА от ин­дукции магнитного поля при некотором анод­ном напряжении UА (сбросовая характе­ристика магнетрона).

Если бы все электроны, вылетающие из катода, имели одну и ту же скорость, анодный ток IА спадал бы до нуля точно при критическом значении Вкр индукции магнитного поля (рис. 7, штриховая линия). Однако скорости вылетевших электронов разные, поэтому уменьшение тока происходит на довольно протяжённом участке вблизи Вкр (рис. 7, сплошная линия).

Критическое значение индукции магнитного поля является некоторой функцией анодного напряжения UА. Эту зависимость легко установить, если предположить, что скорость электрона при его движении в магнетроне остаётся постоянной по модулю. При В = Вкр, радиус окружности, по которой движется электрон, равен RА /2, где RА – радиус анода. Подставляя его в уравнение (2.9.6), получим:

. (2.9.7)

Решая совместно уравнения (2.9.2) и (2.9.7), получим формулу для расчёта удельного заряда электрона:

, (2.9.8)

где UА — разность потенциалов между катодом и анодом.

Индукция магнитного поля в соленоиде может быть рассчитана по закону Био — Савара — Лапласа или по теореме о циркуляции индукции магнитного поля по замкнутому контуру

, (2.9.9)

где – длина соленоида; N – число витков соленоида; Iсол сила тока, протекающего через соленоид (сила намагничивающего тока); – магнитная постоянная.

Критическому значению индукции магнитного поля Вкр соответствует критическое значение силы тока Iкр. Учитывая это и подставляя (2.9.7) в (2.9.8), получим

. (2.9.10)

При выводе (2.9.10) предполагалось, что электрическое и магнитное поля действуют на электрон по очереди, сначала он в электрическом поле разгоняется до скорости , а затем с этой постоянной скоростью движется в магнитном поле.

В рассматриваемом случае электрон движется в скрещенных магнитном и электрическом полях и одновременно испытывает действие сил со стороны обоих полей. Вследствие этого, скорость электрона не постоянна (она возрастает по мере приближения к аноду), а траектория его движения отличается от круговой. Данное обстоятельство позволяет утверждать, что формула (2.9.10) не точна. Тем не менее, как следует из результатов точного анализа рассматриваемой задачи, эта формула в целом удовлетворительно описывает физику процессов и с точностью до коэффициента пропорциональности является правильной.

Окончательная расчётная формула имеет вид:

, (2.9.11)

где = 0,1 м; N = 1000 витков; RА = 5 мм; A – коэффициент, учитывающий отличие реальной траектории движения электрона в скрещенных электрическом и магнитном полях от окружности. Для нашей экспериментальной установки А=1,3.

Тщательные измерения удельного заряда и известное из опытов Милликена (1909 г.) значение величины заряда электрона позволили определить его массу и установить зависимость массы от скорости.

В принципе теми же методами определяются массы атомов и молекул. Соответствующие приборы для определения масс атомов и молекул (точнее, их ионов) носят название масс-спектрографов. Для примера можно рассмотреть принципиальное устройство одного из масс-спектрографов (рис. 8).

Сначала пучок ионов проходит через фильтр скоростей, в котором на движущиеся ионы одновременно действуют взаимно перпендикулярные электрическое и магнитное поля. Направления полей выбираются так, чтобы силы, действующие на ионы с их стороны, были противоположны по направлению. Через щель фильтра, противоположную входной, выхо­дят только те ионы, на которые действуют равные по величине силы и .

q∙E = q∙ ∙B. (2.9.12)

Следовательно, из фильтра вылетают ионы одинаковых скоростей

. (2.9.13)

При выходе из фильтра частицы попадают в магнитное поле, перпендикулярное их скорости. Траектория их движения — окружность, радиус которой зависит от удельного заряда частицы

. (2.9.14)

Попадая на фотопластинку, ионы оставляют след, расстояние которого от выходной щели фильтра зависит от удельного заряда ионов.

