Внешний угол треугольника
Определение. Внешним углом треугольника называется угол, смежный к любому углу этого треугольника.
На Рис.1 угол 4 внешний так как углы 2 и 4 смежные.
Теорема. Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Доказательство. Докажем, что ( small angle 4=angle 1+ angle 3. ) Поскольку сумма углов треугольника равна 180°, то имеем:
(1) |
Так как углы 2 и 4 смежные, то:
(2) |
Вычитая (1) из (2) получим:
Углы треугольника бывают внутренние и внешние. Что такое внешний угол треугольника? Как его найти?
Определение.
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.
Как построить внешний угол треугольника? Нужно продлить сторону треугольника.
На рисунке:
∠3 — внешний угол при вершине А,
∠2 — внешний угол при вершине С,
∠1 — внешний угол при вершине В.
Сколько внешних углов у треугольника?
При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. Таким образом получаем 6 внешних углов.
Внешние углы каждой пары при данной вершины равны между собой (как вертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.
Чему равен внешний угол?
Теорема (о внешнем угле треугольника)
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Дано: ∆АВС, ∠1 — внешний угол при вершине С.
Доказать: ∠1=∠А+∠В.
Доказательство:
Так как сумма углов треугольника равна 180º, ∠А+∠В+∠С=180º.
Следовательно, ∠С=180º-(∠А+∠В).
∠1 и ∠С (∠АСВ) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠С=180º-(180º-(∠А+∠В))=180º-180º+(∠А+∠В)=∠А+∠В.
Что и требовалось доказать.
Внешний угол треугольника
- Сумма внешних углов
Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.
При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:
Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:
∠1 + ∠4 = 180°.
Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:
∠2 + ∠3 + ∠4 = 180°.
Из этого следует, что
∠1 + ∠4 = ∠2 + ∠3 + ∠4.
Сократив обе части полученного равенства на одно и тоже число (∠4), получим:
∠1 = ∠2 + ∠3.
Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.
Сумма внешних углов
Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°
Рассмотрим треугольник ABC:
Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:
(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.
Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:
∠1 + ∠2 + ∠3 = 540° — (∠4 + ∠5 + ∠6) = 540° — 180° = 360°.
Мы привыкли рассматривать треугольники, в особенности их углы, только «изнутри». Однако, знаете ли, «снаружи» треугольника тоже кипит жизнь. В этом уроке предлагаем узнать, что в геометрии треугольников имеется также внешний угол. А что же такое внешний угол? Какие свойства внешнего угла треугольника существуют? Может, есть какая-нибудь теорема о внешнем угле треугольника? Вот, сейчас будем все выяснять.
Что такое внешний угол?
Начертим треугольник $bigtriangleup{ABC}$ и построим при вершине $B$ угол, смежный с $angle{B}$. Теперь в $bigtriangleup{ABC}$ при вершине $B$ появилось два угла — один «внутри», другой «снаружи». Угол «снаружи» называется внешним углом при вершине $B$. Дадим ему определение.
Внешний угол при данной вершине — угол, смежный с углом треугольника при этой вершине.
Как обозначается внешний угол?
Углы в треугольнике обозначаются согласно вершинам, где они располагаются, либо по трем точкам.
Например, в треугольнике $bigtriangleup{ABC}$ угол при вершине $B$ обозначается как $angle{B}$, либо как $angle{ABC}$. А если при вершине $B$ в том числе имеется внешний угол? Его тоже обозначать как $angle{B}$?
Или лучше указать дополнительную точку на продолжении стороны? Вопрос отличный. Для того, чтобы подобной путаницы не возникало, в геометрии принят термин «внутренний угол».
К примеру, в ходе задачи или доказательства вы пользуетесь внешним углом при некоторой вершине. Скажем, вновь при вершине $B$ в треугольнике $bigtriangleup{ABC}$. Когда вы ссылаетесь к углу треугольника внутри, можно уточнить: «Внутренний угол $angle{B}$».
Когда ссылаетесь к углу снаружи, уточняйте: «Внешний угол $angle{B}$».
Способ с уточнениями «внутренний угол», «внешний угол» проще и не требует дополнительных точек. К тому же, такое обозначение облегчает понимание, где в треугольнике располагается угол. Ведь вы акцентируете внимание только на вершине.
Такое особенно полезно, когда решения или чертежи к задачам громоздкие. Бывает, что при одной вершине нужно рассматривать два внешних угла. Они все равно равны как вертикальные, но все же… Мало ли. Тут удобнее дать углам обозначение в стиле «$angle{1}$» или, например, «$angle{x}$».
Теорема о внешнем угле треугольника
Применим наши знания теоремы о сумме углов треугольника к внешним углам. Рассмотрим внешний угол $angle{B}$ в треугольнике $bigtriangleup{ABC}$. Сумма $angle{B}$ внешнего и $angle{B}$ внутреннего равняется $180^circ$, как смежных.
По теореме о сумме углов треугольника: $$angle{A}+angle{B}+angle{C}=180^circ$$
Если:
- внутр. $angle{B}+$ внеш. $angle{B}=180^circ$
- $angle{A}+$ внутр. $angle{B}+angle{C}=180^circ$
То:
- внеш. $angle{B}=180^circ-$ внутр. $angle{B}$
- внутр. $angle{B}=180^circ-angle{A}-angle{C}$
- внеш. $angle{B}=180^circ-180^circ+angle{A}+angle{C}$
Методом подстановки переменных из одного уравнения в другое мы обнаружили, что внешний угол равняется сумме двух других углов, с ним не смежных. Так, величина внешнего $angle{B}$ равна сумме $angle{A}+angle{C}$ внутренних.
Теорема о внешнем угле треугольника. Внешний угол треугольника равен сумме двух внутренних углов, с ним не смежных.
Обратим ваше внимание вот еще на что.
Раз внешний угол по величине — это сумма двух внутренних углов, внешний угол всегда будет по величине больше любого внутреннего угла, не смежного с ним. Полезное следствие, особенно если вдруг придется, скажем, доказывать возможность или невозможность существования некоторого треугольника. Или еще для чего-нибудь.
Теорема о внешнем угле треугольника: доказательство Евклида
Официально теорему о внешнем угле треугольника впервые доказал Евклид — древнегреческий математик, считающийся «отцом геометрии». Примечательно, что его доказательство не имеет ничего общего с теоремой о сумме углов треугольника — математик воспользовался свойствами углов при параллельных и секущей. Оно в принципе и понятно: Евклид огромное количество времени посвятил изучению параллельных прямых.
В качестве практики и повторения материала по параллельным прямым и секущим мы приводим евклидовое доказательство. Оно очень даже достойно внимания. Итак, посмотрим, как внешний угол треугольника «общается» с параллельными прямыми.
Доказательство
Рассмотрим $bigtriangleup{ABC}$ с внешним углом при вершине $B$. Проведем через эту вершину луч, параллельный стороне $AC$. Отметим на полученном луче точку $B_1$. На продолжении стороны $AB$ отметим точку $B_2$.
Теперь рассмотрим параллельные отрезки $BB_1$ и $AC$ при секущей $AB$. Внутренний угол $angle{A}$ и угол $angle{B_{1}BB_2}$ равны как соответственные. Далее рассмотрим отрезки $BB_1$ и $AC$ при секущей $CB$. Углы $angle{B_{1}BC}$ и $angle{ACB}$ равны как накрест лежащие.
Видим, что внешний $angle{B}$ состоит из суммы внутренних углов $angle{A}$ и $angle{C}$. Что и требовалось доказать.
Свойства внешнего угла
Не сказать, что свойства внешнего угла многочисленные. В основном, когда затрагивается внешний угол, для решения задач или доказательства чего-либо хватает теоремы о внешнем угле треугольника. Ну, и смежности внутреннего и внешнего углов.
То есть базового определения.
Правда если к делу подключается биссектриса, свойства внешнего угла, помимо «классических», таки обнаруживаются. Разберем одно наиболее полезное.
Свойство биссектрис внешнего и внутреннего углов треугольника. Биссектрисы внутреннего и внешнего углов являются перпендикулярными друг к другу.
Доказательство
Проведем в треугольнике $bigtriangleup{ABC}$ биссектрисы при внешнем $angle{B}$ и при внутреннем $angle{B}$. Для удобства разметим все полученные углы следующим образом: $x$ и $y$ — значения внутренних углов при вершинах $A$ и $C$ соответственно; $z$ — половина внутреннего $angle{B}$; $f$ — половина внешнего $angle{B}$.
Нам требуется установить, чему равняется $z+f$. Если сумма будет равна $90^circ$ — свойство доказано. Воспользуемся теоремой о внешнем угле и теоремой о сумме углов треугольника.
$$2f=x+y\2z+x+y=180^circ$$
Так как нам нужно найти сумму $z+f$, сложим уравнения выше:
$$2f+2z+x+y=x+y+180^circ$$
Видим, что после сокращения $2(f+z)=180^circ$.
Следовательно сумма $f$ и $z$ равняется $90^circ$. Биссектрисы перпендикулярны друг к другу. Свойство доказано.
Задача для самостоятельного решения
Свойства внешнего угла треугольника — нет. Теорема о внешнем угле треугольника — однозначное да. Решите данную задачу, не используя свойство смежности внешнего и внутреннего углов.
Условие. В треугольнике $bigtriangleup{ABH}$ величина внешних углов $angle{1}$ и $angle{2}$ равняется $97^circ$ и $125^circ$ соответственно. Найдите, чему равняется внутренний $angle{A}$.
Показать решение
Спрятать решение
Дано:
$bigtriangleup{ABH}$
$angle{1}=97^circ$
$angle{2}=125^circ$
Найти:
внутр. $angle{A}$ — ?
Решение. Воспользуемся теоремой о внешнем угле треугольника. Так как рассматривать мы будем только два внешних угла — $angle{1}$ и $angle{2}$, договоримся, что $angle{A}$, $angle{B}$ и $angle{H}$ далее в решении относятся к обозначению только внутренних углов треугольника $bigtriangleup{ABH}$.
Имеем следующие равенства:
$$angle{1}=angle{A}+angle{B}\angle{2}=angle{A}+angle{H}$$
Сложим между собой данные равенства и подставим имеющиеся по условию значения внешних углов $angle{1}$ и $angle{2}$:
$$2angle{A}+angle{B}+angle{H}=angle{1}+angle{2}=222^circ$$
Сумма углов $angle{A}$, $angle{B}$ и $angle{H}$ составляет $180^circ$. Вычтем из полученного выше равенства равенство $angle{A}+angle{B}+angle{H}=180^circ$.
Получаем следующее:
$$2angle{A}+angle{B}+angle{H}=222^circ\angle{A}+angle{B}+angle{H}=180^circ\angle{A}=222^circ-180^circ$$
Откуда получаем, что значение внутреннего угла $angle{A}$ равняется $42^circ$.
Ответ: $42^circ$.
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Основные определения
Прежде чем рассмотреть определение внешнего угла треугольника, напомним несколько основных определений из начального курса геометрии, а именно:
- угла и треугольника;
- смежных углов;
- параллельных прямых.
Угол и треугольник являются геометрическими фигурами. Угол состоит из точки (вершины) и двух лучей (сторон угла), которые исходят из данной точки. Треугольник представляет собой три точки (вершины), соединённые отрезками (сторонами). Треугольник имеет три угла.
Определение 1
Смежными называют два угла, имеющие одну общую сторону, а другие две стороны являются продолжениями друг друга.
На рисунке ниже смежными углами являются углы $ADB$ и $BDC$. $angle ADB + angle BDC = angle ADC = 180^{circ}$.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Рисунок 1. Смежные углы. Автор24 — интернет-биржа студенческих работ
Параллельными называются две непересекающиеся прямые на одной плоскости. Секущей по отношению к двум прямым называется прямая, которая пересекает две прямые в двух точках. Если две прямые параллельны, то в случае пересечения пары этих прямых секущей, получившиеся в результате этого действа накрест лежащие углы равны, а сумма односторонних углов равна $180^{circ}$.
Теорема о сумме углов треугольника
Понятие внешнего угла треугольника встречается в теореме о сумме углов треугольника, которая звучит следующим образом:
Сумма углов треугольника равна $180^{circ}$.
«Внешний угол треугольника: определение и свойство» 👇
Приведём её доказательство.
Пусть дан произвольный $triangle ABC$. Нужно доказать, что $angle A + angle B + angle C=180^{circ}$.
Рисунок 2. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ
Проведём прямую $b$ через вершину $B$, которая будет параллельна стороне $AC$.
Рисунок 3. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ
Видим, что углы 1 и 5 — накрест лежащие углы при пересечении параллельных прямых $b$ и $AC$ секущей $AB$. Углы 3 и 4 также являются накрест лежащими углами при пересечении тех же параллельных прмяых секущей $BC$. Делаем вывод, что: $angle 5 = angle 1, angle 4 = angle 3$.
Очевидно, глядя на рисунок, что сумма углов 2, 4 и 5 равна $180^{circ}$. Отсюда следует, что $angle 1 +angle 2 +angle 3 = 180^{circ}$ или $angle A + angle B + angle C=180^{circ}$. Ч.т.д.
Внешний угол треугольника
В доказательстве теоремы о сумме углов треугольника есть два примера внешнего угла треугольника. Это углы 4 и 5. Дадим определение:
Определение 2
Внешний угол треугольника — это угол, являющийся смежным с каким-нибудь углом данного треугольника.
Имеем теорему:
Теорема 2
Внешний угол треугольника равен сумме двух углов данного треугольника, не являющихся смежным с внешним углом.
Докажем эту теорему.
Рассмотрим следующий рисунок:
Рисунок 4. Внешний угол треугольника. Автор24 — интернет-биржа студенческих работ
Мы видим, что угол 4 является внешним углом, смежным с 2 углом треугольника. Очевидно, что $angle 4 +angle 2 = 180^{circ}$. По теореме о сумме углов:
$(angle 1 +angle 3)+angle 2=180^{circ}$. Отсюда следует, $angle 4 = angle 1 +angle 3$. Ч.т.д.
Рассмотрим пример задачи на данную тему.
Пример 1
Задача. $triangle ABC$ — равнобедренный. $AC$ — основание этого треугольника. $AC$=37 см, внешний угол при $B$ равняется $60^{circ}$. Нужно найти расстояние от точки $C$ до прямой $AB$.
Решение. Сделаем рисунок:
Рисунок 5. Треугольник. Автор24 — интернет-биржа студенческих работ
На рисунке прямая, обозначающая расстояние от точки $C$ до прямой $AB$ обозначена как $CD$. В математике такое расстояние называют высотой. По определению высоты треугольника, прямая высоты перпендикулярна той стороне, на которую опущена. То есть $angle ADC = 90^{circ}$.
По теореме о внешнем угле треугольника находим $angle B$: $angle B=180-60=120^{circ}$. По теореме о сумме углов треугольника получается, что $angle A + angle C = 180-120=60$. Так как треугольник равнобедренный, углы у основания равны по $30^{circ}$.
Рассмотрим $triangle ADC$. Из вышеуказанного следует, что он прямоугольный. Из свойства прямоугольных треугольников известно, что катет такого треугольника, который лежит против угла $30^{circ}$, равен половине гипотенузы. В нашем случае, $СD$ является катетом против угла $30^{circ}$, а $AC$ — гипотенуза. Поэтому справедливо утверждать, что $CD=37/2=18,5$ см.
Ответ: 18,5 см.
Таким образом, в данной статье мы получили полное представление о том, что такое внешний угол треугольника и разобрали сопутствующие теоремы.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме