Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
-
Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
-
Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
-
Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Уравнение — определение и вычисление с примерами решения
Содержание:
Уравнения
Уравнения-следствия и равносильные преобразования уравнений
1. Понятие уравнения и его корней
Определение:
Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной
Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны
Пример:
— линейное уравнение;
— квадратное уравнение;
— иррациональное уравнение (содержит переменную под знаком корня)
Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство.
Решить уравнение — значит найти все его корни или доказать, что их нет
— корень уравнения
, так как при
получаем верное равенство:
, то есть
2. Область допустимых значений (ОДЗ)
Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций и
, стоящих в левой и правой частях уравнения
Для уравнения ОДЗ:
, то есть
, так как область определения функции
определяется условием:
, а область определения функции
— множество всех действительных чисел
3. Уравнения-следствия
Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения.
Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.
При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения.
Пример:
Решение:
► Возведем обе части уравнения в квадрат:
Проверка, — корень (см. выше);
— посторонний корень (при
получаем неверное равенство
).
4. Равносильные уравнения
Определение:
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни.
То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы)
Простейшие теоремы
- Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве)
- Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения)
5. Схема поиска плана решения уравнений
— исходное уравнение;
— уравнение, полученное в результате преобразования исходного;
— символические изображения направления выполненных преобразований
Применение свойств функций к решению уравнений рассмотрено в пункте 3.2.
Объяснение и обоснование:
Понятие уравнения и его корней
Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной записывают так:
Часто уравнения определяют короче — как равенство с переменной.
Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.
Например, уравнение имеет единственный корень
,
а уравнение не имеет корней, поскольку значение
не может быть отрицательным числом.
Область допустимых значений (ОДЗ) уравнения
Если задано уравнение , то общая область определения для функций
и
называется областью допустимых значений этого уравнения. (Иногда используются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения
областью допустимых значений являются все действительные числа. Это можно записать, например, так:
, поскольку функции
и
имеют области определения
.
Понятно, что каждый корень данного уравнения принадлежит как области определения функции , так и области определения функции
(иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.
Например, в уравнении функция
определена при всех действительных значениях
, а функция
только при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Следовательно, ОДЗ этого уравнения задается системой
из которой получаем систему
не имеющую решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.
Заметим, что нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения.
Методы решения уравнений
Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5-6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; в курсе алгебры 7-9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.
Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).
В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения.
Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением-следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).
В следующем пункте будет также показано применение свойств функций к решению уравнений определенного вида.
Уравнения-следствия
Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия:
в том случае, когда каждый корень первого уравнения является корнем второго, второе уравнение называется следствием первого.
Это определение позволяет обосновать такой ориентир: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство.
Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого.
Применим приведенный ориентир к уравнению (пока что не используя известное условие равенства дроби нулю).
Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение-следствие . Но тогда верно, что
. Последнее уравнение имеет два корня:
и
. Подставляя их в заданное уравнение, видим, что только корень
удовлетворяет исходному уравнению. Почему это случилось?
Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 9.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один ориентир: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.
Схема применения этих ориентиров дана в таблице 8. В пункте 3 этой таблицы приведено решение уравнения
(1)
Для решения этого уравнения с помощью уравнений-следствий достаточно данное уравнение рассмотреть как верное числовое равенство и учесть, что в случае когда два числа равны, то и их квадраты также будут равны:
(2)
То есть мы гарантируем, что если равенство (1) верно, то и равенство (2) также будет верным, а это и означает (как было показано выше), что уравнение (2) является следствием уравнения (1). Если мы хотя бы один раз использовали уравнения-следствия (а не равносильные преобразования), то можем получить посторонние корни, и тогда в решение обязательно входит проверка полученных корней подстановкой их в заданное уравнение.
Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком , но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями-следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней.
Равносильные уравнения
С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом ).
В курсе алгебры и начал анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве.
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни, то есть каждый корень первого уравнения является корнем второго и, наоборот, каждый корень второго уравнения является корнем первого.
Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения и
— равносильные, поскольку оба имеют одинаковый корень
и других корней не имеют. Таким образом, каждое из них имеет те же решения, что и второе. При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения:
(3)
(4)
то, как было показано выше, уравнение (3) имеет единственный корень , а уравнение (4) — два корня:
и
. Таким образом, на множестве
всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень , которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равносильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень
и уравнение (4) также имеет единственный положительный корень
. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.
Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее
все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы).
Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.
Например, для уравнения задается неравенством
. Когда мы переходим к уравнению
, то для всех его корней это уравнение является верным равенством. Тогда выражение
, стоящее в правой части этого равенства, всегда неотрицательно (
), таким образом, и равное ему выражение
также будет неотрицательным:
. Но это и означает, что ОДЗ данного уравнения (
) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения
к уравнению
ОДЗ заданного уравнения можно не записывать в решение.
Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий. Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый ориентир для выполнения равносильных преобразований уравнений. По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и, наоборот, каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму.
Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым ориентиром для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 8.)
Например, чтобы решить с помощью равносильных преобразований уравнение достаточно учесть его ОДЗ:
и условие равенства дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.
Запись решения в этом случае может быть такой:
. ОДЗ:
. Тогда
. Отсюда
(удовлетворяет условию ОДЗ) или
(не удовлетворяет условию ОДЗ).
Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса.
Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).
Теорема 2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получаем уравнение, равносильное заданному (на ОДЗ заданного).
Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.
Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок , но его использование при записи решений не является обязательным. Например, запись решения последнего из рассмотренных уравнений может быть такой.
Пример №423
Решите уравнение .
Решение:
► ОДЗ: и
На этой ОДЗ данное уравнение равносильно уравнениям:
то есть
Учтем ОДЗ. При
Таким образом, — корень.
Ответ:
Используем равносильные преобразования для решения данного уравнения. Для этого необходимо учесть ОДЗ, поэтому зафиксируем ее ограничения в начале решения.
Укажем, что в уравнениях ограничения ОДЗ можно только зафиксировать, но не решать, а в конце проверить, выполняются ли эти ограничения для найденных корней.
При переносе члена данного уравнения из одной части уравнения в другую с противоположным знаком получаем уравнение (1), равносильное заданному.
Приводя к общему знаменателю, раскрывая скобки и приводя подобные члены, снова получаем верное равенство и можем обосновать, что при выполнении обратных действий равенство также не нарушается, таким образом, полученные уравнения (1)-(3) равносильны заданному (на его ОДЗ).
Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю. Но второе условие уже учтено в ограничениях ОДЗ, таким образом, получаем уравнение (4), равносильное заданному уравнению на его ОДЗ. Поскольку все преобразования были равносильными только с учетом ОДЗ, то мы должны проверить, удовлетворяет ли полученное число ограничениям ОДЗ.
Причины появления посторонних корней и потери корней при решении уравнений
Наиболее типичные случаи появления посторонних корней и потери корней приведены в таблице 9. Там же указано, как в каждом из этих случаев получить правильное (или полное) решение.
Применение свойств функций к решению уравнений
1. Конечная ОДЗ
Если область допустимых значений (ОДЗ) уравнения (неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения
Пример:
— корень (
),
— не корень (
).
2. Оценка левой и правой частей уравнения
Если надо решить уравнение вида и выяснилось, что
то равенство между левой и правой частями возможно тогда и только тогда, когда
и
одновременно равны
Пример:
►
(так как
).
Итак, заданное уравнение равносильно системе
Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю
Пример:
►
Итак, заданное уравнение равносильно системе
Из первого уравнения получаем , что удовлетворяет всей системе
3. Использование возрастания и убывания функций
Схема решения уравнения
1. Подбираем один или несколько корней уравнения.
2. Доказываем, что других корней это уравнение не имеет (используя теоремы о корнях уравнения или оценку левой и правой частей уравнения)
Теоремы о корнях уравнения
Если в уравнении функция
возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.
Пример:
Уравнение имеет единственный корень
, то есть
), поскольку функция
возрастает на всей области определения
Если в уравнении функция
возрастает на некотором промежутке, а функция
убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.
Пример:
Уравнение имеет единственный корень
(
то есть
), поскольку
возрастает на всей области определения
, a
убывает (на множестве
, а следовательно, и при
)
Объяснение и обоснование:
Конечная ОДЗ
Напомним, что в случае, когда дано уравнение , общая область определения для функций
называется областью допустимых значений этого уравнения. Понятно, что каждый корень заданного уравнения принадлежит как области определения функции
, так и области определения функции
. Таким образом, каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях за счет анализа ОДЗ получить решение уравнения. Например, если дано уравнение
, то его ОДЗ можно записать с помощью системы
. Решая эту систему, получаем
то есть
. Таким образом, ОДЗ данного уравнения состоит только из одного значения
. Но если только для одного числа необходимо выяснить, является ли оно корнем данного уравнения, то для этого достаточно подставить это значение в уравнение. В результате получаем верное числовое равенство (
). Следовательно,
— корень данного уравнения. Других корней у этого уравнения быть не может, поскольку все корни уравнения находятся в его ОДЗ, а там нет других значений, кроме
.
Рассмотренный пример позволяет выделить ориентир для решения аналогичных уравнений:
если ОДЗ уравнения (а также неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.
Замечание. В том случае, когда ОДЗ — пустое множество (не содержит ни одного числа), мы можем сразу дать ответ, что данное уравнение не имеет корней.
Например, если необходимо решить уравнение , то его ОДЗ задается системой
то есть системой
которая не имеет решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.
Оценка левой и правой частей уравнения
Некоторые уравнения можно решить с помощью оценки левой и правой частей уравнения.
Пусть дано уравнение , и нам удалось выяснить, что для всех допустимых значений
значение
, а значение
.
Рассмотрим два случая:
Если , то равенство
не может выполняться, потому что
, то есть при
данное уравнение корней не имеет. Остается только случай
, но, учитывая необходимость выполнения равенства
, имеем, что тогда и
. Таким образом, мы обосновали, что выполнение равенства
(при условии
и
) гарантирует одновременное выполнение равенств
и
(и наоборот, если одновременно выполняются равенства
и
, то выполняется и равенство
. Как было показано в п. 3.1, это и означает, что уравнение
равносильно системе
Коротко это можно записать так:
Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 10.
Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения , в котором все функции-слагаемые неотрицательны
.
Если предположить, что , то сумма всех функций, стоящих в левой части этого уравнения, может равняться нулю только тогда, когда сумма
будет отрицательной. Но это невозможно, поскольку по условию все функции неотрицательные. Таким образом, при
данное уравнение не имеет корней. Эти же рассуждения можно повторить для любой другой функции-слагаемого. Остается единственная возможность — все функции-слагаемые равны нулю (очевидно, что в этом случае равенство
обязательно будет выполняться). Таким образом, сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.
Например, чтобы решить уравнение , достаточно перенести все члены в одну сторону, записать уравнение в виде
и учесть, что функции
неотрицательные. Таким образом, данное уравнение равносильно системе
Из второго уравнения получаем , что удовлетворяет и всей системе. Следовательно, данное уравнение имеет единственный корень
.
Использование возрастания и убывания функций к решению уравнений
Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения.
Полезно помнить специальные теоремы о корнях уравнения.
Теорема 1. Если в уравнении функция
возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.
Графически утверждение теоремы проиллюстрировано на рисунке 52. Прямая пересекает график возрастающей на промежутке
функции
только в одной точке. Это и означает, что уравнение
не может иметь больше одного корня на промежутке
. Докажем это утверждение аналитически.
• Если на промежутке уравнение имеет корень
, то
. Других корней быть не может, поскольку для возрастающей функции
при
получаем неравенство
, а при
— неравенство
. Таким образом, при
. Аналогично и для убывающей функции при
получаем
.
Теорема 2. Если в уравнении функция возрастает на некотором промежутке, а функция убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.
Графически утверждение теоремы проиллюстрировано на рисунке 53.
• Если на промежутке уравнение имеет корень , то . Других корней быть не может, поскольку, например, для возрастающей функции и убывающей функции при имеем , a , таким образом, . Аналогично и при .
Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет.
Например, чтобы решить уравнение , достаточно заметить, что функция является возрастающей на всей числовой прямой (как сумма двух возрастающих функций) и что — корень этого уравнения (). Таким образом, данное уравнение имеет единственный корень .
Корень получен подбором. Как правило, подбор начинают с целых значений: которые подставляются в данное уравнение.
Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно.
Пример:
Решим с помощью теоремы 2 уравнение .
► Сначала следует учесть его ОДЗ: и вспомнить, что функция на всей области определения не является ни убывающей, ни возрастающей (п. 2.2), но она убывает на каждом из промежутков и . Поэтому рассмотрим каждый из этих промежутков отдельно.
1) При данное уравнение имеет корень . Функция возрастает при (как было показано выше, она возрастает на множестве ), а функция убывает на промежутке . Таким образом, данное уравнение при имеет единственный корень .
2) При данное уравнение имеет корень . Функция возрастает при , а функция убывает на этом промежутке. Поэтому данное уравнение при имеет единственный корень . В ответ следует записать все найденные корни (хотя на каждом из промежутков корень единственный, но всего корней — два). Итак, данное уравнение имеет только два корня: 1 и -1.
Примеры решения задач:
Пример №424
Решите уравнение .
Решение:
► ОДЗ: . На ОДЗ . Тогда функция (как сумма двух взаимно обратных положительных чисел), а функция .
Таким образом, данное уравнение равносильно системе . Из второго уравнения системы получаем , что удовлетворяет и первому уравнению. Таким образом, система (а значит, и данное уравнение) имеет единственное решение .
Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти.
Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ , то в левой части уравнения стоит сумма двух взаимно обратных положительных чисел, которая всегда больше или равна 2. В правой части из 2 вычитается неотрицательное число . Таким образом, при всех значениях получаем значение, меньшее или равное 2. Равенство между левой и правой частями возможно тогда и только тогда, когда обе части равны 2.
Пример №425
Решите систему уравнений
Решение:
► ОДЗ: Рассмотрим функцию . На своей области определения эта функция является возрастающей (как сумма двух возрастающих функций). Тогда первое уравнение заданной системы, которое имеет вид , равносильно уравнению . Таким образом, на ОДЗ заданная система равносильна системе
Подставляя во второе уравнение системы, имеем , . Учитывая, что на ОДЗ , получаем . Тогда .
Иногда свойства функций удается применить при решении систем уравнений. Если заметить, что в левой и правой частях первого уравнения заданной системы стоят значения одной и той же функции, которая является возрастающей (как сумма двух возрастающих функций), то равенство для возрастающей функции возможно тогда и только тогда, когда , поскольку возрастающая функция может принимать одинаковые значения только при одном значении аргумента. (Заметим, что такое же свойство будет иметь место и для убывающей функции.)
Замечание. Утверждение, обоснованное в комментарии к задаче 2, может быть использовано при решении аналогичных задач. Коротко его можно сформулировать так: если функция является возрастающей (или убывающей) на определенном множестве, то на этом множестве
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Метод математической индукции
- Система координат в пространстве
- Иррациональные числа
- Действительные числа
- Интеграл и его применение
- Первообразная и интегра
- Уравнения и неравенства
- Уравнения и неравенства содержащие знак модуля
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Найти корень уравнения? Это просто!
В математике встречаются разнообразные уравнения. Их всегда нужно решать, то есть искать все числа, которые сделают его верным равенством. Пути поиска решений определяются первоначальным видом уравнения. От него же будет зависеть и количество верных значений переменной, которые обозначаются, как корень уравнения. Это число может варьироваться от нуля до бесконечности.
Что подразумевается под уравнением и его корнем?
Из названия понятно, что оно приравнивает две величины, которые могут быть представлены числовыми или буквенными выражениями. Кроме того, они содержат еще неизвестные величины. Самое простое уравнение имеет только одну.
Видов уравнений большое количество, но понятие корня для них всегда одно и то же. Корень уравнения — это такое значение неизвестного числа, при котором уравнение принимает становится верным равенством. Бывают ситуации, когда таких чисел несколько, тогда неизвестная называется переменной.
В алгебре при решении уравнений можно прийти к такой ситуации, что корней не будет совсем. Тогда говорят о том, что оно неразрешимо. А в ответе такого уравнения нужно записать, что решений нет.
Но иногда бывает и противоположное. То есть в процессе многочисленных преобразований появляются посторонние корни. Они не дадут верного равенства при подстановке. Поэтому числа всегда нужно проверять, чтобы избежать ситуации с лишними корнями в ответе. Иначе уравнение не будет считаться решенным.
О линейном уравнении
Оно всегда может быть преобразовано в запись следующего вида: а * х + в = 0. В нем «а» всегда не равно нулю. Чтобы понять сколько корней имеет уравнение, его потребуется решить в общем виде.
- перенести в правую часть равенства слагаемое «в», заменив его знак на противоположный;
- разделить обе части получившегося равенства на коэффициент «а».
х = -в/а.
Из него ясно, что ответом будет одно число. То есть всего один корень.
Квадратное уравнение
Его общий вид: а * х 2 + в * х + с = 0. Здесь коэффициенты являются любыми числами, кроме первого, «а», которое не может быть равным нулю. Ведь тогда оно автоматически превратится в линейное. Ответ на вопрос, сколько корней имеет уравнение, уже не будет столь однозначным, как это было в предыдущем случае.
Все будет зависеть от значения дискриминанта. Он вычисляется по формуле Д = в 2 — 4 а * с. После расчетов «Д» может получиться больше, меньше или равным нулю. В первом случае корней уравнения будет два, во втором ответом будет «корней нет», а третья ситуация даст только одно значение неизвестной.
Формулы, которые используют для нахождения корней квадратного уравнения, и содержащие дискриминант
В общем случае, когда «Д» положительное число, не равное нулю, нужно использовать такую формулу:
При равенстве «Д» нулю корень уравнения — это единственное число. Просто потому что квадратный корень из нуля равен нулю. А значит, прибавлять и вычитать нужно будет ноль. От этого число не изменится. Поэтому формулу корня уравнения можно записать без упоминания «Д»:
х = (-в) / (2 * а).
При отрицательном значении дискриминанта извлечь из него квадратный корень не представляется возможным. Поэтому корней у такого уравнения не будет.
Замечание. Это верно для курса школьной программы, в которой не изучаются комплексные числа. Когда они вводятся, то получается, что и в этой ситуации ответов будет два.
Формулы для расчета корней квадратного уравнения, не использующие дискриминант
Речь идет о теореме Виета. Она действительна в случае, когда квадратное уравнение записывается в несколько другом виде:
х 2 + в * х + с = 0.
Тогда формула корней квадратного уравнения сводится к тому, чтобы выполнить решение двух линейных:
Оно решается за счет того, что из первого выводится выражение для одного из корней. И это значение нужно подставить во второе. Так будет найден второй корень, а потом первый.
К этому варианту всегда можно прийти от общего вида квадратного уравнения.
Достаточно только разделить все коэффициенты на «а».
Как быть, если нужно узнать наименьшее значение корня?
Решать уравнение и находить все возможные числа, которые подойдут для ответа. А потом выбрать самое малое. Это и будет наименьший корень уравнения.
Чаще всего такие вопросы встречаются в заданиях, которые имеют степень большую, чем 2, или содержат тригонометрические функции. Примером, когда нужно найти наименьший корень, может служить такое равенство:
2 х 5 + 2 х 4 — 3 х 3 — 3 х 2 + х + 1 = 0.
Чтобы найти каждое значение, которое можно назвать «корень уравнения», это равенство нужно преобразовать. Первое действие: сгруппировать его члены попарно: первый со вторым и так далее. Потом из каждой пары вынести общий множитель.
В каждой скобке останется (х + 1). Общим множителем в первой из пар будет 2 х 4 , во второй 3 х 2 . Теперь снова нужно выполнить вынесение общего множителя, которым будет являться одинаковая скобка.
После множителя (х + 1) будет стоять (2 х 4 — 3 х 2 + 1). Произведение двух множителей равняется нулю, только если один из них принимает значение, равное нулю.
Первая скобка равна нулю при х = -1. Это будет одним из корней уравнения.
Другие будут получены из уравнения, образованного второй скобкой, приравненной к нулю. Оно биквадратное. Для его решения нужно ввести обозначение: х 2 = у. Тогда уравнение существенно преобразится и примет привычный вид квадратного уравнения.
Его дискриминант равен Д = 1. Он больше нуля, значит корней будет два. Первый корень оказывается равным 1, второй будет 0,5. Но это значения для «у».
Нужно вернуться к введенному обозначению. х1,2 = ± 1, х3,4 = ± √0,5. Все корни уравнения: -1; 1; -√0,5; √0,5. Наименьший из них — -1. Это ответ.
В качестве заключения
Напоминание: все уравнения нужно проверять на то, подходит ли корень. Может быть, он посторонний? Стоит выполнить проверку предложенного примера.
Если подставить в изначально данное уравнение вместо «х» единицу, то получается, что 0 = 0. Этот корень верный.
Если х = -1, то получается такой же результат. Корень тоже подходящий.
Аналогично, при значениях «х» равных -√0,5 и √0,5 опять выходит верное равенство. Все корни подходят.
Этот пример не дал посторонних корней. Такое бывает не всегда. Вполне могло оказаться, что самое маленькое значение не подходило бы при проверке. Тогда пришлось бы выбирать из оставшихся.
Вывод: надо помнить о проверке и внимательно подходить к решению.
http://www.evkova.org/uravnenie-opredelenie-i-vyichislenie-s-primerami-resheniya
http://www.syl.ru/article/199384/new_nayti-koren-uravneniya-eto-prosto
10.5. НАХОЖДЕНИЕ РАЦИОНАЛЬНЫХ КОРНЕЙ МНОГОЧЛЕНА С ЦЕЛЫМИ КОЭФФИЦИЕНТАМИ
Теорема 4. Если многочлен с целыми коэффициентами f (x) = anxn + an-1xn-1 + … + a1x+a0 имеет рациональный корень x=p/q (q ≠ 0, дробь p/q несократимая), то р является делителем свободного члена (a0), а q — делителем коэффициента при старшем члене аn.
Если p/q является корнем многочлена f (х), то f(p/q) = 0. Подставляем p/q вместо х в f(x) и из последнего равенства имеем
an * pn/qn + an-1 * pn-1/qn-1 + … + a1 * p/q + a0 = 0. |
(1) |
Умножим обе части равенства (1) на (q ≠ 0). Получаем
аnрn + an-1pn-1q + … + a1pqn-1 + a0qn = 0. |
(2) |
В равенстве (2) все слагаемые, кроме последнего, делятся на р. Поэтому
a0qn = -(аnрn + an-1pn-1q + … + a1pqn-1) делится на р.
Но когда мы записываем рациональное число в виде p/q, то эта дробь считается несократимой, то есть р и q не имеют общих делителей. Произведение a0qn может делиться на р (если р и q — взаимно простые числа) только тогда, когда a0 делится на р. Таким образом, р — делитель свободного члена a0.
Аналогично все слагаемые равенства (2), кроме первого, делятся на q. Тогда
anpn = -(an-1pn-1q + … + a1pq-1 + a0qn) делится на q. Поскольку р и q — взаимно простые числа, то an делится на q, следовательно, q — делитель коэффициента при старшем члене.
Отметим два следствия из этой теоремы. Если взять q = 1, то корнем многочлена будет целое число р — делитель a0. Таким образом, имеет место:
Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.
Если в заданном многочлене f (х) коэффициент аn = 1, то делителями аn могут быть только числа ±1, то есть q =±1, и имеет место:
Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.
Задача 1 Найдите рациональные корни многочлена 2х3 – х2 + 12х – 6.
Пусть несократимая дробь p/q является корнем многочлена. Тогда р необходимо искать среди делителей свободного члена, то есть среди чисел ±1, ±2, ±3, ±6, а q — среди делителей старшего коэффициента: ±1, ±2.
Таким образом, рациональные корни многочлена необходимо искать среди чисел ±1/2, ±1, +±3/2, ±2, ±3, ±6. Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера. При x = 1/2 имеем следующую таблицу.
Кроме того, по схеме Горнера можно записать, что
2х3 – х2 + 12х – 6 = (x – 1/2) (2x2 + 12).
Многочлен 2х2 + 12 не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень x =1/2.
Задача 2 Разложите многочлен Р (х) = 2х4 + 3х3 – 2х2 – х – 2 на множители.
Ищем целые корни многочлена среди делителей свободного члена: ±1, ±2. Подходит 1. Делим Р (х) на х – 1 с помощью схемы Горнера.
Тогда Р (х) = (х – 1)(2х3 + 5х2 + 3х + 2). Ищем целые корни кубического многочлена 2х3 + 5х2 + 3х + 2 среди делителей его свободного члена: ±1, ±2. Подходит (–2). Делим на х + 2
Имеем Р (х) = (х – 1)(х + 2)(2х2 + х +1).
Квадратный трехчлен 2х2 + х +1 не имеет действительных корней и на линейные множители не раскладывается.
Ответ: Р (х) = (х – 1)(х + 2)(2х2 + х +1).
Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен х2 + х + 1 не имеет действительных корней). Таким образом, многочлен n-й степени не всегда можно разложить на линейные множители. В курсах высшей алгебры доказывается, что многочлен нечетной степени всегда можно разложить на линейные и квадратные множители, а многочлен четной степени представить в виде произведения квадратных трехчленов.
Например, многочлен четвертой степени раскладывается в произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.
Задача 3 Разложите на множители многочлен х4 + х3 + 3х2 + х + 6.
Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.
Попытаемся разложить этот многочлен в произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:
х4 + х3 + 3х2 + х + 6 = (х2 + ах + b)(х2 + сх + d), |
(3) |
где а, b, с и d — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях х у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:
х4 + х3 + 3х2 + х + 6 = x4 + cx3 + dx2 +
+ ax3 + acx2 + adx +
+ bx2 + bcx + bd.
Получаем систему
(4) |
Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что b и d могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.
Коэффициенты b и d в равенстве (3) равноправны, поэтому мы не рассматриваем случаи b = 6 и d = 1 или b = –6 и d = –1 и т. д.
Для каждой пары значений b и d из третьего равенства системы (4) найдем ас = 3 – (b + d), а из второго равенства имеем а + с = 1.
Зная а + с и ас, по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения а, b, с, d подставим в четвертое равенство системы (4) bс + ad = 1, чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:
Как видим, системе (4) удовлетворяет набор целых чисел а = –1, b = 2, с = 2, d = 3. Тогда равенство (3) имеет вид
x4 + х3 + 3х2 + х + 6 = (х2 – х + 2)(х2 + 2х + 3). |
(5) |
Поскольку квадратные трехчлены х2 – х + 2 и х2 + 2х + 3 не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.
Упражнения
- Найдите целые корни многочлена:
1) х3 – 5х + 4;
2) 2x3 + x2 – 13x + 6;
3) 5х3 + 18х2 – 10х – 8;
4) 4х4 – 11х2 + 9х – 2.
- Найдите рациональные корни уравнения:
1) х3 – 3х2 + 2 = 0;
2) 2х3 – 5х2 – х + 1 = 0;
3) 3х4 + 5х3 – х2 – 5х – 2 = 0;
4) 3х4 – 8х3 – 2х2 + 7х – 2 = 0.
- Разложите многочлен на множители:
1) 2х3 – х2 – 5х – 2;
2) х3 + 9х2 + 23х +15;
3) х4 – 2х3 + 2х – 1;
4) х4 – 2х3 – 24х2 + 50х – 25.
- Найдите действительные корни уравнения:
1) х3 + х2 – 4х + 2 = 0;
2) х3 – 7х – 6 = 0;
3) 2х4 – 5х3 + 5х2 – 2 = 0;
4) 2х3 – 5х2 + 1 = 0.
5*. Разложите многочлен на множители методом неопределенных коэффициентов:
1) х4 + х3 – 5х2 + 13х – 6;
2) х4 – 4х3 – 20х2 + 13х – 2.
6*. Разложите многочлен на множители, заранее записав его с помощью метода неопределенных коэффициентов в виде (х2 + bх + с)2 – (mх + n)2: :
1) х4+ 4х – 1;
2) х4 – 4х3 – 1;
3) х4 + 4а3х – а4.
План урока:
Целое уравнение и его степень
Решение уравнений методом подбора корня
Решение уравнений с помощью разложения многочлена на множители
Графический метод решения уравнений
Решение дробно-рациональных уравнений
Целое уравнение и его степень
Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:
х – 5;
(а3 + 6а)(а – 5а2);
(n3 + 7)/5 (в знаменателе находится только число, без переменной);
А вот примеры нецелых выражений:
Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.
Введем понятие целого уравнения.
Приведем примеры целых ур-ний:
0,75х7 + 0,53х6 – 45х = 18
Напомним, что в математике существует понятие равносильных уравнений.
Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).
Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.
Пример. Преобразуйте целое ур-ние
так, чтобы слева стоял многочлен, а справа – ноль.
Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:
Теперь раскроем скобки:
4(5х3 – 3х4 + 45х – 27х2) – 40 = 10х2 + 5х + 35
20х3 – 12х4 + 180х – 108х2 – 40 = 10х2 + 5х + 35
Осталось перенести все слагаемые влево и привести подобные слагаемые:
20х3 – 12х4 + 180х – 108х2 – 40 – 10х2 – 5х – 35 = 0
– 12х4 + 20х3 – 118х2 + 175х – 75 = 0
Получили ур-ние в той форме, которую и надо было найти по условию.
Ответ:– 12х4 + 20х3 – 118х2 + 175х – 75 = 0
В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.
Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике
Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.
Пример. Определите степень ур-ния
(х3 – 5)(2х + 7) = 2х4 + 9
Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:
(х3 – 5)(2х + 7) = 2х4 + 9
2х4 + 7х3 – 10х – 35 = 2х4 + 9
Перенесем все слагаемые влево и приведем подобные слагаемые:
2х4 + 7х3 – 10х – 35 – 2х4 – 9 = 0
7х3 – 10х – 44 = 0
Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень
Ответ: 3
Приведем примеры ур-ний первой степени:
5х + 8 = 0
9z– 6 = 0
5,4568у + 0,0002145 = 0
Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.
Приведем примеры ур-ний второй степени:
6t2 + 98t – 52 = 0
54у + 23у = 0
12x2– 65 = 0
Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу
Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:
2х3 + 4х2 – 19х + 17 = 0
у3 – 5у + 7 = 0
Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:
5х4 + 6х3 – 2х2 – 10х + 1 = 0
Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.
Отметим, что если степень целого ур-ния равна n, то у него не более n корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.
Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:
(х – k1)(х – k2)(х – k3)…(х – kn) = 0
Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния
(х – k1)(х – k2)(х – k3)…(х – kn) = 0
надо каждую скобку приравнять к нулю:
х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0
Перенесем второе слагаемое вправо в каждом равенстве и получим:
х = k1 или х = k2 или х = k3 или…х = kn
Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.
Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.
Запишем целое ур-ние, имеющее требуемые корни:
(х – 1)(х – 2)(х – 3)(х – 4) = 0
Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:
(х2 – 3х + 2)(х – 3)(х – 4) = 0
(х3 – 6х2 + 11х – 6)(х – 4) = 0
х4 – 10х3 + 35х2 – 50х +24 = 0
Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.
Ответ: х4 – 10х3 + 35х2 – 50х +24 = 0
Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.
Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:
(х – k1)(х – k2)(х – k3)…(х – kn)(х – kn+1) = 0
Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.
Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0
Этот факт будет использован далее при решении ур-ний.
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х3 – 2х2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1)3 – 2(– 1)2 – (– 1) + 2 = 0
–1 – 2 + 1 + 2 = 0
0 = 0
При х = 1 получаем:
13 – 2•12 – 1 + 2 = 0
1 – 2 – 1 + 2 = 0
0 = 0
Наконец, рассмотрим случай, когда х = 2
23 – 2•22 – 2 + 2 = 0
8 – 8 – 2 + 2 = 0
0 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
а0xn + a1xn–1 + … + аn–1х + аn = 0
Числа а0, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х4 – 7х3 + 9х2 – х + 12 = 0
коэффициенты равны
а0 = 5
а1 = – 7
а2 = 9
а3 = – 1
а4 = + 12
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
х3 + 2х – 15 = 0
нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи
х3 + 0х2 + 2х – 15 = 0
где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
а0xn + a1xn–1 + … + аn–1х + аn = 0
Тогда можно подставить туда число m и получить верное равенство:
а0mn + a1mn–1 + … + аn–1m + аn = 0
Поделим обе его части на m и получим
а0mn–1 + a1mn–2 + … + аn–1 + аn/m = 0
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0mn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х4 – х3 – 9х2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Ответ: 1; 2; (– 2).
Пример. Решите ур-ние
0,5х3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х3 + 0,5х + 5 = 0
(0,5х3 + 0,5х + 5)•2 = 0•2
х3 + х + 10 = 0
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ответ: – 2
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
а0xn + a1xn–1 + … + аn–1х + аn = 0
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
а01n + a11n–1 + … + аn–11 + аn = 0
а0 + a1 + … + аn–1 + аn = 0
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Ответ: 1.
Решение уравнений с помощью разложения многочлена на множители
Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.
Пример. Решите ур-ние
х4 – 16 = 0
Решение. Степень х4 можно представить как (х2)2, а 16 – как 42. Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:
х4 – 16 = 0
(х2 – 4)(х2 + 4) = 0
Приравняем каждую скобку к нулю и получим два квадратных ур-ния:
х2 – 4 = 0 или х2 + 4 = 0
х2 = 4 или х2 = – 4
Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.
Ответ: 2 и (– 2).
Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние
100х3 – 210х2 + 134х – 24 = 0
Можно заметить, сумма всех коэффициентов ур-ния равна нулю:
100 – 210 + 134 – 24 = 0
Следовательно, первый корень – это 1.
Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние
(х – k1)(х – k2)(х – k3) = 0
Мы нашли, что первый корень k1 = 1, то есть
(х – 1)(х – k2)(х – k3) = 0
Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа k2 и k3. Очевидно, что корнями ур-ния
(х – 1)•P1(x) = 0
Будут числа 1, k2 и k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем
(х – 1)•P1(x) = 100х3 – 210х2 + 134х – 24
Поделим обе части на (х – 1):
Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:
Смотрим на первое слагаемое делимого. Это 100х3. На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х3? Это 100х2. Действительно, (х – 1)100х2 = 100х3 – 100х2. Запишем слагаемое 100х2 в результат деления, а результат его умножения на делитель, то есть 100х3 – 100х2, вычтем из делимого:
Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х3, естественно, сократятся:
(100х3 – 210х2) – (100х3 – 100х2) = 100х3 – 210х2 – 100х3 + 100х2 = – 110х2
Далее снесем слагаемое 134х вниз:
На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х2). Очевидно, на (– 110х):
(х – 1)(– 110х2) = –110х2 + 110х
Запишем в поле «ответа» слагаемое (– 110х2), а под делимый многочлен – результат его умножения на (х – 1):
При вычитании из (–110х2 + 134х) полинома (–110х2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:
Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:
В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х3 – 210х2 + 134х – 24 на множители:
100х3 – 210х2 + 134х – 24 = (х – 1)(100х2 – 110х + 24)
Теперь перепишем исходное ур-ние с учетом этого разложения:
100х3 – 210х2 + 134х – 24 = 0
(х – 1)(100х2 – 110х + 24) = 0
Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:
100х2 – 110х + 24 = 0
D =b2 – 4ас = (– 110)2 – 4•100•24 = 12100 – 9600 = 2500
Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.
В данном случае мы воспользовались следующим правилом:
Пример. Решите уравнение
2х3 – 8х2 + 16 = 0
Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:
2•23 – 8•22 + 16 = 16 – 32 + 16 = 0
Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х3 – 8х2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:
2х3 – 8х2 + 16 = 2х3 – 8х2 + 0х + 16
Теперь возможно деление:
Получили, что 2х3 – 8х2 + 16 = (х – 2)(2х – 4х –
С учетом этого перепишем исходное ур-ние:
2х3 – 8х2 + 16 = 0
(х – 2)(2х – 4х – = 0
х – 2 = 0 или 2х – 4х – 8 = 0
Решим квадратное ур-ние
D =b2 – 4ас = (– 4)2 – 4•2•(– = 16 + 64 = 80
В 8 классе мы узнали, что если у квадратного ур-ния ах2 + bx + c = 0 есть два корня, то многочлен ах2 + bx + c можно разложить на множители по формуле
ах2 + bx + c = а(х – k1)(х – k2)
где k1 и k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, k2 и k3, то его можно разложить на множители по формуле
ах3 +bx2 + cx + d = a(х – k1)(х – k2)(х – k3)
Пример. Разложите на множители многочлен 2х3 – 4х2 – 2х + 4.
Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:
2•13 – 4•12 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0
2•(– 1)3 – 4•(– 1)2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0
2•23 – 4•22 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0
Значит, многочлен можно разложить на множители:
2х3 – 4х2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)
Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:
(х + 1)(х – 1)(х – 2) = (х2 – 1)(х – 2) = х3 – 2х2 – х + 2
Получили не тот многочлен, который стоит в условии. Однако ур-ние
х3 – 2х2 – х + 2 = 0
имеет те же корни (1, 2 и (– 1)), что и ур-ние
2х3 – 4х2 – 2х + 4 = 0
Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:
2•(х3 – 2х2 – х + 2) = 2х3 – 4х2 – 2х + 4
Надо понимать, что хотя ур-ния 2х3 – 4х2 – 2х + 4 = 0 и х3 – 2х2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:
2х3 – 4х2 – 2х + 4= 2•(х3 – 2х2 – х + 2) = 2(х + 1)(х – 1)(х – 2)
Ответ: 2(х + 1)(х – 1)(х – 2).
Графический метод решения уравнений
Любое ур-ние с одной переменной можно представить в виде равенства
у(х) = g(x)
где у(х) и g(x) – некоторые функции от аргумента х.
Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.
Пример. Решите графически уравнение
х3 – х2 – 1 = 0
Решение. Строить график уравнения х3 – х2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х2 – 1) вправо:
х3 – х2 – 1 = 0
х3 = х2 + 1
Построим графики у = х3 и у = х2 + 1 (второй можно получить переносом параболы у = х2 на единицу вверх):
Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.
Ответ: х ≈ 1,46557
Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.
Пример. Определите количество корней уравнений
а)х3 – х – 3 = 0
б) х3 – 2х + 0,5 = 0
Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:
а) х3 = х + 3
б) х3 = 2х – 0,5
Построим графики функций у = х3, у = х + 3 и у = 2х – 0,5:
Видно, что прямая у = х + 3 пересекает график у = х3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.
Ответ: а) один корень; б) три корня.
Решение дробно-рациональных уравнений
До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.
Приведем несколько примеров ур-ний, считающихся дробно-рациональными:
С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:
Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.
Обычно для решения дробно-рациональных уравнений используют такой алгоритм:
1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.
2) Решают полученное целое ур-ние.
3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.
Пример. Решите ур-ние
Решение.
Умножим обе части равенства на знаменатель 1-ой дроби:
2х2 – 3х – 2 = х2(х – 2)
Раскроем скобки и перенесем все слагаемые в одну сторону:
2х2 – 3х – 2 = х3– 2х2
х3 – 2х2 – 2х2 + 3х + 2 = 0
х3 – 4х2 + 3х + 2 = 0
У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:
23 – 4•22 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0
Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):
Получили, что х3 – 4х2 + 3х + 2 = (х – 2)(х2 – 2х – 1)
Тогда ур-ние примет вид:
(х – 2)(х2 – 2х – 1) = 0
х – 2 = 0 или х2 – 2х – 1 = 0
Решим квадратное ур-ние:
D =b2 – 4ас = (– 2)2 – 4•1•(– 1) = 4 + 4 = 8
Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии
в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:
х – 2 = 2 – 2 = 0
Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.
Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:
Пример. Найдите все корни ур-ния
Решение. Если сразу привести выражение слева к общему знаменателю 4(х2 + х – 2)(х2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х2 + х как у:
у = х2 + х
Тогда уравнение примет вид
Приведем дроби к общему знаменателю 4(у – 2)(у – 20):
Знаменатель должен равняться нулю:
4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0
4у – 80 + 28у – 56 + у2 – 20у – 2у + 40 = 0
у2 + 10у – 96 = 0
Решаем квадратное ур-ние:
D =b2 – 4ас = (10)2 – 4•1•(– 96) = 100 + 384 = 484
Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:
у = х2 + х
х2 + х = – 16 или х2 + х = 6
х2 + х + 16 = 0 или х2 + х – 6 = 0
Дискриминант 1-ого ур-ния отрицателен:
D =b2 – 4ас = (1)2 – 4•1•(16) = 1– 64 = – 63
А потому оно не имеет решений. Решим 2-ое ур-ние:
D = b2 – 4ас = (1)2 – 4•1•(– 6) = 1+ 24 = 25
Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии
в ноль. Подстановкой можно убедиться, что не обращают.
Ответ: – 3 и 2.
При решении дробно-рациональных ур-ний может использоваться и графический метод.
Пример. Сколько корней имеет уравнение
Решение. Построим графики функций у = х2 – 4 и у = 2/х:
Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.
Ответ: 3 корня.
-
Метод замены переменной
-
Метод разложения на множители
-
Метод группировки слагаемых
-
Подбор целого корня и деление многочлена на многочлен уголком
-
Однородные уравнения
-
Выделение полного квадрата
-
Метод оценки
-
Использование свойств функций
-
Графический метод решения уравнений
Что делать, если вам – например, на Профильном ЕГЭ по математике – встретилось не квадратное уравнение, а кубическое? Или даже уравнение четвертой степени? Ведь для уравнений третьей, четвертой и более высоких степеней нет таких простых формул, как для квадратного уравнения.
В этой статье – способы решения сложных алгебраических уравнений. Замена переменной, разложение на множители, группировка, использование симметрии, однородности, деление многочлена на многочлен. Они вполне могут встретиться на ЕГЭ и олимпиадах в уравнениях, неравенствах и задачах с параметрами.
Также мы рассматриваем применение свойств функций, метод оценки, выделение полного квадрата, графический способ.
Вспомним основные понятия.
Корень уравнения – такое число, которое мы можем подставить вместо переменной в уравнение и получить истинное равенство.
Например, число 3 – корень уравнения 2x = 6.
Решить уравнение – значит найти его корни или доказать, что их нет.
Равносильными называются уравнения, множества решений которых совпадают. Другими словами, у них одни и те же корни.
Например, уравнения и
равносильны. Их корни совпадают:
или
В этой статье мы рассмотрим рациональные уравнения. В них переменная х входит в целой степени. Стандартный вид такого уравнения: слева многочлен, справа ноль.
Например, уравнение первой степени имеет вид , где
По-другому оно называется линейным уравнением, и вы с ним хорошо знакомы.
Уравнение второй степени приводится к виду , где
Это квадратное уравнение, и с ним тоже все просто.
Уравнение третьей степени имеет вид , где
В общем виде такие уравнения n-й степени можно записать так:
, где х — переменная,
— некоторые числа, причём
Теорема. Уравнение n-й степени имеет не более n действительных корней.
Это значит, что у квадратного уравнения не более двух корней. У уравнения третьей степени не более трех корней.
Как же найти эти корни?
к оглавлению ▴
Метод замены переменной
Замена переменной – ключ к решению многих задач.
Самый простой пример – биквадратное уравнение.
Так называется уравнение вида . Оно решается с помощью замены
, где
1. Решим уравнение .
Решение:
Сделаем замену , тогда
или
Значение переменной не удовлетворяет условию замены, так как
Значит,
Ответ:
2.Решим уравнение
Решение:
Пусть Это уравнение имеет два корня:
или
. Оба корня отрицательны и не удовлетворяют условию
. Значит, исходное уравнение не имеет действительных корней.
Ответ:
Такой символ означает, что корней нет, множество корней исходного уравнения является пустым.
3. Решим уравнение:
Решение:
Если приводить обе части к одному знаменателю, получим уравнение четвертой степени. Вряд ли мы с ним справимся.
Сделаем замену Тогда
С новой переменной уравнение стало проще:
Умножим обе части на 10t. Получим квадратное уравнение:
Корни этого уравнения: или
Вернемся к переменной
Если , то
Отсюда
Дискриминант этого уравнения отрицателен, корней нет.
Если , то
Получим квадратное уравнение для
:
У этого уравнения два корня: или
Это ответ.
4. Решим уравнение
Решение:
Мы видим, что выражение в уравнении встречается дважды. Хорошо бы обозначить его новой переменной, сделать замену.
Введем новую переменную
Уравнение примет вид: или
Возвращаемся к переменной х:
У нас появилось новое обозначение: — знак совокупности.
Такой знак означает «или».
Мы получили совокупность из двух квадратных уравнений.
Решим эти уравнения по очереди.
2) Уравнение не имеет корней. Его дискриминант отрицателен.
Ответ: 1; 0,25
5. Решим уравнение
Решение:
Не будем спешить раскрывать скобки. Ведь раскрыв их, мы получили бы уравнение четвертной степени.
Посмотрим на уравнение внимательно.
На координатной прямой точки 1; 3; –5; –7 расположены симметрично относительно точки
Сделаем замену , тогда
.
Тогда:
Мы выразили все «скобки», то есть все множители, через новую переменную. Вот что это дает:
И еще одна замена: .
Обычное квадратное уравнение. Замечательно!
Подберем его корни по теореме Виета. Заметим, что
; отсюда
,
.
Если , то
нет решений.
Если , то
Тогда
или
Если , то
.
Если , то
.
Ответ: 4; –8.
Дальше – еще интереснее.
6. Решите уравнение
Решение:
Сделаем замену . То, что в правой части в скобках, заменили на новую переменную.
.
Получили квадратное уравнение:
Если , то
Если , то
Ответ:
к оглавлению ▴
Метод разложения на множители
Этот метод удобен, когда в правой части уравнения стоит ноль, а в левой – выражение, зависящее от переменной.
Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а остальные при этом не теряют смысла.
7. Решим уравнение .
Конечно, не нужно перемножать все «скобки». Левая часть уравнения равна нулю, если х=0 или х=2 или х=3 или х=5. Все эти значения переменной – корни уравнения.
Ответ: 0; 2; 3; 5.
8. Решим уравнение
Решение:
Вынесем за скобки ,то есть разложим левую часть на множители.
Ответ:
Мы записали корни уравнения в виде множества из двух значений переменной, -2 и 0. Это одна из возможных форм записи ответа.
Метод разложения на множители часто применяется вместе с методом группировки.
к оглавлению ▴
Метод группировки слагаемых
9. Решите уравнение
Решение:
Разложим левую часть уравнения на множители. Сгруппируем слагаемые:
Первые два слагаемых – сумма кубов. Применим формулу: . Получим:
.
Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
Записывается это так:
Ответ: -2; 1; 4.
Здесь мы тоже использовали знак совокупности.
Запись читается как «
или
или
».
Решая уравнения и особенно неравенства, мы будем постоянно пользоваться знаками системы и совокупности. Мы записываем решения в виде цепочки равносильных переходов. Для сложных уравнений и неравенств это единственный способ прийти к ответу и не запутаться.
10. Решите уравнение
Решение:
Разложим левую часть уравнения множители методом группировки.
Ответ:
11. Решите уравнение
Решение:
Сгруппируем слагаемые:
А если сделать замену ?
Тогда .
Получаем квадратное уравнение: . Удачная замена!
Если , то
, нет решений.
Если , то
,
.
Ответ: .
к оглавлению ▴
Подбор целого корня и деление многочлена на многочлен уголком
Рассмотрим еще один метод решения уравнений третьей, четвертой и более высоких степеней.
12. Решите уравнение
Решение:
Разложить левую часть на множители с первой попытки не удается.
Оказывается, если уравнение третьей (четвертой, пятой…) степени имеет целые корни, то находятся они среди делителей свободного члена (слагаемого, не содержащего x). В данном случае – среди целых делителей числа 24.
Выпишем целые делители числа 24:
1; –1; 2; –2; 3; –3; 4; –4; 6; –6; 8; –8; 12; –12; 24; –24
Подставляя их по очереди в уравнение, при получаем верное равенство:
Это значит, что левую часть уравнения можно разложить на множители:
, где
.
Чтобы найти , поделим выражение
на
. В столбик. Так же, как мы делим друг на друга числа.
Немного непривычно, да? Потренируйтесь – у вас получится!
Ответ: 2; 3; 4.
13. Решите уравнение
Решение:
Разложить на множители? Но как? И замена не видна сразу. Посмотрим на уравнение внимательно. Его коэффициенты: 1, — 5, 4, — 5, 1.
Такое уравнение называется симметрическим, или возвратным.
Разделим обе его части на . Мы можем это сделать, поскольку
не является корнем нашего уравнения.
Теперь группируем слагаемые:
Сделаем замену .
Тогда
Получили уравнение . Легко!
Ответ:
14. Решите уравнение
Решение:
Разделив обе части уравнения на , получим:
Группируем слагаемые:
Сделаем замену , тогда
Наше уравнение примет вид:
Обратная замена:
Ответ:
к оглавлению ▴
Однородные уравнения
В школьном курсе математики проходят однородные показательные и однородные тригонометрические уравнения. Однородные алгебраические уравнения решаются тем же методом: делением на старшую степень.
15. Решите уравнение
Решение:
Это однородное уравнение. Разделим каждое слагаемое на при условии
.
Получим:
Выполним замену:
Получим уравнение:
Обратная замена приведет нас к совокупности квадратных уравнений:
Решим эти квадратные уравнения.
Мы сказали, что поделить обе части уравнения на можно, только если
Проверим, что будет, если
. Тогда
. Такое значение переменной не является корнем уравнения.
Ответ:
Рассмотрим еще одно однородное уравнение.
16. Решите уравнение
Решение:
не является корнем уравнения, поэтому разделим уравнение на
и получим
Замена приводит к квадратному уравнению:
Его корни
и
Обратная замена дает совокупность квадратных уравнений:
Решив эти квадратные уравнения, получаем корни:
Ответ:
Покажем еще несколько методов решения алгебраических уравнений. Они встречаются также в задачах с параметрами.
к оглавлению ▴
Выделение полного квадрата
17. Решите уравнение
Решение:
В правой части уравнения сумма двух квадратов. Добавим и вычтем удвоенное произведение двух выражений:
Свернем полный квадрат по формуле сокращенного умножения.
Замена приведет уравнение к виду:
или
Обратная замена дает совокупность двух квадратных уравнений:
Корни первого из этих уравнений:
Второе уравнение не имеет корней, его дискриминант отрицателен.
Ответ:
к оглавлению ▴
Метод оценки
18. Решим уравнение
Решение:
Преобразуем правую часть уравнения:
Уравнение примет вид:
Оценим левую и правую части уравнения.
Так как то равенство выполняется, только если и левая, и правая его части равны нулю.
Уравнение равносильно системе:
;
Система решений не имеет.
Ответ: корней нет.
При решении мы пользовались следующей теоремой:
Теорема. Если в уравнении функция
ограничена сверху и
, а функция
ограничена снизу, причем
, то уравнение равносильно системе:
Если система решений не имеет, то у данного уравнения корней нет.
Читайте о том, как метод оценки применяется в задачах с параметрами.
к оглавлению ▴
Использование свойств функций
Еще один нетривиальный метод решения уравнений – подобрать корень и доказать, что других корней нет.
Здесь нам поможет следующая теорема:
Теорема. Если в уравнении функция
является монотонно возрастающей, а функция
монотонно убывающей или постоянной, то уравнение не может иметь более одного корня.
19. Решите уравнение
Решение:
Левая часть уравнения представляет собой функцию, монотонно возрастающую при любом значении переменной х, т.к. является суммой монотонно возрастающих функций, а правая часть постоянна. Поэтому, если уравнения имеет корень, то он единственный.
Подбором находим, что т.к.
Ответ: -1.
20. Решите уравнение
Решение:
Функция является возрастающей (как сумма двух возрастающих функций), а правая часть постоянна. Уравнение имеет не более одного корня. Подбором находим, что
— корень, так как
Других корней быть не может.
Ответ: 1.
к оглавлению ▴
Графический метод решения уравнений
Чтобы решить графически уравнение , строим в одной системе координат графики функций
и
и находим точки пересечения этих графиков. Абсциссы точек пересечения графиков — это корни уравнения
.
21. Решите графически уравнение
Решение:
Запишем уравнение в виде . Построим в одной системе координат графики функций
и
Графики функций пересекаются в единственной точке — корень уравнения, поскольку
Других корней нет.
Ответ: 2.
Список литературы:
1. О. Ю. Черкасов, А. Г. Якушев. Домашний репетитор. Математика. Интенсивный курс подготовки к экзамену.
2. А. Г. Мордкович. Решаем уравнения.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Алгебраические уравнения и способы их решения. Уравнения третьей и четвертой степени» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
07.05.2023
Определение
Рассмотрим произвольное уравнение вида
[a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0=0 qquad qquad (1)]
где (a_n, a_{n-1},dots,a_0) – некоторые числа, причем (a_nne 0), называемое алгебраическим уравнением (с одной переменной) (n)-ой степени.
Обозначим (P_n(x)=a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0). Таким образом, сокращенно уравнение ((1)) можно записать в виде (P_n(x)=0).
Замечание
Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна (2), а линейное — степень которого равна (1).
Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.
Теорема
Если уравнение ((1)) имеет корень (x=x_0), то оно равносильно уравнению
[(x-x_0)cdot P_{n-1}(x)=0]
где (P_{n-1}(x)) – некоторый многочлен степени (n-1).
Для того, чтобы найти (P_{n-1}(x)), необходимо найти частное от деления многочлена (P_n(x)) на ((x-x_0))
(т.к. (P_n(x)=(x-x_0)cdot P_{n-1}(x))).
Следствие: количество корней уравнения
Любое алгебраическое уравнение степени (n) может иметь не более (n) корней.
Замечание
В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.
Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.
Пример
Известно, что (x=2) является корнем уравнения (2x^3-9x^2+x^4-x+6=0). Найдите частное от деления (2x^3-9x^2+x^4-x+6) на (x-2).
Решение.
Будем делить многочлен на многочлен в столбик. Запишем
[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6&&negthickspaceunderline{qquad x-2 qquad}\
&&\
end{array}]
Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала (x^4), затем (2x^3) и т.д.
Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
Т.к. делитель (x-2) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.
Посмотрим, на что необходимо домножить (x-2), чтобы после вычитания из (x^4+2x^3) полученного многочлена уничтожилось слагаемое (x^4,).
На (x^3). Тогда после вычитания (x^4+2x^3-x^3(x-2)) останется (4x^3). Снесем слагаемое (-9x^2):
[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{000000000000}&&negthickspace quad
x^3\[-3pt]
4x^3 -9x^2phantom{0000000}&&\
end{array}]
Теперь посмотрим, на что необходимо домножить (x-2), чтобы после вычитания из (4x^3-9x^2) полученного многочлена уничтожилось слагаемое (4x^3).
На (4x^2): (quad 4x^3-9x^2-4x^2(x-2)=-x^2).
Опять снесем следующее слагаемое (-x):
[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{000000000000}&&negthickspace quad
x^3+4x^2\[-3pt]
4x^3 -9x^2phantom{0000000}&&\
underline{4x^3 — 8x^2,};phantom{000000}&&\[-3pt]
-x^2 — xphantom{000};&&\
end{array}]
Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть (-x)
[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6phantom{0}&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{0000000000000}&&negthickspace quad
x^3+4x^2-x\[-3pt]
4x^3 -9x^2phantom{00000000}&&\
underline{4x^3 — 8x^2,}phantom{0000000};;&&\[-3pt]
-x^2 — ,xphantom{0000};&&\
underline{-x^2+2x},phantom{000};&&\[-3pt]
-;3x+6&&\
end{array}]
Четвертое слагаемое в частном должно быть (-3):
[begin{array}{rr|l}
x^4+2x^3-9x^2-x+6phantom{0}&&negthickspaceunderline{qquad x-2 qquad}\
underline{x^4-2x^3,} phantom{0000000000000}&&negthickspace quad
x^3+4x^2-x-3\[-3pt]
4x^3 -9x^2phantom{00000000}&&\
underline{4x^3 — 8x^2,}phantom{0000000};;&&\[-3pt]
-x^2 — ,xphantom{0000};&&\
underline{-x^2+2x},phantom{000};&&\[-3pt]
-;3x+6&&\
underline{-;3x+6}&&\[-3pt]
0&&\
end{array}]
Таким образом, можно сказать, что (x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)).
Замечание
1) Если (x=x_0) действительно является корнем уравнения, то после такого деления в остатке должен быть (0). В противном случае это означает, что деление в столбик выполнено неверно.
2) Если многочлен делится без остатка (то есть остаток равен (0)) на (x+a), то он также будет делиться без остатка на (c(x+a)) для любого числа (cne 0). Например, в нашем случае, если бы мы поделили многочлен, к примеру, на (2x-4), то получили бы в частном (frac12
x^3+2x^2-frac12x-frac32).
Заметим, что также происходит и с числами: если мы разделим (10) на (2), то получим (5); а если разделим (10) на (3cdot 2), то получим (frac53).
3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения (x^4+2x^3-9x^2-x+6=0), необходимо найти корни уравнения (x^3+4x^2-x-3=0).
Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.
Теорема
Если число (x=1) является корнем уравнения ((1)), то сумма всех коэффициентов уравнения равна нулю:
[a_n+a_{n-1}+dots+a_1+a_0=0]
Доказательство
Действительно, так как (x=1) является корнем уравнения ((1)), то после подстановки (x=1) в него мы получим верное равенство. Так как (1) в любой степени равен (1), то слева мы действительно получим сумму коэффициентов (a_i), которая будет равна нулю.
Пример
У уравнения (x^2-6x+5=0) сумма коэффициентов равна нулю: (1-6+5=0). Следовательно, (x=1) является корнем этого уравнения. Это можно проверить просто подстановкой: (1^2-6cdot
1+5=0quadLeftrightarrowquad 0=0).
Теорема
Если число (x=-1) является корнем уравнения ((1)), то сумма коэффициентов при четных степенях (x) равна сумме коэффициентов при нечетных степенях (x).
Доказательство
1) Пусть (n) – четное. Подставим (x=-1):
(a_ncdot (-1)^n+a_{n-1}cdot (-1)^{n-1}+a_{n-2}cdot
(-1)^{n-2}+dots+a_1cdot (-1)+a_0=0 quadRightarrow)
(a_n-a_{n-1}+a_{n-2}-dots-a_1+a_0=0 quad Rightarrow)
(a_n+a_{n-2}+dots+a_0=a_{n-1}+a_{n-3}+dots+a_1)
2) Случай, когда (n) – нечетное, доказывается аналогично.
Пример
В уравнении (x^3+2x^2-8x+5=0) сумма коэффициентов равна нулю:
[1+2-8+5=0]
Значит, число (x=1) является корнем данного уравнения.
Можно разделить в столбик (x^3+2x^2-8x+5) на (x-1):
[begin{array}{rr|l}
x^3+2x^2-8x+5&&negthickspaceunderline{qquad x-1 qquad}\
underline{x^3- x^2,} phantom{00000000}&&negthickspace
quad x^2 + 3x -5\[-3pt]
3x^2 — 8x,phantom{000}&&\
underline{3x^2 — 3x,}phantom{000}&&\[-3pt]
-5x + 5&&\
underline{-5x +5}&&\[-3pt]
0&&\
end{array}]
Таким образом, (x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)). Значит, остальные корни исходного уравнения — это корни уравнения (x^2+3x-5=0).
А это (x_{1,2}=-dfrac 32pm dfrac{sqrt{29}}2).
Таким образом мы нашли все корни исходного уравнения.
Пример
В уравнении (x^3-x^2+x+3=0) сумма коэффициентов при четных степенях (-1+3=2), а при нечетных: (1+1=2). Таким образом, число (x=-1) является корнем данного уравнения.
Можно разделить в столбик (x^3-x^2+x+3) на (x+1):
[begin{array}{rr|l}
x^3-,x^2+ x+3phantom{0}&&negthickspaceunderline{qquad x+1 qquad}\
underline{x^3+x^2;} phantom{00000000}&&negthickspace
quad x^2 -2x +3\[-3pt]
-2x^2 + xphantom{0000}&&\
underline{-2x^2 -! 2x},phantom{000}&&\[-3pt]
3x + 3&&\
underline{3x +3}&&\[-3pt]
0&&\
end{array}]
Таким образом, (x^3-x^2+x+3=(x+1)(x^2 — 2x +3)). Значит, остальные корни исходного уравнения — это корни уравнения (x^2-2x+3=0).
Но это уравнение не имеет корней ((D<0)), значит, исходное уравнение имеет всего один корень (x=-1).
Замечание
Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.
Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.
Теорема
Если алгебраическое уравнение
[a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0=0,] где (a_n, dots, a_0) — целые числа,
имеет рациональный корень (x=dfrac pq), то число (p) является делителем свободного члена (a_0), а число (q) — делителем старшего коэффициента (a_n).
Пример
Рассмотрим уравнение (2x^4-5x^3-x^2-5x-3=0).
В данном случае (a_0=-3, a_n=2). Делители числа (-3) — это (pm 1,
pm 3). Делители числа (2) – это (pm 1, pm 2). Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:
[pm 1, pm dfrac12, pm 3, pmdfrac32]
По предыдущим теоремам можно быстро понять, что (pm1) не являются корнями. Подставив (x=-dfrac12) в уравнение, получим:
[2cdot dfrac1{16}+5cdot dfrac18-dfrac 14+5cdot dfrac12-3=0
quad Leftrightarrow quad 0=0]
Значит, число (x=-frac12) является корнем уравнения.
Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения (x=3). Значит, уравнение можно представить в виде
[left(x+frac12right)(x-3)cdot Q_2(x)=0 quad text{или}quad (2x+1)(x-3)cdot P_2(x)=0] (тогда (P_2(x)=frac12 Q_2(x))). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.
После деления в столбик (2x^4-5x^3-x^2-5x-3) на ((2x+1)(x-3)=2x^2-5x-3):
[begin{array}{rr|l}
2x^4-5x^3- x^2-5x-3phantom{0}&&negthickspaceunderline{qquad 2x^2-5x-3 qquad}\
underline{2x^4-5x^3-3x^2;} phantom{00000000}&&negthickspace
qquad
x^2+0x+1\[-3pt]
0x^3 +2x^2-5xphantom{0000}&&\
underline{0x^3 + 0x^2+0x}phantom{0000}&&\[-3pt]
2x^2 — 5x-3,&&\
underline{2x^2-5x-3};&&\[-3pt]
0&&\
end{array}]
получим, что (P_2(x)=x^2+1). Данный многочлен не имеет корней, значит, уравнение имеет только два корня: (x=-frac12) и (x=3).
Замечание
Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
Например, уравнение (x^3-2=0) имеет корень — это (x=sqrt[3]2), и он не рациональный.
Для подбора иррациональных корней не существует универсального алгоритма.
Пример
Найдите корни уравнения (4x^3-3x^2-frac{23}6x-1=0).
Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при (x) равен (-frac{23}6)). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на (6):
[24x^3-18x^2-23x-6=0]
Делители свободного члена: (pm 1, pm 2, pm 3, pm 6).
Делители старшего коэффициента: (pm 1, pm 2, pm 3, pm4, pm 6,
pm 8,
pm 12, pm 24).
Получилось достаточно много (:))
Выпишем некоторые возможные рациональные корни уравнения:
[pm 1, pm dfrac12, pm dfrac13, pm dfrac 16, pmdfrac18,
pm2, pmdfrac23, pm dfrac14, pm3quad text{small{и
т.д.}}]
Перебирая варианты, убеждаемся, что (frac32) подходит. Значит, многочлен (24x^3-18x^2-23x-6) должен без остатка поделиться на (x-frac32). Для удобства разделим на (2(x-frac32)=2x-3) (чтобы не работать с дробями):
[begin{array}{rr|l}
24x^3-18x^2-23x-6phantom{0}&&negthickspaceunderline{qquad 2x-3 qquad}\
underline{24x^3-36x^2};; phantom{000000000}&&negthickspace
quad 12x^2 +9x +2\[-3pt]
18x^2 -23xphantom{0000}&&\
underline{18x^2 -27x},;phantom{000}&&\[-3pt]
4x -6&&\
underline{4x -6}&&\[-3pt]
0&&\
end{array}]
Таким образом, (24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)). Уравнение (12x^2 +9x +2=0) в свою очередь корней не имеет. Значит, (x=frac32) – единственный корень исходного уравнения.
Теорема
Любой многочлен (P_n(x)=a_nx^n+a_{n-1}x^{n-1}+dots+a_1x+a_0) можно разложить на произведение множителей: линейных ((ax+b, ane 0)) и квадратичных ((cx^2+px+q, cne 0)) с отрицательным дискриминантом.
Следствие
Кубическое уравнение (Ax^3+Bx^2+Cx+D=0) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как
[Ax^3+Bx^2+Cx+D=A(x+r)(x^2+px+q)=0]
Замечание
На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше (4).