Как найти высоты в прямоуг треуг

Высота в прямоугольном треугольнике

Вспомним определение. Высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач в банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

angle BAC =angle BCH;

angle ABC =angle ACH;

sin Adisplaystyle = frac{a}{c}=frac{h}{b}=frac{BH}{a};

cos Adisplaystyle = frac{b}{c}=frac{h}{a}=frac{AH}{b};

displaystyle S_{ABC}= frac{ab}{2}=frac{ch}{2}.

Высота проведена к гипотенузе AB. Она делит треугольник ABC на два прямоугольных треугольника — AC mkern -3mu H и C mkern -3mu H mkern -3mu B. Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна 90^{circ}. Значит, angle AC mkern -3mu H=90^{circ}-angle C mkern -3mu AH, то есть угол AC mkern -3mu H равен углу ABC. Аналогично, угол C mkern -3mu AB равен углу H mkern -3mu C mkern -3mu B.

Иными словами, каждый из трех углов треугольника ABC равен одному из углов треугольника AC mkern -3mu H (и треугольника BC mkern -3mu H). Треугольники ABC, AC mkern -3mu H и BC mkern -3mu H называются подобными. Давайте нарисуем их рядом друг с другом.

Подобные треугольники

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники AC mkern -3mu H и ABC. Стороны треугольника ABC длиннее, чем стороны треугольника AC mkern -3mu H в k раз:

genfrac{}{}{}{0}{displaystyle AC}{displaystyle A mkern -3mu H} =genfrac{}{}{}{0}{displaystyle BC}{displaystyle C mkern -3mu H} = genfrac{}{}{}{0}{displaystyle AB}{displaystyle AC}.

Мы доказали свойство высоты прямоугольного треугольника. Его можно сформулировать как теорему.

Теорема 1. Высота прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, делит треугольника на три подобных друг другу треугольника:

triangle AHC approx triangle CHB approx triangle ACB.

При решении задач нам пригодится равенство углов треугольников ABC, AC mkern -3mu H и BC mkern -3mu H, а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника ABC можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту. В геометрии это называется «метод площадей» и часто применяется в решении задач.

Задача 1.

В треугольнике ABC угол C равен 90^{circ}, CH — высота, BC = 3, cos A = genfrac{}{}{}{0}{displaystyle sqrt{35}}{displaystyle 6}. Найдите AH.

Решение:

Рассмотрим треугольник ABC. В нем известны косинус угла A и противолежащий катет BC. Зная синус угла A, мы могли бы найти гипотенузу AB. Так давайте найдем sin A:

sin{}^2A + cos{}^2A = 1.

Эта формула – основное тригонометрическое тождество. Конечно, вы его знаете:

sin{}^2 A + genfrac{}{}{}{0}{displaystyle 35}{displaystyle 36} = 1;

sin{}^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 36};

sin A= genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6} (поскольку значение синуса острого угла положительно).

Тогда:

AB=BC: sin A = 3: genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=3 cdot 6=18.

Рассмотрим прямоугольный треугольник BC mkern -3mu H, angle H = 90^{circ}. Поскольку angle H mkern -3mu C mkern -3mu B = angle A,

sin H mkern -3mu C mkern -3mu B = H mkern -3mu B : BC.

Отсюда H mkern -3mu B=BC cdot sin HC mkern -3mu B = 3 cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=0,5.

A mkern -3mu H = A mkern -3mu B - H mkern -3mu B=18-0,5=17,5.

Ответ: 16.

Задача 2.

В треугольнике ABC угол C равен 90{}^{circ}, AB = 13, tg A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. К гипотенузе проведена высота CH. Найдите AH.

Решение:

Это чуть более сложная задача. Ведь вам неизвестны катеты a и b.

Запишем теорему Пифагора: a^2 + b^2 = 13^2. (1)

Нам известно также, что:

tg A = genfrac{}{}{}{0}{displaystyle a}{displaystyle b} = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. (2)

Решая уравнения (1) и (2), найдем:

a = sqrt{6,5}:b=5sqrt{6,5}.

Запишем площадь треугольника AВС двумя способами:

S = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ab = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ch

и найдем длину CH = 2,5.

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений, как в алгебре.

Теорема 2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, равна произведению катетов, деленному на гипотенузу.

Доказательство:

Из прямоугольного треугольника ABC с прямым углом C и гипотенузой AB:

sindisplaystyle (angle BAC)=frac{a}{c}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

sindisplaystyle (angle BAC)=frac{h}{b}.

Мы разными способами вычислили синус одного и того же угла. Приравняем полученные выражения:

displaystyle frac{h}{b}=frac{a}{c}.

Найдем высоту:

displaystyle h= frac{ab}{c}.

Что и требовалось доказать.

Задача 3. Катеты прямоугольного треугольника равны 15 и 20.
Найдите высоту, проведенную к гипотенузе.

Решение:

Воспользуемся теоремой 2 о высоте прямоугольного треугольника:

Катеты BС и AС нам известны: BC = 15, AC = 20. Найдем гипотенузу AB с помощью теоремы Пифагора:

{AB}^2={BC}^2+{AC}^2={15}^2+{20}^2={25}^2,    AB=25.

Найдем высоту, проведенную из вершины прямого угла:

displaystyle CH=frac{15cdot 20}{25}=12.

Ответ: 12.

Теорема 3. В прямоугольном треугольнике квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.

CH^2=BHcdot AH.

Сейчас мы докажем эту полезную формулу.

Вспомним, что такое проекция точки на прямую. Например, из точки С опускаем СН — перпендикуляр к прямой AВ. Точка Н и будет проекцией точки С. Тогда AН – проекция катета AВ, а BН – проекция катета BС.

Обозначим: BH=c_a, AH=c_b.

Доказательство проведем двумя способами.

Первый способ доказательства:

Из прямоугольного треугольника BНС с прямым углом Н и гипотенузой BС:

tgdisplaystyle (angle CBH)=frac{h}{c_a}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

ctgdisplaystyle (angle CAH) = frac{c_b}{h}.

Заметим, что угол CBН – это угол CBA, а угол CAН – это угол BAC. Тогда:

tg(angle ABC)=ctg(angle BAC);

tg(angle CBH)=ctg(angle CAH);

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы воспользовались тем, что тангенс и котангенс двух разных острых углов прямоугольного треугольника равны друг другу. Это следует из определения тангенса и котангенса.

Преобразуем получившееся выражение:

displaystyle h=frac{c_a cdot c_b}{h} Rightarrow h^2 = c_a c_b .

Что и требовалось доказать.

Второй способ доказательства:

Воспользуемся подобием треугольников, о которых говорится в теореме 1.

Рассмотрим пару прямоугольных треугольников AНC и BНC. Как было показано выше, эти треугольники подобны по двум углам, поэтому

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы получили такое же соотношение, как и в первом способе доказательства.

Далее аналогично получим, что

h^2 = c_a c_b .

Что и требовалось доказать.

Задача 4. На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH = 4, BH = 16. Найдите длину CH.

Решение:

Воспользуемся теоремой 3 о высоте прямоугольного треугольника:

CH^2=BHcdot AH.

Подставим данные задачи.

{CH}^2=4cdot 16=64, CH = 8.

Ответ: 8.

Разберем решения других задач ОГЭ и ЕГЭ по теме «Свойства высоты в прямоугольном треугольнике».

Задача 5. Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50. Найти высоту, проведенную из вершины прямого угла и отрезки, на которые гипотенуза делится высотой.

Решение:

Рассмотрим прямоугольный треугольник ABС с гипотенузой AB. Проведем высоту CD=h.

Учитывая отношение катетов, обозначим их длины как: BC = 3x, AC = 4x.

Тогда по теореме Пифагора получим:

AB=sqrt{9x^2 +16 x^2} = sqrt{25 x^2}=5x.

По условию гипотенуза AB = 50. Следовательно, х = 10, BC = 30, AC = 40.

Далее можно действовать разными способами. Например, так.

displaystyle CD=frac{BCcdot AC}{AB}=frac{30cdot 40}{50}=24.

AD=ACcdot {cos A},; BD=BCcdot {cos B}, где по определению косинуса:

cos A displaystyle =frac{AC}{AB}=frac{4}{5},; cos Bdisplaystyle =frac{BC}{AB}=frac{3}{5}.

displaystyle AD=ACcdot frac{4}{5}=32,; BD=BCcdot frac{3}{5}=18.

Ответ: CD=24, ; AD=32,; BD=18.

Задача 6. В прямоугольном треугольнике ABC высота CD делит гипотенузу на отрезки AD = 3 см и BD = 2 см. Найти катеты треугольника.

Решение:

Найдем квадрат длины высоты с помощью теоремы 3:

{CD}^2=ADcdot BD=3cdot 2=6.

Из прямоугольного треугольника ADC по теореме Пифагора найдем

{AC}^2={AD}^2+{CD}^2=9+6=15,; AC= sqrt{15} см.

Из прямоугольного треугольника BDC по теореме Пифагора найдем

{BC}^2={BD}^2+{CD}^2=4+6=10,; BC= sqrt{10} см.

Ответ: sqrt{15} см и sqrt{10} см.

Задача 7. Точка D является основанием высоты, проведенной из вершины прямого угла C треугольника ABC к гипотенузе AB. Найдите AC, если AD=8, AB=32.

Указание:

Найдите отрезок BD = AB — AD, после чего задача сводится к предыдущей.

Длину высоты прямоугольного треугольника можно также найти, если известны гипотенуза и один из острых углов треугольника.

h = c sinalpha cosalpha = c sinbeta cosbeta.

Докажем эту формулу.

Рассмотрим прямоугольный треугольник ACD: CD=AC cos alpha.

В то же время из треугольника AВC: AC=AB sin alpha.

Таким образом, h = CD = AC cos⁡alpha = AB sinalpha cosalpha = c sinalpha cos⁡alpha.

Аналогично, из треугольника BCD получим: h = CD = BC cosbeta = AB sin⁡beta cosbeta = c sin beta cos⁡beta.

Задача 8. В прямоугольном треугольнике гипотенуза равна 10, а один из острых углов 15 градусов. Найти высоту, проведенную из вершины прямого угла.

Решение:

Воспользуемся доказанной выше формулой:

h = c sinalpha cosalpha = 10 sin {15}^circcos {15}^circ = 5sin {30}^circ = 2,5.

Ответ: 2,5.

Задача 9. Высота прямоугольного треугольника делит его гипотенузу на отрезки 6 см и 4 см. Найдите площадь этого треугольника.

Решение:

Гипотенуза прямоугольного треугольника равна сумме данных отрезков:

c=6+4=10 см.

Найдем высоту, проведенную из вершины прямого угла к гипотенузе: h=sqrt{6cdot 4}=2sqrt{6} см.

Площадь треугольника:

displaystyle S=frac{1}{2}ch=frac{1}{2}cdot 10cdot 2sqrt{6}=10sqrt{6} см{}^2.

Ответ: 10sqrt{6} см{}^2.

Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Высота в прямоугольном треугольнике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023


В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике
H — высота из прямого угла

a, b — катеты

с — гипотенуза

c1 , c2 — отрезки полученные от деления гипотенузы, высотой

α, β — углы при гипотенузе

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы



Подробности

Опубликовано: 09 октября 2011

Обновлено: 13 августа 2021

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Т.к. АВ — гипотенуза, то ее можно выразить через катеты АС и ВС, используя теорему Пифагора. Тогда формула примет другой вид:

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

Сумма квадратов катетов равна квадрату гипотенузы.

В буквах это так: 

  • ( A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}})

или так: 

  • ( {{c}^{2}}={{a}^{2}}+{{b}^{2}})

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие-то шорты? Ну и на какие стороны и где они равны? Почему и откуда возникла шутка? М-да… Кажется, у людей в античности с юмором явно проблемы.

Вовсе нет! А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов, построенных на катетах, равна площади квадрата, построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.

На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора так:

( {{c}^{2}}={{a}^{2}}+{{b}^{2}}),

а Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений ( displaystyle a,text{ }b,text{ }c,text{ }x) и так далее. Не было надписей ( displaystyle {{a}^{2}},text{ }{{b}^{2}},text{ }{{c}^{2}}).

Представляешь, как бедным древним ученикам было ужасно запоминать всё словами?! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора :)

Давай её ещё раз повторим, чтобы лучше запомнить:

( A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}})

или

( {{c}^{2}}={{a}^{2}}+{{b}^{2}})

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, то… сейчас мы ее докажем)

Нарисуем квадрат со стороной ( a+b).

Видишь, как хитро мы поделили его стороны на отрезки длин ( a) и ( b)!

А теперь соединим отмеченные точки:

Тут мы, правда, ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата?

Правильно, ( {{left( a+b right)}^{2}}).

А площадь меньшего?

Конечно, ( c^2).

Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами.

Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна ( displaystyle 2ab).

Давай теперь соберем всё вместе.

( displaystyle underbrace{{{left( a+b right)}^{2}}}_{{{S}_{большого квадрата}}}=underbrace{2ab}_{{{S}_{«обрезков»}}}+underbrace{{{c}^{2}}}_{{{S}_{малого квадрата}} })

Преобразуем: ( {{a}^{2}}+2ab+{{b}^{2}}=2ab+{{c}^{2}})

то есть ( {{a}^{2}}+{{b}^{2}}={{c}^{2}})

Вот и побывали мы Пифагором – доказали его теорему древним способом :)

Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

  • ( sin angle A=frac{a}{c});
  • ( cos angle A=frac{b}{c});
  • ( tg~angle A=frac{a}{b});
  • ( ctg~angle A=frac{b}{a}).

А почему же всё только про угол ( A)? Где же угол ( B)?

Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 — 4 записываются словами. 

Смотри, понимай и запоминай!

  • ( displaystyle sin angle A=frac{a}{c})

Вообще-то звучит это так:

Синус острого угла в прямоугольном треугольнике равен отношению противоположного катета к гипотенузе.

А что же угол ( displaystyle B)?

Есть ли катет, который находится напротив угла ( displaystyle B), то есть противолежащий (для угла ( displaystyle B)) катет?

Конечно, есть! Это катет ( displaystyle b)!

  • Значит, ( displaystyle sin angle B=frac{b}{c})

Косинус острого угла в прямоугольном треугольнике равен отношению прилежащего катета к гипотенузе. 

( displaystyle cos angle A=frac{b}{c})

Значит, ( displaystyle sin angle B=frac{b}{c})

А как же угол ( displaystyle B)?

Посмотри внимательно. Какой катет прилегает к углу ( displaystyle B)? Конечно же, катет ( displaystyle a).

Значит, для угла ( displaystyle B) катет ( displaystyle a) – прилежащий, и

  • ( displaystyle cos angle B=frac{a}{c}).

А теперь, внимание! Посмотри, что у нас получилось:

( displaystyle begin{array}{l}sin angle A=frac{a}{c} sin angle B=frac{b}{c} \cos angle A=frac{b}{c} cos angle B=frac{a}{c}end{array})

Видишь, как здорово:

( displaystyle sin angle A=cos angle B) и ( displaystyle sin angle B=cos angle A)

Это очень удобно – если тебе дан в задаче синус одного угла прямоугольного треугольника, то ты знаешь и косинус другого!

Итак, запомни очень твёрдо:

В прямоугольном треугольнике синус одного острого угла равен косинусу другого и наоборот.

Теперь перейдём к тангенсу и котангенсу.

  • ( displaystyle tg~angle A=frac{a}{b})

Как это теперь записать словами?

Катет ( displaystyle a) каким является по отношению к углу ( displaystyle A)? Противолежащим, конечно – он «лежит» напротив угла ( displaystyle A).

А катет ( displaystyle b)? Прилегает к углу ( displaystyle A).

Значит, что у нас получилось?

Тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему.

  • ( displaystyle ctg~angle A=frac{b}{a})

Видишь, числитель и знаменатель поменялись местами?

Котангенс острого угла в прямоугольном треугольнике равен отношению прилежащего катета к противолежащему.

Вспомним теперь про угол ( displaystyle angle B). Что будет для него? Правильно:

  • ( displaystyle tg~angle B=frac{b}{a})( displaystyle ctg~angle B=frac{a}{b})

И теперь снова углы ( displaystyle A) и ( displaystyle B) совершили обмен:

( displaystyle begin{array}{l}tg~angle A=frac{a}{b} tg~angle B=frac{b}{a}\ctg~angle A=frac{b}{a} ctg~angle B=frac{a}{b}end{array})

В прямоугольном треугольнике тангенс одного острого угла равен котангенсу другого.

Давай вкратце запишем всё, что мы узнали.

Признаки равенства прямоугольных треугольников:

I. По двум катетам

Прямоугольные треугольники равны, если два катета одного треугольника соответственно равны двум катетам другого треугольника.

II. По катету и гипотенузе

Прямоугольные треугольники равны, если катет и гипотенуза одного треугольника соответственно равны катету и гипотенузе другого.

III. По гипотенузе и острому углу

Прямоугольные треугольники равны, если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого.

IV. По катету и острому углу

Прямоугольные треугольники равны, если катет и острый угол одного треугольника соответственно равны катету и острому углу другого треугольника.

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То треугольники не равны, несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих – противолежащим.

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников?

Загляни в тему «Треугольник» и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны.

А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Что видим? 

Треугольник ( displaystyle ABC) – половина прямоугольника.

Проведём диагональ ( displaystyle CD) и рассмотрим точку ( displaystyle O) – точку пересечения диагоналей. Что известно про диагонали прямоугольника?

  • Точкой пересечения диагонали делятся пополам
  • Диагонали равны

И что из этого следует?

  • Точкой пересечения диагонали делятся пополам

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Если медиана, проведенная к какой-нибудь стороне треугольника, оказалась равна половине этой стороны, то треугольник – прямоугольный.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы?

А давай посмотрим на картинку.

Здесь( displaystyle CO) – медиана и равна( frac{AB}{2}).

Что же это получилось за точка ( displaystyle O)?

Посмотри внимательно. У нас есть: ( OA=OB=OC), то есть расстояния от точки ( displaystyle O) до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это – ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.

Посмотрим на ( Delta ABC) и ( Delta ACH).

У них общий ( angle A), и они оба – прямоугольные. Значит (вспоминаем только что прочитанные признаки подобия прямоугольных треугольников) – они подобны!

Еще раз. ( displaystyle begin{array}{l}Delta ABC, Delta ACH:\left{ begin{array}{l}angle CAB=angle CAH\angle C=90{}^circ ; angle H=90{}^circ end{array} right.Rightarrow \Rightarrow Delta ABCsim Delta ACHend{array})

Но у подобных треугольников все углы равны!

( angle HCA=angle CBA) (Посмотри на рисунок)

То же самое можно сказать и про ( Delta CBH) и ( Delta ABC)

А теперь нарисуем это вместе:

( displaystyle begin{array}{l}Delta ABC, Delta CBH:\left{ begin{array}{l}angle ABC=angle CBH\angle C=90{}^circ ; angle H=90{}^circ end{array} right.Rightarrow \Rightarrow Delta ABCsim Delta CBHRightarrow \Rightarrow angle BAC=angle BCHend{array})

Что видим?

У ( Delta BCH) и ( Delta CHA) одинаковые острые углы!( displaystyle Rightarrow Delta BCHsim Delta CHA)

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например – две формулы для высоты прямоугольного треугольника.

Чтобы писать меньше букв, обозначим:

( displaystyle AC=b); 
( displaystyle BC=a ); 
( displaystyle AB=c); 
( displaystyle CH=h) (посмотри на рисунке). 

Применяем подобие:( Delta ABCsim Delta ACH).

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу «Высота в прямоугольном треугольнике»:

( displaystyle h=frac{ab}{c})

Как же получить вторую?

А теперь применим подобие треугольников ( BCH) и ( CAH).

Но сначала обозначим ( BH={{c}_{a}}) и ( CH={{c}_{b}}) ( смотри на рисунок)

Итак, применим подобие: ( displaystyle Delta BCHsim Delta CAH).

Значит,

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу «Высота в прямоугольном треугольнике»:

( displaystyle {{h}^{2}}={{c}_{a}}{{c}_{b}}) ,то есть ( displaystyle h=sqrt{{{c}_{a}}{{c}_{b}}})

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее.

Запишем их ещё раз:

( displaystyle h=frac{ab}{c})

( displaystyle h=sqrt{{{c}_{a}}{{c}_{b}}})

Ну вот, теперь, применяя и комбинируя эти знания с другими, ты решишь любую задачу с прямоугольным треугольником!

ВИДЕОУРОК

Высота прямоугольного треугольника.

Высотой
прямоугольного треугольника называется перпендикуляр, опущенный из вершины
треугольника на противоположную сторону.

В прямоугольном
треугольнике высоты, опущенные из вершин острых углов, совпадают с катетами
треугольника, а высота, опущенная из вершины прямого угла на гипотенузу, делит
треугольник на два треугольника, подобных исходному и подобных друг другу.

Длина высоты
треугольника 
АВС

проведённой к гипотенузе  ВС находится по формуле:

АК2 = ВК ∙ КС.

где  ВК  и  КС – проекции катетов на гипотенузу.

В
прямоугольном треугольнике высота, опущенная из вершины прямого угла на
гипотенузу, делит гипотенузу в таком отношении, в каком находятся квадраты прилежащих
катетов
:

В прямоугольном
треугольнике высота, проведённая из прямого угла, равна произведению катетов,
делённому на гипотенузу.

Каждый катет
прямоугольного треугольника есть среднее пропорциональное между гипотенузой и
отрезком гипотенузы, заключённым между катетом и высотой, проведённой из
вершины прямого угла.

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.

                                    
Высоты  ha  и  hb  совпадают
с катетами
  и  a.

Отрезок  XY  есть среднее пропорциональное (или среднее
геометрическое) между отрезками 
АВ  и  СD, если

ЗАДАЧА:

В треугольнике  АВС: 

С = 90°,

А = 30°

АВ = 2√͞͞͞͞͞3.

Найдите высоту  СН.

РЕШЕНИЕ:

Начертим
чертёж
.

Так как катет, лежащий против угла  30°, равен половине гипотенузы, то

ВС = 0,5АВ = √͞͞͞͞͞3.

Найдём катет  АС  в треугольнике  АВС,
пользуясь теоремой Пифагора
:

АВ2 = АС2
+
ВС2,

АС2 = АВ2
ВС2 =

= (2√͞͞͞͞͞3)2 – (√͞͞͞͞͞3)2 =

 =12 – 3 = 9, АС = 3.

В треугольнике  АНС: АС
гипотенуза, НС – катет, лежащий против угла 
30°, значит

НС =
3 : 2 = 1,5.

ЗАДАЧА:

В треугольнике  АВС: 

С = 90°,

А = 30°

СН – высота.

Найдите 
АН, если  АВ = 2.

РЕШЕНИЕ:

Начертим
чертёж
.

Так как катет, лежащий против угла  30°, равен половине гипотенузы, то

ВС = 0,5АВ = 1.

Тогда
по теореме Пифагора из треугольника 
АВС
:

Из прямоугольного треугольника  АНС:

НС =
0,5АС =
√͞͞͞͞͞3 : 2.

Тогда
по теореме Пифагора
:

ЗАДАЧА:

В треугольнике  АВС: 

С = 90°,

А = 30°

СН – высота.

Найдите 
ВН, если  АВ = 4.

РЕШЕНИЕ:

Начертим
чертёж
.

Так как катет, лежащий против угла  30°, равен половине гипотенузы, то

ВС = 0,5АВ = 2.

Угол 
ВСН  равен  30° (90° – 60°),

значит 
ВН = 0,5ВС = 1.

ЗАДАЧА:

В прямоугольном треугольнике  АВС  высота  АК  делит гипотенузу
на отрезки

ВК = 3 см,

КС = 2 см.

Найдите  катеты
треугольника.

РЕШЕНИЕ:

Найдём квадрат длины высоты  АК  пользуясь формулой

АК2 = ВК КС = 3 2
= 6.

Рассмотрим
прямоугольные треугольники 
АКС  и  ВКС, и найдём в них стороны  АС  и  АВ.

Медиана прямоугольного треугольника.

Медиана – это отрезок, соединяющий вершину треугольника с
серединой противолежащей стороны.

Для прямоугольного треугольника это будут
медианы, проведённые с острого угла к серединам катетов или с прямого к центру
гипотенузы.

Свойства
медианы в прямоугольном треугольнике.

– медианы в прямоугольном треугольнике пересекаются в
одной точке, а точка пересечения делит их в соотношении два к одному считая от
вершины, из которой проведена медиана
;

– медиана, проведённая из
вершины прямого угла к гипотенузе, равна половине гипотенузу
;

– медиана, опущенная на гипотенузу прямоугольного треугольника, равна
радиусу окружности, описанной вокруг данного прямоугольного треугольника
;

сумма
квадратов медиан, опущенных на катеты прямоугольного треугольника равна пяти квадратам
медианы, опущенной на гипотенузу
;

сумма
квадратов медиан, опущенных на катеты прямоугольного треугольника равна пяти
четвёртых квадрата гипотенузы
;

медиана,
опущенная на гипотенузу, равна половине корня квадратного из суммы квадратов
катетов
;

медиана,
опущенная на гипотенузу, равна частному от деления длины катета на два синуса
противолежащего катету острого угла
;

медиана,
опущенная на гипотенузу, равна частному от деления длины катета на два косинуса
прилежащего катету острого угла
;

– сумма квадратов сторон
прямоугольного треугольникаравна восьми квадратам медианы, опущенной на его
гипотенузу
;

– медиана, проведённая к катету  а, равна
половине корня квадратного из суммы учетверённого квадрата катета 
b  и квадрата катета  а
;

– медиана, проведённая к катету  b, равна
половине корня квадратного из суммы учетверённого квадрата катета 
а  и квадрата катета  b
;

Обозначения в формулах.

a, bкатеты
прямоугольного треугольника
;

сгипотенуза
прямоугольного треугольника
.

Если обозначить треугольник, как  АВС, то

ВС = а, АС = b, АВ = с

(то есть стороны  а,
b, с – являются
противолежащими соответствующим углам).

та
медиана, проведённая к катету 
а;

тb – медиана,
проведённая к катету 
b;

тс
медиана, проведённая к гипотенузе 
с;

α (альфа)
угол 
САВ,
противолежащий стороне 
а.

ЗАДАЧА:

Две стороны треугольника равны  6 см  и  8 см. Медианы, проведённые к этим сторонам, пересекаются
под прямым углом. Найдите третью сторону треугольника.

РЕШЕНИЕ:

Начертим
чертёж.

Обозначим  

АN = х см. ВМ
= у
см.

Тогда 

АО = 2/3 х,
NО =
1/3 у,

ВО = 2/3 х,
МО =
1/3 у.

АМ2 = ОМ2
+
ОА2,

ВN2 = ОВ2 + ОN2,

5х2 + 5у2 = 225,

х2 + у2
= 45.

АВ2 = ВО2
+
ОА2 =

= 4/9 (х2
+
у2) = 20,
то

АВ = √͞͞͞͞͞20 = 2√͞͞͞͞͞5 см.

ЗАДАЧА:

В треугольнике  АВС:

АВ = √͞͞͞͞͞41, ВС = 13

ВН – высота, опущенная на
сторону 
АС, ВН = 5

Найдите
длину медианы
АМ.

РЕШЕНИЕ:

Начертим чертёж.

В прямоугольном
треугольнике 
ВНС  по
теореме Пифагора 

В прямоугольном
треугольнике 
АВН  по
теореме Пифагора 

Опустим из точки  М  перпендикуляр  МD  на сторону АС, МD – средняя линия треугольника  ВНС, следовательно

МD = 1/2 ВН = 5/2,

НD = DС = 1/2 НС = 6.

Тогда в прямоугольном треугольнике  АМD

АDМ = 90°,

АD = АН + НD =

= 4 + 6 = 10,

МD = 5/2.

По теореме Пифагора

ЗАДАЧА:

В прямоугольном треугольнике медианы, проведённые к
катетам равны 
√͞͞͞͞͞52  и √͞͞͞͞͞73. Найдите длину
гипотенузы.

РЕШЕНИЕ:

Начертим чертёж.

Проведём медианы  АК
 и  ВМ. Пусть 

АК = √͞͞͞͞͞52,

ВМ = √͞͞͞͞͞73,

х – половина длины
стороны 
АС,

у – половина длины
стороны 
ВС. Тогда из
прямоугольных треугольников 
АСК  и  ВСМ  имеем:

АК2 = АС2
+
СК2,

ВМ2 = МС2
+
ВС2

тогда  составим систему уравнений:

отсюда

5(х2 + у2) = 125,

х2 + у2
= 25,

АК2 = 4(х2
+
у2).

АВ = 10.

ЗАДАЧА:

Медианы  СМ  и 
ВN  прямоугольного
треугольника 
АВС ( С = 90°), перпендикулярны. Найдите катеты, если гипотенуза
равна 
с.

РЕШЕНИЕ:

Начертим чертёж.

МА = МС = МВ = с/2.

Пусть  = х,

Тогда 

ВО = 2/3 х, МО = с/6.

МВ2 = МО2 + ВО2,

Биссектриса прямоугольного треугольника.

Биссектрисою прямоугольного треугольника называют отрезок
биссектрисы угла треугольника, который соединяет его вершину с точкой на противоположной
стороне треугольника.

Биссектриса прямоугольного треугольника делит противоположную сторону на
отрезки, соответственно пропорциональные двум другим сторонам.

Связь угла  (α)  между
высотой и биссектрисой, проведёнными из прямого угла, определяется через острые
углы этого треугольника.

ЗАДАЧА:

Биссектриса прямого угла
прямоугольного треугольника образует с гипотенузой углы, один из которых
равен 
70°. Найдите острые углы этого треугольника.

РЕШЕНИЕ:

Начертим чертёж.

DBC = DBA = 45°,

DCB = 180°70°45° = 65°,

ADB = 180°70° = 110°,

CAB = 180°110°45° = 25°.

ЗАДАЧА:

Биссектриса прямого угла
прямоугольного треугольника делит гипотенузу на отрезки длиной 
15
см  и 
20
см. Найдите длины отрезков гипотенузы, на которые её делит высота треугольника.

РЕШЕНИЕ:

Биссектриса треугольника делит сторону на
отрезки, пропорциональные прилежащим сторонам.

Следовательно,

СВ
: АС = 15 : 20.

Пусть коэффициент этого
отношения будет 
х. Тогда

АС = 20х, ВС
= 15х,

АВ = 20 + 15 = 35.

По теореме Пифагора:

АС2 + ВС2 = АВ2,

400х2
+ 225
х2 = 1225.

х = √͞͞͞͞͞1,96 = 1,4,

АС = 20 ∙ 1,4 = 28,

ВС = 15 ∙ 1,4 = 21.

Катет прямоугольного треугольника есть среднее
пропорциональное между гипотенузой и отрезком гипотенузы, заключённым между
катетом и высотой.

ВС2 = АВ ВН,

441 = 35 ВН,

ВН
=
12,6,

АН = 35 – 12,6 =
22,4.

ЗАДАЧА:

Угол между биссектрисой и
медианой прямоугольного треугольника, проведёнными из вершины прямого угла,
равен 
14°.
Найдите меньший угол этого треугольника.

РЕШЕНИЕ:

Начертим чертёж.

Так как связь угла  (α)  между высотой и биссектрисой, проведёнными из
прямого угла, определяется через острые углы этого треугольника следующим
образом
:

ВАС
=
45° – α,

ВСА
=
45° + α,

α = МВD = 14°,

то меньший угол
треугольника 
ВАС  будет равен:

ВАС = 45°14° = 31°.

Задания к уроку 9

  • Задание 1
  • Задание 2
  • Задание 3

Другие уроки:

  • Урок 1. Точка и прямая
  • Урок 2. Угол
  • Урок 3. Параллельные и перпендикулярные прямые
  • Урок 4. Окружность
  • Урок 5. Угол и окружность
  • Урок 6. Треугольник (1)
  • Урок 7. Треугольник (2)
  • Урок 8. Прямоугольный треугольник (1)
  • Урок 10. Равнобедренный треугольник (1)
  • Урок 11. Равнобедренный треугольник (2)
  • Урок 12. Периметр треугольника
  • Урок 13. Периметр равнобедренного (равностороннего) треугольника
  • Урок 14. Треугольник и окружность
  • Урок 15. Прямоугольный треугольник и окружность
  • Урок 16. Равнобедренный треугольник и окружность
  • Урок 17. Четырёхугольники
  • Урок 18. Параллелограмм
  • Урок 19. Периметр параллелограмма
  • Урок 20. Прямоугольник
  • Урок 21. Периметр прямоугольника
  • Урок 22. Квадрат
  • Урок 23. Ромб
  • Урок 24. Периметр ромба
  • Урок 25. Трапеция
  • Урок 26. Равнобедренная трапеция
  • Урок 27. Периметр трапеции
  • Урок 28. Четырёхугольник и окружность (1)
  • Урок 29. Четырёхугольник и окружность (2)
  • Урок 30. Многоугольник
  • Урок 31. Правильный многоугольник
  • Урок 32. Осевая и центральная симметрии

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти длины сторон треугольника по углам
  • Как найти мощность напряжения в физике
  • Файл менеджер как его найти
  • Как исправить ошибку e05 canon pixma
  • Найти порно как ебут молодых девушек

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии