Через образующую и высоту конуса можно найти радиус, построив прямоугольный треугольник, в котором образующая является гипотенузой, а высота и радиус – катетами. Из этого же треугольника становится возможным вычислить угол между образующей и основанием, а для того чтобы найти угол раствора конуса, необходимо вернуться к равнобедренному треугольнику из двух образующих и диаметра, в котором угол раствора будет равен разности двух углов при основании от 180 градусов. (рис.40.1, 40.2)
r=√(l^2-h^2 )
sinβ=h/l
α=180°-2β
Теперь, зная радиус конуса, можно найти диаметр, периметр и площадь основания круга, подставив в стандартные формулы квадратный корень, полученный по теореме Пифагора.
d=2r=2√(l^2-h^2 )
P=2πr=2π√(l^2-h^2 )
S_(осн.)=πr^2=π(l^2-h^2)
Площадь боковой поверхности конуса и площадь полной поверхности конуса, выраженные через высоту и образующую, также содержат в формулах вместо радиуса квадратный корень из разности квадратов образующей и высоты.
S_(б.п.)=πrl=πl√(l^2-h^2 )
S_(п.п.)=S_(б.п.)+S_(осн.)=πrl+πr^2=π(lr+r^2 )=π(l√(l^2-h^2 )+l^2-h^2)
Чтобы вычислить объем конуса через высоту и образующую, необходимо умножить треть числа π на высоту и разность квадратов образующей и высоты вместо квадрата радиуса.
V=1/3 S_(осн.) h=(πr^2 h)/3=(πh(l^2-h^2))/3
Радиус сферы, которая может быть вписана в конус, напрямую зависит не только от высоты и образующей, но и от радиуса, поэтому его формула существенно услояжняется наличием радикала, полученного через теорему Пифагора для радиуса конуса. В то же время радиус описанной вокруг конуса сферы зависит только от образующей и высоты, представляя собой отношение квадрата образующей к удвоенной высоте. (рис.40.3, 40.4)
r_1=hr/(l+r)=(h√(l^2-h^2 ))/(l+√(l^2-h^2 ))
R=l^2/2h
Длина отрезка линии опушенной перпендикулярно плоскости основания из вершины конуса является его высотой. Найти не сложно. Для этого нужно знать величину конуса. Если конус велик и внутри его полость, то достаточно опустить из вершины нитку с грузом до основания и измерить длину нитки. Если конус мал и умещается в руках, то достаточно измерить боковую сторону и ширину основания. Половина основания — это один катет. Боковая сторона гипотенуза. А высотой окажется другой катет воображаемого прямоугольного треугольника. К сожалению тут нарисовать не где. Далее, зная значения катета и гипотенузы по теореме Пифагора находим другой катет — высоту конуса. Если конус не симметричный и вершина сдвинута относительно середины, то для расчетов нужно знать угол между плоскостью основания и боковой стороной в месте их измерения. Далее геометрия… Формулы есть в любом справочнике. автор вопроса выбрал этот ответ лучшим Ксарфакс 5 лет назад Высота конусаЭто перпендикуляр, который опущен из вершины конуса на основание. Чтобы найти высоту конуса можно воспользоваться несколькими способами. 1) Если известно, чему равен объём конуса, то высоту можно вычислить по формуле: V = 1/3 Sосн * h -> h = 3V / Sосн. При этом для нахождения площади основания (площади круга) нам нужно знать радиус. 2) Образующая конуса, высота и радиус основания образуют прямоугольный треугольник. Поэтому если известна образующая (гипотенуза) и радиус (катет), то высоту можно выразить с помощью теоремы Пифагора. a² = c² — b², a = √(c² — b²). a — высота, b — радиус, c — образующая. Например: Радиус основания = 15 см, длина образующей — 17 см. Высота конуса будет равна √(17² — 15²) = √64 = 8 см. -Irinka- 4 года назад Для того, чтобы найти высоту конуса, необходимо иметь для решения какие-то вводные. Допустим, что мы знаем длина образующей конуса, она равна 10 см. и диаметр его основания равный 12 см. Находим радиус конуса R=D/2= 6 см. Вот наш конус, чертим нужные нам линии. Используем теорему Пифагора, получаем h²=a²-R², где а — длина образующей конуса (10 см), h искомая высота. h² = 100 — 36 = 64 h = √64 = 8 сантиметров Alexgroovy 5 лет назад Для поиска высоты конуса нужны входные данные. В качестве таких данных выступает радиус (или диаметр основания) и длина образующей конуса. На рисунке длина образующей обозначена буквой l, а диаметр основания как d. Например, по условию задачи l = 100, d = 56. Решение задачи будет следующим: 88SkyWalker88 5 лет назад Начертим конус, проведем его высоту и основание: Нам известна величина l — это образующая. Она равна 16. Угол между основанием и образующий будет равняться 30 градусам. У нас получился прямоугольный треугольник, в котором образующая (l) — это гипотенуза, а высота (h), которую нам необходимо найти, это катет. Так как нам известен угол, мы можем найти его синус. sin 30° = ½ Известно, что синус — это отношение противолежащего катета к гипотенузе. Следовательно, можно составить такую формулу: sin 30° = h/l = ½ Из этой формулы мы выводим h, высоту конуса. Получается формула и решение: h = sin 30°*l = ½ * 16 = 8. Чосик более года назад Зависит от данных, которые мы получили изначально. Для того, чтобы узнать высоту, необходимо знать радиус и апофему. В таком случае мы получим прямоугольный треугольник, где высота и радиус играют роль катетов, а апофема — гипотенузы. Если же мы знает площадь основания и объем конуса, то высота равна h = 3V/S. владсандрович более года назад Высоту конуса можно найти разными формулами, тут все зависит от того, что вам известно. В частности если известны площадь его основания и объем самого конуса, то тогда все просто, так как данные значения надо подставить под формулу h = 3V/S и просто посчитать. JuliGor 9 лет назад Если известны объем и площадь конуса, то высоту легко найти, так как объем конуса равен одной трети площади основания умноженная на высоту конуса. Также высоту конуса можно найти по теореме Пифагора, но это по-моему гораздо сложнее) moreljuba 5 лет назад Высоту конуса мы можем выразить из формулы, по которой мы определяем объём конуса: Так вот высота конуса из данной формулы будет равна: Высота конуса = 3 * объём конуса / пи * радиус основания в квадрате. Знаете ответ? |
Определение конуса, его основания, вершины, оси, осевого сечения, высоты, образующих, боковой и полной поверхностей, угла при вершине осевого сечения. Определение равностороннего конуса. Формулы боковой и полной поверхностей конуса. Формула объёма конуса
Определение конуса, его основания, вершины, оси, осевого сечения, высоты, образующих, боковой и полной поверхностей, угла при вершине осевого сечения.
Определение равностороннего конуса.
РАВНОСТОРОННИЙ КОНУС — прямой круговой конус (см.), образующая которого равна диаметру основания конуса. Плоскость, проходящая через ось вращения (высоту) Равносторонний конус, пересекает его по равностороннему треугольнику.
Формулы боковой и полной поверхностей конуса.
Формула объёма конуса
Прочитав данную статью, вы узнаете, как найти высоту конуса. Приведенный в ней материал поможет глубже разобраться в вопросе, а формулы окажутся весьма полезными в решении задач. В тексте разобраны все необходимые базовые понятия и свойства, которые обязательно пригодятся на практике.
Фундаментальная теория
Перед тем, как найти высоту конуса, необходимо разобраться с теорией.
Конус — фигура, которая плавно сужается от плоского основания (часто, хотя и необязательно, кругового) до точки, называемой вершиной.
Конус формируется набором отрезков, лучей или прямых, соединяющих общую точку с основанием. Последнее может ограничиваться не только окружностью, но и эллипсом, параболой или гиперболой.
Ось — это прямая (если таковая имеется), вокруг которой фигура имеет круговую симметрию. Если угол между осью и основой составляет девяносто градусов, то конус принято называть прямым. Именно такая вариация чаще всего встречается в задачах.
Если в основе лежит многоугольник, то объект является пирамидой.
Отрезок, соединяющий вершину и линию, ограничивающую основание, называют образующей.
Как найти высоту конуса
Подойдем к вопросу с другой стороны. Для начала используем объем конуса. Чтобы его найти нужно вычислить произведение высоты с третьей частью площади.
V = 1/3 × S × h.
Очевидно, что из этого можно получить формулу высоты конуса. Достаточно лишь сделать правильные алгебраические преобразования. Разделим обе части равенства на S и умножим на тройку. Получим:
h = 3 × V × 1/S.
Теперь вы знаете, как найти высоту конуса. Однако для решения задач вам могут понадобиться и другие знания.
Важные формулы и свойства
Приведенный ниже материал однозначно поможет вам в решении конкретных задач.
Центр массы тела находится на четвертой части оси, начиная от основы.
В проективной геометрии цилиндр — это просто конус, вершина которого находится на бесконечности.
Следующие свойства работают только для прямого кругового конуса.
- Даны радиус основания r и высота h, тогда формула для площади будет выглядеть так: П × r2. Соответственно изменится и окончательное уравнение. V = 1/3 × П × r2 × h.
- Вычислить площадь боковой поверхности можно перемножив число «пи», радиус и длину образующей. S = П × r × l.
- Пересечение произвольной плоскости с фигурой является одним из конических сечений.
Часто встречаются задачи, где необходимо использовать формулу для объема усеченного конуса. Она выводится из обычной и имеет такой вид:
V = 1/3 × П × h × (R2 + Rr + r2), где: r -радиус нижнего основания, R — верхнего.
Всего этого будет вполне достаточно для решения разнообразнейших примеров. Разве что могут понадобиться знания, не связанные с этой темой, например, свойства углов, теорема Пифагора и другое.
7
1 ответ:
0
0
Треугольник равносторонний тк стороны = 8 см
<span>SA=8см
</span>S=<span>8*8*√3/2=32√3 см²
</span><span>h=√8²-(8/2)² =√64-16=4√3
</span>
<span>Ответ: площадь осевого сечения=32√3 см²;высота :4</span>√3
Читайте также
|Было | Отлили | Осталось
Банка| х | -2л | х-2
Бидон| 2х | -3л | 2х-3
В бидоне в 4.5 раза больше чем в банке
Значит (х-2)*4.5=2х-3
4.5х-9=2х-3
4.5х-2х=-3+9
2.5х=6
х=6/2.5
х=2.4(л) было в банке
2.4*2=4.8(л)было в бидоне
2.4+4.8=7.2(л)было и банке и в бидоне изначально
1) 10+36=46(тетр.)- у Миши.
2) 46+36=82(тетр.)- Будет у Миши тетрадей , после того как ему Петя даст 36 своих тетрадей.
Ответ: 82 тетради.
не помогу бо незнаю 1123312312313
Решение:
1) 0, 5 ч = 0,5·60 мин = 30 мин;
2) 1,2 ч = 1,2·60 мин = 72 мин;
3) 2,1 ч = 2,1·60 мин = 126 мин;
4) 4,6 ч = 4,6·60 мин = 276 мин
Ответ: 30 минут;72 минуты; 126 минут; 276 минут.
1/15,2/15, 3/15, 4/15, 6/15, 7/15, 11/15, <span>12/15</span>