По найденным значениям q/m можно определить массы ионов.

В наши дни точность определения масс ионов с помощью масс-спектрографов достигают 6 —8 значащих цифр (правда, не в граммах, а по отношению к массе эталонного атома).

Масс-спектрографические методы позволяют проводить количественный анализ нефти, состоящий из молекул различных углеводородов, трудно различимых обычными химическими способами. При большой мощности ионного пучка этот метод позволяет разделять изотопы в заметных количествах.

Масс-спектрографический метод часто применяют для определения изотопного состава исследуемого вещества. В частности, он был применён при исследовании лунного грунта. Близость изотопного состава земных и лунных пород свидетельствует об одновозрастности и единстве происхождения земного и лунного вещества. По-видимому, это следует распространить и на другие космические тела солнечной системы. Исследования вещества метеоритов не противоречат такому обобщению.

Масс-спектрографы нашли широкое применение в различных областях физики, химии, техники. Они используются для определения содержания примесей в газах, для анализа состава и процентного содержания различных смесей углеводородов и т. д.

Необходимые приборы: лабораторный стенд, внутри которого смонтированы все элементы схемы; цифровой вольтметр (или осциллограф).

На рис. 9 приведена схема экспериментальной установки, которая технически реализована на лабораторном стенде с возможностью самостоятельно вручную и с управлением от внешних источников изменять параметры эксперимента.

Экспериментальная установка состоит из трёх цепей.

Цепь намагничивающей катушки состоит из соленоида, создающего однородное магнитное поле при подключении к нему источника постоянного тока ε3, регулятора тока с внутренним и внешним управлением (коммутация осуществляется тумблером S1) и низкоомного резистора R5 =1 Ом, предназначенного для контроля силы тока Iсол в соленоиде по величине напряжения на этом сопротивлении.

Анодная цепь состоит из электронной лампы Л, источника постоянного тока ε1, делителя напряжения на резисторах R2, R3, R4 и последовательно включенного резистора R1 = 1кОм, предназначенного для контроля силы тока в анодной цепи IА, по величине напряжения на этом резисторе.

Цепь накала включает в себя нитевидный катод К лампы Л, источник тока ε2 и тумблер S2 , отключающий его.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10070 — | 7511 — или читать все.

Учащимся

Каким же образом можно экспериментально определить массу электрона или протона, ускоряя заряженную частицу на известном отрезке пути в известном однородном электрическом поле и измеряя ее конечную скорость? Как известно, если тело проходит путь d в направлении силы F, то работа Fd, затраченная на перемещение тела, равна приращению его кинетической энергии. Если же движение начинается от состояния покоя, то эта работа равна также конечной кинетической энергии тела: Fd= mv 2 /2

Таким образом, если известны F, d и v, то отсюда можно найти массу m.

В опытах, о которых пойдет речь, интересующие нас заряженные частицы ускоряются однородным силовым полем между двумя заряженными металлическими пластинами. Зная расстояние между пластинами и число заряжающих их батарей, можно определить электрическую силу, приложенную к каждому элементарному заряду. Опыты производятся в вакууме, чтобы исключить сопротивление воздуха, имевшее место в микро-микровесах. Кроме того, поскольку протоны и электроны более чем в 10 11 раз легче пластмассовых шариков, использованных в микро-микровесах, в данных опытах можно пренебречь силой тяготения по сравнению с электрическими силами.
Некоторое количество водорода подвергается ионизации вблизи пары заряженных пластин (рис.), после чего некоторые из ионов заходят с пренебрежимо малой скоростью через небольшое отверстие в пространство между пластинами. По мере движения ионов от одной пластины к другой электрическое поле ускоряет ионы, сообщая им конечную кинетическую энергию mv 2 /2. В правой пластине имеется небольшое отверстие, через которое некоторые из ионов могут попадать в камеру длиной 0,50 м (рис.). Эта камера изготовлена из проводящего материала, и, поскольку в ней нет электрического поля, ионы проходят всю ее длину без изменения своей скорости. На прохождение всего этого пути иону требуется всего лишь несколько микросекунд (1 мкс=10 -6 с). Хотя этот промежуток времени и очень мал, все же он доступен точному измерению посредством специального измерительного устройства. Это позволяет точно определить конечную скорость иона v.
Для измерения времени прохождения ионами длинной камеры от одного конца до другого надо заметить момент, когда данный ион покинет данную точку слева, и время, когда этот же ион достигнет дальнего конца справа. Чтобы заметить время, когда данный ион входит в длинную камеру, помещаем около входа пару небольших отклоняющих пластин (рис.). С их помощью можно управлять направлением пучка водородных ионов. Когда отклоняющие пластины заряжены, на ионы водорода действует боковая электрическая сила, которая отклоняет их в сторону от их траектории. Если же затем разрядить отклоняющие пластины, то по продольной оси камеры будут двигаться только те ионы, которые только что или позже попали в камеру; поэтому первыми ионами, прошедшими отверстие на дальнем конце, будут те, которые прошли весь путь в 0,50 м за время с момента разрядки пластин. Приход этих ионов регистрируется воспринимающим элементом, помещенным за отверстием.
Для измерения промежутка времени с момента разрядки пластин до момента прихода первых ионов на воспринимающий элемент отклоняющие пластины в камере соединяются с вертикальными отклоняющими пластинами осциллографа (рис.). Момент разряжения пластин в длинной камере отмечается пиком на кривой, вычерчиваемой на экране, осциллографа. Воспринимающий элемент у дальнего конца длинной камеры присоединяется к тем же вертикальным отклоняющим пластинам осциллографа (электрические соединения обоих концов камеры выполняются совершенно одинаково). Когда пучок ионов попадает в воспринимающий элемент, на экране осциллографа появляется второй пик (рис.). Два пика появляются в разных местах экрана, так как они возникли в разное время. В течение промежуточного времени между этими двумя моментами развертывающая цепь осциллографа вызывает горизонтальное перемещение электронного пучка на экране. Электронный пучок в осциллографе проходит расстояние между двумя пиками за то же время, за какое ионы водорода проходят 0,50 м в камере.

В современных осциллографах цепь развертки может вызвать горизонтальное перемещение электронного пучка на экране трубки от одного конца до другого за несколько сотых долей микросекунды. Для измерения скорости ионов цепь развертки настраивается так, чтобы вся кривая проходилась за 5 микросекунд. Тогда два пика на экране осциллографа будут заметно разделены. Измерением расстояния между пиками определяется время, за которое пучок пересекает длинную камеру. Находят промежуток времени от момента, когда пучок получает возможность двигаться прямо вперед, до момента, когда он попадает в воспринимающий элемент, с точностью до 0,01 микросекунды. В случае ионов водорода и 90- вольтовой батареи, создающей ускоряющую электрическую силу, время пролета равно 3,82 микросекунды. Отсюда можно вычислить скорость v ионов в длинной камере. Она равна 0,50 м/(3,82*10 -6 с) = = 1,31*10 5 м/с.
С другой стороны, пластины здесь ровно втрое дальше друг от друга, чем в микро-микровесах, в которых производился опыт Милликена,; кроме того, здесь используется втрое меньше таких же батарей. Поскольку сила, приходящаяся на элементарный заряд, пропорциональна числу одинаковых батарей и обратно пропорциональна расстоянию между пластинами, на каждый элементарный заряд теперь должна действовать в девять раз меньшая сила, т. е. 1/9*10 -14 ).
Если предположить, что один атом водорода несет один элементарный заряд, то каждый ион между пластинами испытывает только что выраженную силу. Двигаясь от одной пластины к другой, ион проходит путь 9,3 10 -3 м по направлению силы, так что произведенная работа по перемещению иона равна Fd = 1/9(1,4*10 -14 Н)*( 9,3 10 -3 м)= 1,4 10 -17 Дж. Следовательно,
mv/2=m (1,3*10 5 м/с) 2 /2=1,4 *10 -17 Дж.
Отсюда для массы иона водорода т находим
m= 1,7 *10 -27 кг.

Но ведь эта величина нам хорошо известна. В пределах точности наших измерений она совпадает с массой атома водорода.
Теперь можно подвести итог. Если ион водорода заряжен однократно, то его масса почти равна массе атома водорода. Можно даже сделать дальнейший шаг и утверждать, что ион водорода действительно является носителем единичного заряда и что его масса практически равна массе атома. Это должно быть правильным, так как предположение, что ион несет больший заряд, приведет к абсурдному результату. Например, если ион несет два элементарных заряда, то действительная величина mv 2 /2 должна быть в два раза больше принятого нами значения. Поскольку мы измеряли v, это может только значить, что масса иона в два раза больше найденной нами. Такой ион водорода обладал бы массой, в два раза превосходящей массу атома, осколком которого он является. Этот вывод настолько неправдоподобен, что мы его отбрасываем.

Ранее уже имелись указания, что электроны представляют собой строительные элементы, входящие во все атомы. По-видимому, ион водорода представляет собой атом водорода, потерявший один электрон. Кроме того, мы никогда ни в этом, ни в других опытах не встречали положительно заряженного осколка водорода с двумя положительными элементарными зарядами. Это одно из многих доказательств того, что положительно заряженный ион водорода является конечным строительным элементом. Это — протон. Когда водород расщепляется на заряженные частицы, то, как только что было установлено, протону принадлежит почти вся масса атома. Поэтому электроны должны быть очень легкими. Можно использовать те же приборы для измерения массы электрона и таким образом проверить этот вывод.

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

1.1. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1.
Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2.
Прибор Кулона

Рисунок 1.1.3.
Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

где – электрическая постоянная.
В системе СИ элементарный заряд e равен:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4.
Принцип суперпозиции электростатических сил

Модель. Взаимодействие точечных зарядов

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Положительные и отрицательные заряды

Два вида электрических зарядов

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки — «кирпичики», образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Вам это будет интересно Особенности расчета делителя напряжения

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Источник

Способы передачи электрического заряда и электризация

Демонстрация явления элекризации

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Литература

  1. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
  2. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. Для углубленного изучения физики /Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.Ж Дрофа, 2005. – 476 с.
  3. Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.
  4. Элементарный учебник физики: Учебное пособие. В 3 т./ Под ред. Г.С. Ландсберга: Т. 2. Электричество и магнетизм. – М: ФИЗМАТЛИТ, 2003. – 480 с.

Электрометр

Для обнаружения и измерения электрических зарядов применяется электрометр

. Электрометр состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 2). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Принцип работы электрометра

. Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 2). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Рис. 2

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке.

Точечный заряд – это электрический заряд, когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона. Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила взаимодействия называется кулоновская сила, и формула закона Кулона будет следующая:

F = k · (|q1| · |q2|) / r2

где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

k = 1 / (4πε0ε)

где ε0 = 8,85 * 10-12 Кл/Н*м2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 109 Н*м/Кл2.

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2] = k · (1 /π) · [(|q1| · |q2|) / r2]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F1,2 = -F2,1

Кулоновская сила является центральной силой. Как показывает опыт, одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F2,1, действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с, на одном конце которой закреплён металлический шарик а, а на другом противовес d. Верхний конец нити закреплён на вращающейся головке прибора е, угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b, неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить бизнес план регион
  • Код ошибки 1s на андроид при входе в интернет как исправить
  • Как найти третью часть числа три
  • Как составить ребус английских слов
  • Как исправить ошибку the following components are required to run this program microsoft visual c

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии