Как найти вероятность двух зависимых событий

На этой странице вы узнаете

  • Как кот может быть одновременно жив и мертв? 
  • Можно ли всегда выигрывать спор с монеткой? 
  • Если рандомно ответить на вопрос теста, какой шанс угадать ответ?

Какова вероятность выиграть в лотерею? Исследователи подсчитали: один на восемь миллионов. «Или выиграю, или проиграю», — решаю я, покупая лотерейный билет. Так понятие вероятности преследует нас в обычной жизни. И не только в лотерее. Давайте разберемся подробнее.

Вероятность

Выходя утром из дома, мы задумываемся: брать ли с собой зонт? Проверяем прогноз погоды — вероятность выпадения осадков 2%. Зонтик нам сегодня вряд ли понадобится. В пути нас настигает ливень…

Прогноз погоды — самый яркий пример вероятности. Он не всегда бывает точный, не всегда сбывается. Мы не можем с уверенностью сказать, что будет завтра. Зато можем по совокупности факторов определить, на какую погоду стоит ориентироваться. 

Теория вероятности — один из разделов математики, в котором изучаются модели случайных экспериментов. 

Случайными экспериментами называются такие, результаты которых неизвестны заранее. Подбрасывая монетку, мы не знаем, что выпадет — орел или решка. Только поймав монетку, мы узнаем результат. 

Как кот может быть одновременно жив и мертв? 

Ученый по имени Эрвин Шредингер провел мысленный эксперимент. Он поместил кота в закрытый ящик, в котором был расположен механизм, содержащий атомное ядро и ёмкость с ядовитым газом. 

По эксперименту с вероятностью 0,5 ядро распадется, емкость с газом откроется и кот умрет. Но при этом с вероятностью 0,5 ядро не распадается и кот останется жив. 

Пока ящик закрыт, мы не знаем результат эксперимента — такой эксперимент в математике можно назвать случайным.  Тем временем кот находится одновременно в двух состояниях: он и жив, и мертв. 

Рассмотрим чуть подробнее пример с монеткой. Есть всего два варианта, какое событие может произойти:

  • выпадет орел;
  • выпадет решка. 

Эти два события образуют множество элементарных событий. 

Множество элементарных событий — множество всех возможных результатов случайного эксперимента. 

В случае выше их всего два. А если мы будем подбрасывать игральную кость, то их будет уже 6. Множество элементарных событий будет менять в зависимости от ситуации. 

Допустим, мы поспорили с друзьями, что выпадет орел. Для нас это событие будет благоприятным, поскольку мы выиграем спор. Второе событие будет неблагоприятным, потому что спор будет проигран. 

Как найти вероятность, что мы выиграем спор? Нужно разделить число благоприятных событий на общее число событий. Таким образом, мы получили классическое определение вероятности. 

Вероятность — отношение количества благоприятных событий к количеству всех возможных событий. 

Пусть m — количество благоприятных исходов, а n — количество всех событий. Получаем следующую формулу. 

(P = frac{m}{n})

Вероятность можно обозначить, как P(x), где х — некоторое событие. 

Заметим, что количество благоприятных исходов должно быть либо меньше, либо равно количеству всех исходов. Если благоприятных событий больше, чем всех, значит, мы нашли не все множество элементарных событий.

Когда вероятность равна 1, то такое событие точно наступит. Иначе говоря, мы можем быть уверены на 100% — оно произойдет.

Можно ли всегда выигрывать спор с монеткой?

Можно, если хитро сформулировать условия. Например: «Орел — я выиграл, решка — ты проиграл». Вероятность выигрыша в этом случае будет равна (P = frac{2}{2} = 1), то есть мы точно выиграем спор. 

Однако вероятность не так проста, и даже здесь подготовила ловушку. 

В редких случаях есть и третий вариант событий — монетка встанет на ребро. Вероятность такого события составляет  (frac{1}{6000}). То есть за миллион бросков это может случиться 150 раз или 1 раз в 2 дня, если подкидывать монету каждый день по 8 часов в течение года. Чтобы монета встала на ребро два раза подряд, придется подбрасывать ее в том же темпе около 35 лет.

Вероятность всегда будет меньше или равна 1. Но ее можно выразить и через проценты. Для этого достаточно умножить полученный результат на 100%. 

Пример 1. На ресепшене одного из отелей стоит ваза с конфетами. В вазе 56 яблочных конфет, 49 апельсиновых и 35 малиновых. Гость отеля наугад тянет конфету. Какова вероятность, что ему попадется апельсиновая конфета?

Решение. Найдем, сколько всего конфет в вазе: 56 + 49 + 35 = 140. Вероятность вытащить апельсиновую конфету будет равна 
(frac{49}{140} = 0,35)

Выразим в процентах:  
0,35 * 100% = 35%

Задача решена. Обычно в ответе пишут значение вероятности через дробное число, а не проценты. Поэтому получаем следующий ответ. 

Ответ: 0,35

Чтобы выразить вероятность через проценты в одно действие, достаточно воспользоваться следующей формулой. 

(P = frac{m}{n} * 100%)

Но что, если нам нужно найти вероятность для более сложных экспериментов? Первым делом нужно определить, какие события перед нами.

Равновозможные и противоположные события

Когда мы бросаем игральную кость, вероятность выпадения любого из чисел равна 16. То есть вероятности выпадения чисел равны между собой. Такие события называются равновозможными. 

Равновозможные события — такие события, что по условиям опыта ни одно из них не является более возможным, чем другие. 

Вероятности появления событий равны. 

Для игрального кубика существует всего шесть событий, которые могут произойти: выпадет число 1, 2, 3, 4, 5 или 6. Все эти события образуют полную группу событий. 

Полная группа событий — такая группа событий, если в результате опыта обязательно появится хотя бы одно из них. 

В результате подбрасывания монеты выпадет либо орел, либо решка. То есть полная группа событий состоит из двух событий. 

Мы подбросили монету и выпал орел. Следовательно, не выпала решка. 

А если не выпадет орел? Обязательно выпадет решка. Эти события будут называться противоположными. 

Противоположные события — такие события, если при не наступлении одного обязательно наступает второе. 

Обозначим событие “выпала решка” как A. Противоположное ему событие “выпал орел” обозначим как (overline{A}). 

Заметим, что вероятность события A равняется 12, как и вероятность события (overline{A}). Чему равна их сумма?

)frac{1}{2} + frac{1}{2} = 1) 

Так мы вывели связь между противоположными событиями. Поскольку они всегда образуют полную группу событий, то сумма их вероятностей будет равна 1. 

(P(A) + P(overline{A}) = 1)

Какие еще примеры противоположных событий можно назвать? Ясная и дождливая погода. Если наступает одно из этих событий, то второе уже не может наступить. 

Объединение и пересечение событий 

Допустим, у нас есть два события: сегодня пойдет снег и сегодня пойдет дождь. Что будет, если мы их объединим? 

Объединение событий — событие, состоящее из всех элементарных исходов, благоприятствующих хотя бы одному из событий. 

В этом случае мы получим событие, которое будет выполняться при любом из исходов: и если пойдет снег, и если не пойдет снег. 

Объединение событий обозначается знаком (cup). Объединение событий А и В можно записать как (A cup B). 

Рассмотрим немного другой пример. В первое событие входит, что Илья получит пятерку по физике, а второе событие — Антон получит пятерку по физике. А как можно назвать событие, если оба мальчика получат пятерку по физике?

Пересечение событий — событие, состоящее из всех элементарных исходов, благоприятствующих обоим событиям. 

Пересечение событий обозначается знаком (cap). Пересечение событий А и В можно записать как (A cap B). 

Несовместные и совместные события

Рассмотрим два события: “чайник исправно работает” и “чайник сломался”. Могут ли эти события существовать одновременно? Нет, поскольку появление одного из них исключает появление другого.

Такие события называются несовместными. Название само говорит, что события не могут существовать одновременно. 

Несовместные события — такие события, появление одного из которых исключает появление другого. 

Решим небольшую задачу. На экзамене есть несколько билетов. С вероятностью 0,5 попадется билет по планиметрии. С вероятностью 0,3 попадется билет по экономике. При этом не существует билетов, которые включают обе эти темы. С какой вероятностью на контрольной попадется билет по одной из этих тем?

Представим билеты в виде схемы. Заметим, что нам нужно объединить два из трех кругов, то есть сложить их вероятности. 

Следовательно, вероятность будет равна 0,5 + 0,3 = 0,8.

Сформулируем определение суммы вероятностей двух несовместных событий. 

Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей:

(P(A cup B) = P(A) + P(B))

Если существуют несовместные события, то существуют и совместные. 

Совместные события — события, наступление одного из которых не исключает наступления другого. 

В магазине работают два консультанта. Один из них занят общением с клиентом. Означает ли это, что второй консультант тоже занят?  Нет, поскольку они работают независимо друг от друга. Если занят первый консультант, второй может быть как занят, так и нет. 

Подбросим игральный кубик и рассмотрим два вида событий. Пусть событие А — это “выпадет число 2”, событие В — “выпадет четное число”. 

Найдем вероятность события А: (frac{1}{6}). 

Для события В всего три благоприятных исхода из шести: выпадет число 2, 4 или 6. Тогда вероятность наступления события В равна (frac{3}{6} = frac{1}{2})

Исключают ли события А и В друг друга? Нет, поскольку если произойдет событие А, произойдет и событие В. Когда произойдет событие В, есть вероятность, что произойдет и событие А. 

Найдем объединение совместных событий на примере кругов. Если мы наложим их друг на друга, то в середине получится как бы два слоя. Проверить это можно, если наложить друг на друга два листа бумаги. 

А нужно получить вот такую картину:

Поэтому для объединения двух кругов нам нужно будет исключить одну из серединок. 

Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения:

(P(A cup B) = P(A) + P(B) — P(A cap B))

В каких случаях нужно пользоваться формулой со сложением? Достаточно, чтобы задачу можно было сформулировать с помощью “или”. Например, нужно, чтобы выпали темы по планиметрии или по экономике. 

Независимые и зависимые события 

Прогуляемся в магазин за булочками. В упаковке две булочки, а сама упаковка непрозрачная, то есть увидеть булочки до вскрытия упаковки мы не можем. 

Известно, что на заводе, где изготавливаются булочки, 5 из 100 булочек подгорают. Значит, 95 из 100 булочек не подгорают. По классическому определению вероятности находим, что вероятность каждой булочки не подгореть равна (frac{95}{100} = 0,95). 

Какова вероятность, что в упаковке попадутся только не подгорелые булочки? Как найти вероятность сразу для двух булочек?

Ответим на вопрос: зависят ли булочки друг от друга? 

Если подгорит одна из булочек в упаковке, не обязательно подгорит другая. Следовательно, булочки не зависят друг от друга. Такие события называются независимыми. 

Независимые события — такие события, появление одного из которых не зависит от появления другого события. 

Определим вероятность независимых событий. 

Пусть вероятность, что подгорела первая булочка, будет равна Р(А) = 0,95, а вероятность для второй булочки будет равна Р(В) = 0,95. 

А чтобы найти вероятность независимых событий, нужно воспользоваться следующей формулой:

(P(A cap B) = P(A) * P(B))

Тогда вероятность, что булочки в одной упаковке не подгорят, равняется P = 0,95 * 0,95 = 0,9025. 

В каком случае нужно пользоваться этой формулой? Нужно подставить союз “и”. 

Мы хотим, чтобы в упаковке первая булочка была не подгорелой и вторая булочка была не подгорелой. 

Приведем еще один пример. В здании два автомата с кофе на разных этажах. Даже если сломается один из них, работа второго не будет зависеть от первого. 

Но если автоматы стоят  рядом и включены в одну розетку, то при поломке одного из них есть вероятность выхода из строя розетки, а значит, и второй автомат тоже сломается. Такие события будут зависимыми: появление одного из них зависит от появления другого. 

Предположим, что в мешке лежит семь кубиков: два из них оранжевые, а пять — фиолетовые. Из мешка дважды вытаскивают кубики. Какова вероятность, достать во второй раз именно фиолетовый кубик?

Нужная последовательность может быть в двух случаях:

  • сначала вытащат фиолетовый кубик и потом снова фиолетовый;
  • сначала вытащат оранжевый кубик, а потом фиолетовый. 

Разберем первый случай. Вероятность в первый раз вытащить фиолетовый кубик равна (frac{5}{7}). После этого в мешке останется шесть кубиков, четыре из которых будут фиолетовые. 

Вероятность вытащить во второй раз фиолетовый кубик равна (frac{5}{7} * frac{4}{6} = frac{20}{42} = frac{10}{21}). 

Теперь рассмотрим второй случай. Вероятность в первый раз достать оранжевый кубик равна (frac{2}{7}). В мешке останется шесть кубиков, пять из которых будут фиолетовыми. 

Вероятность вытащить во второй раз фиолетовый кубик будет уже равна (frac{2}{7} * frac{5}{6} = frac{10}{42} = frac{5}{21}). 

В этом примере очень наглядно видно, что вероятность напрямую зависит от того, какой кубик попался первым. Следовательно, эти события зависимы. 

Как отличить зависимые и независимые события? Если после наступления первого события меняется количество благоприятных и всех исходов, то такие события — зависимые. Если количество благоприятных и всех исходов не меняется, то события независимые.

Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А. 

Условная вероятность обозначается P(B|A). В нашем примере условной вероятностью будет вычисление, что во второй раз попадется именно фиолетовый кубик.   

Найдем вероятность двух зависимых событий. Формула похожа на ту, что используется для независимых событий. Но в этот раз нам нужно применить условную вероятность. 

Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило:

(P(A cap B) = P(A) * P(B | A))

Формула Бернулли

Рассмотрим случаи, когда испытание повторяется многократно. Для этого еще раз обратимся к игральному кубику. Подбросим кубик 8 раз. Какова вероятность, что цифра 5 выпала ровно три раза?

Пусть p — вероятность, что выпадет цифра 5. Тогда (p = frac{1}{6}). 

Теперь возьмем q — противоположное р событие — вероятность, что цифра 5 не выпадет. (q = frac{5}{6}). 

Обозначим количество всех бросков за n, а количество выпадения цифры 5 за k. 

Чтобы решить задачу, нужно воспользоваться формулой Бернулли. 

(P_n(k) = C_n^k * p^k * q^{n — k}) 

Множитель (C_n^k) — это число сочетаний. Подробнее узнать про сочетания можно в статье «Основы комбинаторики». 

Решим задачу, подставив значения в формулу:

(P_8(3) = C_8^3 * (frac{1}{6})^3 * (frac{5}{6})^5 = frac{8!}{5!3!} * frac{1}{6^3} * frac{5^5}{6^5} = frac{6 * 7 * 8}{1 * 2 * 3} * frac{5^5}{6^8} approx 0,1) 

Фактчек

  • Вероятность — отношение количества благоприятных событий к количеству всех возможных событий. 
  • События могут быть противоположными. Противоположные события — такие события, если при не наступлении одного обязательно наступает второе. 
  • События можно разделить на совместные и несовместные. Несовместные события — такие события, появление одного из которых исключает появление другого. Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей: P(A (cup) B) = P(A) + P(B). Совместные события — события, наступление одного из которых не исключает наступления другого. Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения: P(A cup B) = P(A) + P(B) — P(A cap B).
  • События также можно разделить на независимые и зависимые. Независимые события — такие события, появление одного из которых не зависит от появления другого события. Вероятность независимых событий можно найти по формуле P(A cap B) = P(A) * P(B). Зависимые события — это события, появление одного из которых зависит от появления другого. Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило. P(A cap B) = P(A) * P(B | A). 
  • Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А. 

Проверь себя

Задание 1. 
Какие события являются несовместными?

  1. Подбрасывание монетки.
  2. Брак батареек в одной упаковке.
  3. “Миша идет” и “Миша стоит”.
  4. Случайное вытаскивание конфет из вазы. 

Задание 2. 
Алена делает ошибку при решении задач по математике с вероятностью 0,17. С какой вероятностью она не сделает ошибку при решении задачи?

  1. 0,17
  2. 1
  3. 0,83
  4. 1,17 

Задание 3. 
Артем решал задачи на вероятность. Ниже приведены его ответы. В какой из задач он точно совершил ошибку?

  1. 1
  2. 0,216
  3. 0,45
  4. 1,5 

Задание 4. 
В упаковке три шариковые ручки. С вероятностью 0,1 такая ручка не будет писать. Найдите вероятность, что все три ручки в упаковке пишут. 

  1. 0,3
  2. 0,001
  3. 2,7
  4. 0,729 

Задание 5. 
Перед Дашей лежит несколько карточек. Она случайно переворачивает одну из них. С вероятностью 0,5 на карточке окажется рисунок природы. С вероятностью 0,27 на карточке окажется мотивационная цитата. Карточек и с рисунком, и с цитатой нет. Найдите вероятность, что Дана перевернет карточку или с рисунком, или с цитатой. 

  1. 0,77
  2. 0,135
  3. 0,23
  4. -0,23

Ответы: 1. — 3 2. — 3 3. — 4 4. — 4 5. — 1

Полная вероятность и формула Байеса

  1. Зависимые события и условные вероятности
  2. Вероятность совместного появления событий
  3. Формула полной вероятности
  4. Формула Байеса
  5. Примеры

п.1. Зависимые события и условные вероятности

Чтобы вспомнить о сложении и умножении вероятностей и независимых событиях – см. §39 справочника для 9 класса.

Напомним, что два случайных события A и B называют независимыми, если наступление одного из них не изменяет вероятность наступления другого.
Например: при бросании монеты несколько раз каждый следующий бросок совершенно не зависит от предыдущих.

Два случайных события A и B называют зависимыми, если вероятность одного из них зависит от того, произошло или нет другое событие.
Вероятность события B, определенная при условии, что событие A произошло, называется условной вероятностью и обозначается (P(B|A)) или (P_A(B)).
Для условных вероятностей справедливы формулы: $$ P(A|B)=frac{P(Awedge B)}{P(B)}, P(B|A)=frac{P(Awedge B)}{P(A)} $$ где (P(Awedge B)) — вероятность совместного появления событий A и B.

Например:
Рассмотрим урну, в которой находится 3 белых и 3 черных шара.
Мы достаем шары, смотрим на их цвет и не возвращаем их на место. События в последовательности становятся зависимыми.
Пусть событие A=»в 1й раз достаем черный шар»,
Событие B=»во 2й раз достаем белый шар»
Событие C=»во 2й раз достаем черный шар»
После того, как произошло событие A, в урне остается 3 белых и 2 черных шара.
Тогда условная вероятность для события B при условии, что событие A произошло:
(P(B|A)=frac35)
Аналогично, условная вероятность для события C:
(P(B|A)=frac25)

п.2. Вероятность совместного появления событий

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло: $$ P(Awedge B)=P(B)cdot P(A|B)=P(A)cdot P(B|A) $$ Это утверждение также называют теоремой умножения вероятностей.

Например:
Продолжая предыдущий пример, вероятность события ((Awedge B)) – 1й раз достали черный шар и 2й раз белый – равна: $$ P(Awedge B)=P(A)cdot P(B|A)=frac12cdot frac35=0,3 $$ Также, напомним:

Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий: $$ P(Awedge B)=P(A)cdot P(B) $$

Например:
Пусть в урне 3 белых и 3 черных шара. Мы достаем шары, смотрим на их цвет и возвращаем их на место. В последовательности наших действий все события будут независимыми. Каждый раз, вероятность достать белый или черный шар будет равна 1/2. Поэтому, в этом случае вероятность события ((Awedge B)) – 1й раз достали черный шар, а 2й раз белый – равна: $$ P(Awedge B)=P(A)cdot P(B)=frac12cdotfrac12=0,25 $$

п.3. Формула полной вероятности

Чтобы вспомнить о несовместных событиях и полной группе событий – см. §39 справочника для 9 класса.
Например:
При подбрасывании монеты события A=«получить орла» и B=«получить решку» — несовместные, т.к. одновременно произойти не могут.
В то же время, эти несовместные события A и B образуют пространство элементарных событий или полную группу (Omega=left{B;Bright}), т.к. ничего другого, кроме орла или решки, получить нельзя. Сумма вероятностей (P(A)+P(B)=frac12+frac12=1), как и положено для полной группы.

Если событие A может произойти только при выполнении одного из событий (B_1,B_2,…,B_k), которые образуют полную группу событий, то вероятность события A определяется по формуле полной вероятности: $$ P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+…+P(B_k)P(A|B_k)=sum_{i=1}^k P(B_i)P(A|B_i) $$

Например:
В 11А и 11Б учится по 35 человек, а в 11В — 30 человек. Будем считать тех, у кого 4 и 5 баллов по алгебре и геометрии, «знатоками математики». Таких учеников в 11А — 10 человек, в 11Б — 7 человек, и в 11В — 3 человека.
Какова вероятность, что произвольно выбранный 11-классник окажется знатоком математики?
Пусть события A=«знаток математики», Bi=«ученик i-го класса», (i=overline{1,3})
Составим таблицу:

i Класс К-во
учеников
(P(B_i)) К-во
знатоков
(P(A|B_i)) (P(B_i)cdot P(A|B_i))
1 11A 35 35/100=0,35 10 10/35=2/7 0,1
2 11Б 35 35/100=0,35 7 7/35=1/5 0,07
3 11В 30 30/100=0,3 10 3/30=1/10 0,03
Всего 100 1 20 × 0,2

Получаем полную вероятность (P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,2)
В данном случае ответ можно получить и проще: 20 знатоков на 100 человек дает (P(A)=0,2).

п.4. Формула Байеса

По данному выше определению полной вероятности событие A случается, если происходит одно из событий полной группы (left{B_iright}).
Допустим, что событие A случилось. А какова вероятность, что при этом произошло конкретное событие (B_1inleft{B_iright})? Т.е., нас интересует условная вероятность (P(B_1|A)).
По теореме об умножении вероятностей: $$ P(Awedge B_1)=P(B_1)cdot P(A|B_1)=P(A)cdot P(B_1|A) $$ Откуда: $$ P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)} $$ То же самое справедливо для любого события (B_pinleft{B_iright}). Предположение о том, что случилось событие (B_p), называют гипотезой.

Если событие A может произойти только при выполнении одного из событий полной группы (left{B_iright}) и событие A случилось, то вероятность гипотезы, что при этом случилось событие (B_pinleft{B_iright}), определяется формулой Байеса: $$ P(B_p|A)=frac{P(B_p)cdot P(A|B_p)}{P(A)}=frac{P(B_p)cdot P(A|B_p)}{sum_{i=1}^k P(B_i)P(A|B_i)} $$ Вероятность (P(B_p)) называют априорной вероятностью.
Вероятность (P(B_p|A)) называют апостериорной вероятностью. Случившееся событие A может поменять априорную (предварительную) оценку вероятности события (B_p).

Например:
Продолжим задачу с 11-классниками. Какова вероятность того, что произвольно взятый знаток математики учится в 11Б?
Наши события: A=«знаток математики», B2=«ученик 11Б класса».
Событие A «случилось» — у нас имеется знаток, а событие B2 — это гипотеза про 11Б.
И ответом на поставленный вопрос является вероятность (P(B_2|A)).
Из нашей таблицы: $$ P(B_2)cdot P(A|B_2)=0,07; P(A)=0,2 $$ Получаем: $$ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{0,07}{0,2}=0,35 $$ Т.е. 11Б дает 35% всех знатоков математики в этой школе.
Если сравнить апостериорную вероятность (P(B_2|A)=0,35) с априорной вероятностью (P(B_2)=0,35), они равны. Событие A не повлияло на оценку вклада 11Б в интеллектуальный багаж школы, он находится на среднем уровне.
Теперь найдем вероятность того, что произвольно взятый знаток математики учится в 11А: begin{gather*} P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)}=frac{0,1}{0,2}=0,5\ P(B_1|A)gt P(B_1) end{gather*} Вклад 11А по факту (апостериорная вероятность 0,5) оказывается большим, чем ожидалось по количеству учеников (априорная вероятность 0,35). 50% знатоков всей школы – из этого класса.
Наконец, найдем вероятность того, что произвольно взятый знаток математики учится в 11В: begin{gather*} P(B_3|A)=frac{P(B_3)cdot P(A|B_3)}{P(A)}=frac{0,03}{0,2}=0,15\ P(B_3|A)lt P(B_3) end{gather*} Вклад 11В по факту (апостериорная вероятность 0,15) оказывается меньшим, чем ожидалось по количеству учеников (априорная вероятность 0,3). Только 15% знатоков всей школы – из этого класса.

п.5. Примеры

Пример 1. Двигатель работает в трех режимах: нормальном (65% времени), форсированном (25% времени) и холостом. Вероятность поломки в каждом из режимов соответственно равна (p_1=0,1; p_2=0,8; p_3=0,05).
а) найдите вероятность поломки двигателя во время работы;
б) двигатель сломался. Какова вероятность, что он в этот момент работал в форсированном режиме?

а) Пусть событие A=«поломка двигателя», Bi — «работа в i-м режиме», (i=overline{1,3})
Необходимо найти полную вероятность (P(A)).
Составим таблицу:

i Режим Часть
времени
(P(B_i))
Вероятность
поломки
(P(A|B_i))
(P(B_i)cdot P(A|B_i))
1 Нормальный 0,65 0,1 0,065
2 Форсированный 0,25 0,8 0,2
3 Холостой 0,1 0,05 0,005
Всего 1 × 0,27

Вероятность поломки (полная вероятность): $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,27 $$
б) Событие A=«поломка двигателя» произошло. Гипотеза B2 — «работа в форсированном режиме» при фактической поломке имеет вероятность: $$ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{0,2}{0,27}=frac{20}{27}approx 0,741 $$ Апостериорная вероятность (P(B_2|A)approx 0,741) больше априорной вероятности (P(B_2)=0,25).

Ответ: a) 0,27; б) (frac{20}{27}approx 0,741)

Пример 2. В состязании лучников участвуют три стрелка. Вероятность попадания в мишень для каждого из них равна 0,3; 0,5 и 0,7. Один из стрелков стреляет и не попадает. Какова вероятность, что это был:
а) первый стрелок;
б) второй стрелок;
в) третий стрелок;

Пусть событие A=«промах», Bi — «выстрел i-го стрелка», (i=overline{1,3})
Т.к. стрелять мог любой из стрелков (P(B_i)=frac13) для каждого из них.
Чтобы найти вероятность промаха, нужно от 1 отнять вероятность попадания.
Составим таблицу:

i (P(B_i)) Вероятность
промаха
(P(A|B_i))
(P(B_i)cdot P(A|B_i))
1 (frac13) 1-0,3=0,7 (frac13cdot 0,7=frac{7}{30})
2 (frac13) 1-0,5=0,5 (frac13cdot 0,5=frac{1}{6})
3 (frac13) 1-0,7=0,3 (frac13cdot 0,3=frac{1}{10})
1 × 0,5

Полная вероятность: $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=frac{7}{30}+frac16+frac{1}{10}=0,5 $$ Промах произошел. Находим апостериорные вероятности для каждого стрелка: begin{gather*} P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)}=frac{7/30}{0,5}=frac{7}{15}approx 0,467\ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{1/6}{0,5}=frac{2}{3}approx 0,333\ P(B_3|A)=frac{P(B_3)cdot P(A|B_3)}{P(A)}=frac{1/10}{0,5}=frac{1}{5}=0,2\ end{gather*} С точки зрения практической, можно сказать, что «вероятнее всего», это был первый стрелок.

Ответ: a) (frac{7}{15}); б) (frac{1}{3}); в) (frac{1}{5})

Пример 3. Три фрилансера на площадке выполняют заказы в отношении по количеству 3:4:3. Доля успешно выполненных заказов для каждого из них составляет 98%, 95% и 90%.
а) найдите вероятность успешного выполнения заказа на площадке;
б) найдите вероятность неуспеха на площадке;
в) кто из фрилансеров, вероятнее всего, виноват в неуспешной работе?

Пусть событие A=«успех», Bi — «работа i-го фрилансера», (i=overline{1,3})
Составим таблицу успешной деятельности:

i (P(B_i)) Вероятность успеха
(P(A|B_i))
(P(B_i)cdot P(A|B_i))
1 0,3 0,98 0,294
2 0,4 0,95 0,38
3 0,3 0,9 0,27
1 × 0,944

Вероятность успешного выполнения (полная вероятность): $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,944 $$ б) Вероятность неуспеха (противоположное событие): $$ P(overline{A})=1-P(A)=1-0,944=0,056 $$ в) Составим таблицу неуспешной деятельности:

i (P(B_i)) Вероятность неуспеха
(P(overline{A}|B_i))
(P(B_i)cdot P(overline{A}|B_i))
1 0,3 1-0,98=0,02 0,006
2 0,4 1-0,95=0,05 0,02
3 0,3 1-0,9=0,1 0,03
1 × 0,056

Апостериорные вероятности для каждого из фрилансеров: begin{gather*} P(B_1|overline{A})=frac{P(B_1)cdot P(overline{A}|B_1)}{P(overline{A})}=frac{0,006}{0,056}=frac{3}{28}approx 0,107\ P(B_2|overline{A})=frac{P(B_2)cdot P(overline{A}|B_2)}{P(overline{A})}=frac{0,02}{0,056}=frac{5}{14}approx 0,357\ P(B_3|overline{A})=frac{P(B_3)cdot P(overline{A}|B_3)}{P(overline{A})}=frac{0,03}{0,056}=frac{15}{28}approx 0,536 end{gather*} Наибольшая вероятность неуспеха – у третьего фрилансера.

Ответ: а) 0,944; б) 0,056; в) третий фрилансер.

Пример 4. Докажите, что если полная вероятность события A равна $$ P(A)=sum_{i=1}^k P(B_i)cdot P(A|B_i) $$ то вероятность противоположного события равна (P(overline{A})=1-P(A)).

По условию событие A происходит только при выполнении одного из событий полной группы (left{B_iright}. i=overline{i,k}). Соответственно, противоположное событие (overline{A}) также происходит при выполнении одного из событий (B_i). При этом условная вероятность для противоположного события: $$ P(overline{A}|B_i)=1-P(A|B_i) $$ Заметим также, что для полной группы сумма вероятностей равна 1: begin{gather*} sum_{i=1}^k P(B_i)=1 end{gather*} Получаем: begin{gather*} P(overline{A})=sum_{i=1}^k P(B_i)cdot P(overline{A}|B_i)=sum_{i=1}^k P(B_i)cdot (1-P(A|B_i))=\ =sum_{i=1}^k P(B_i)-sum_{i=1}^k P(B_i)cdot P(A|B_i)=1-P(A) end{gather*} Что и требовалось доказать.

Зависимые и независимые случайные события.
Основные формулы сложения и умножения вероятностей

Понятия зависимости и независимости случайных событий. Условная вероятность. Формулы сложения и умножения вероятностей для зависимых и независимых случайных событий. Формула полной вероятности и формула Байеса.

Теоремы сложения вероятностей

Найдем вероятность суммы событий A и B (в предположении их совместности либо несовместности).

Теорема 2.1. Вероятность суммы конечного числа несовместных событий равна сумме их вероятностей:

P{A+B+ldots+N}=P{A}+P{B}+ldots+P{N}.

Пример 1. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12; 45-го — 0,04; 46-го и большего — 0,01. Найти вероятность того, что будет продана пара мужской обуви не меньше 44-го размера.

Решение. Искомое событие D произойдет, если будет продана пара обуви 44-го размера (событие A) или 45-го (событие B), или не меньше 46-го (событие C), т. е. событие D есть сумма событий A,B,C. События A, B и C несовместны. Поэтому согласно теореме о сумме вероятностей получаем

P{D}=P{A+B+C}=P{A}+P{B}+P{C}=0,!12+0,!04+0,!01 =0,!17.

Пример 2. При условиях примера 1 найти вероятность того, что очередной будет продана пара обуви меньше 44-го размера.

Решение. События «очередной будет продана пара обуви меньше 44-го размера» и «будет продана пара обуви размера не меньше 44-го» противоположные. Поэтому по формуле (1.2) вероятность наступления искомого события

P{overline{D}}=1-P{D}=1-0,!17=0,!83.

поскольку P{D}=0,!17, как это было найдено в примере 1.

Теорема 2.1 сложения вероятностей справедлива только для несовместных событий. Использование ее для нахождения вероятности совместных событий может привести к неправильным, а иногда и абсурдным выводам, что наглядно видно на следующем примере. Пусть выполнение заказа в срок фирмой «Electra Ltd» оценивается вероятностью 0,7. Какова вероятность того, что из трех заказов фирма выполнит в срок хотя бы какой-нибудь один? События, состоящие в том, что фирма выполнит в срок первый, второй, третий заказы обозначим соответственно A,B,C. Если для отыскания искомой вероятности применить теорему 2.1 сложения вероятностей, то получим P{A+B+C}=0,!7+0,!7+0,!7=2,!1. Вероятность события оказалась больше единицы, что невозможно. Это объясняется тем, что события A,B,C являются совместными. Действительно, выполнение в срок первого заказа не исключает выполнения в срок двух других.

Сформулируем теорему сложения вероятностей в случае двух совместных событий (будет учитываться вероятность их совместного появления).

Теорема 2.2. Вероятность суммы двух совместных событий равна сумме вероятностей этих двух событий без вероятности их совместного появления:

P{A+B}=P{A}+P{B}-P{AB}.


Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Пример 3. Монета брошена два раза. Вероятность появления «герба» в первом испытании (событие A) не зависит от появления или не появления «герба» во втором испытании (событие B). В свою очередь, вероятность появления «герба» во втором испытании не зависит от результата первого испытания. Таким образом, события A и B независимые.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события B и обозначается P{B|A}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости — в виде P{B|A}ne{P{B}}. Рассмотрим пример вычисления условной вероятности события.


Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.

Решение. Обозначим A извлечение изношенного резца в первом случае, а overline{A} — извлечение нового. Тогда P{A}=frac{2}{5},~P{overline{A}}=1-frac{2}{5}=frac{3}{5}. Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.

Обозначим B событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:

P{B|A}=frac{1}{4},~~~P{B|overline{A}}=frac{2}{4}=frac{1}{2}.

Следовательно, вероятность события B зависит от того, произошло или нет событие A.


Формулы умножения вероятностей

Пусть события A и B независимые, причем вероятности этих событий известны. Найдем вероятность совмещения событий A и B.

Теорема 2.3. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

P{AB}=P{A}cdot P{B}.

Следствие 2.1. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

P{A_1A_2ldots{A_n}}=P{A_1}P{A_2}ldots{P{A_n}}.


Пример 5. Три ящика содержат по 10 деталей. В первом ящике — 8 стандартных деталей, во втором — 7, в третьем — 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие A), P{A}=frac{8}{10}=frac{4}{5}. Вероятность того, что из второго ящика взята стандартная деталь (событие B), P{B}=frac{7}{10}. Вероятность того, что из третьего ящика взята стандартная деталь (событие C), P{C}=frac{9}{10}. Так как события A, B и C независимые в совокупности, то искомая вероятность (по теореме умножения)

P{ABC}=P{A}P{B}P{C}=frac{4}{5}frac{7}{10}frac{9}{10}=0,!504.

Пусть события A и B зависимые, причем вероятности P{A} и P{B|A} известны. Найдем вероятность произведения этих событий, т. е. вероятность того, что появится и событие A, и событие B.

Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

P{AB}=P{A}cdot P{B|A};qquad P{AB}=P{B}cdot P{A|B}

Следствие 2.2. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.


Пример 6. В урне находятся 5 белых шаров, 4 черных и 3 синих. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в урну. Найти вероятность того, что при первом испытании появится белый шар (событие A), при втором — черный (событие B) и при третьем — синий (событие C).

Решение. Вероятность появления белого шара при первом испытании P{A}=frac{5}{12}. Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, т. е. условная вероятность P{B|A}=frac{4}{11}. Вероятность появления синего шара при третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором — черный, P{C|AB}=frac{3}{10}. Искомая вероятность

P{ABC}=P{A}P{B|A}P{C|AB}=frac{5}{12}frac{4}{11}frac{3}{10}.


Формула полной вероятности

Теорема 2.5. Если событие A наступает только при условии появления одного из событий B_1,B_2,ldots{B_n}, образующих полную группу несовместных событий, то вероятность события A равна сумме произведений вероятностей каждого из событий B_1,B_2,ldots{B_n} на соответствующую условную вероятность события B_1,B_2,ldots{B_n}:

P{A}=sumlimits_{i=1}^{n}P{B_i}P{A|B_i}.

(2.1)

При этом события B_i,~i=1,ldots,n называются гипотезами, а вероятности P{B_i} — априорными. Эта формула называется формулой полной вероятности.

Пример 7. На сборочный конвейер поступают детали с трех станков. Производительность станков не одинакова. На первом станке изготовляют 50% всех деталей, на втором — 30%, на третьем — 20%. Вероятность качественной сборки при использовании детали, изготовленной на первом, втором и третьем станке, соответственно 0,98, 0,95 и 0,8, Определить вероятность того, что узел, сходящий с конвейера, качественный.

Решение. Обозначим A событие, означающее годность собранного узла; B_1, B_2 и B_3 — события, означающие, что детали сделаны соответственно на первом, втором и третьем станке. Тогда

P{B_1}=0,!5;~~~~~P{B_2}=0,!3;~~~~~P{B_3}=0,!2;
P{A|B_1}=0,!98;~~~P{A|B_2}=0,!95;~~~P{A|B_3}=0,!8.

Искомая вероятность

begin{gathered}P{A}=P{B_1}P{A|B_1}+P{B_2}P{A|B_2}+P{B_3}P{A|B_3}=hfill\=0,!5cdot0,!98+0,!3cdot0,!95+0,!2cdot0,!8=0,!935.end{gathered}


Формула Байеса

Эта формула применяется при решении практических задач, когда событие A, появляющееся совместно с каким-либо из событий B_1,B_2,ldots{B_n}, образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез B_1,B_2,ldots{B_n}. Априорные (до опыта) вероятности P{B_1},P{B_2},ldots{P{B_n}} известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности P{B_1|A},P{B_2|A},ldots{P{B_n|A}}. Для гипотезы B_j формула Байеса выглядит так:

P{B_j|A}=frac{P{B_j} P{A|B_j}}{P{A}}.

Раскрывая в этом равенстве P{A} по формуле полной вероятности (2.1), получаем

P{B_j|A}=dfrac{P{B_j}P{A|B_j}}{sumlimits_{i=1}^{n}P{B_i}P{A|B_i}}.


Пример 8. При условиях примера 7 рассчитать вероятности того, что в сборку попала деталь, изготовленная соответственно на первом, втором и третьем станке, если узел, сходящий с конвейера, качественный.

Решение. Рассчитаем условные вероятности по формуле Байеса:

для первого станка

P{B_1|A}=dfrac{P{B_1}P{A|B_1}}{P{A}}=frac{0,!5cdot0,!98}{0,!935}approx0,!525;

для второго станка

P{B_2|A}=dfrac{P{B_2}P{A|B_2}}{P{A}}=frac{0,!3cdot0,!95}{0,!935}approx0,!304;

для третьего станка

P{B_3|A}=dfrac{P{B_3}P{A|B_3}}{P{A}}=frac{0,!2cdot0,!8}{0,!935}approx0,!171.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Алгебра и начала математического анализа, 11 класс

Урок №34. Условная вероятность. Независимость событий.

Перечень вопросов, рассматриваемых в теме:

— Условная вероятность

— Совместные и несовместные события

— Схема решения задач на вычисление условной вероятности события;

— Задачи на определение независимости событий.

Глоссарий по теме

Совместные события – события, одновременное появление которых возможно.

Несовместные события – события, одновременное появление которых невозможно.

События являются независимыми, если вероятность наступления любого из них не зависит от появления остальных событий рассматриваемого множества событий.

Событие В называется зависимым, если вероятность P(B) зависит от появления или непоявления события А. Вероятность события В, вычисленная в предположении того, что событие А уже произошло, называется условной вероятностью наступления события В и обозначается PA(B).

Условная вероятность – вероятность наступления одного события при условии, что другое событие уже произошло.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014. с. 186-194.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Иногда нам требуется выяснить вероятность совместного появления зависимых событий. Самый простой пример – найти вероятность получить выигрышную комбинацию в азартной карточной игре, где вероятность выпадения каждой новой карты зависит от того, какие карты уже лежат на столе.

Рассмотрим примерную задачу:

Из колоды карт извлекают четыре карты. Первые две оказались семёрками. Какова вероятность, что одна или обе оставшиеся карты окажутся семёрками? (колода содержит 36 карт)

1. 1/561

2. 65/561

3. 1/105

4. 17/518

Теоретическая часть

События называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании.

Пример совместных событий: выпадение чётного числа и выпадение числа, кратного трём, при броске игрального кубика. Когда выпадает шесть, реализуются сразу оба события.

События называются несовместными, если появление одного из них исключает появление другого в одном и том же испытании.

Пример несовместных событий: выпадение чётного числа и выпадение нечётного числа при броске игрального кубика.

Теорема о сумме двух событий:

Вероятность суммы любых двух событий А и В равна сумме вероятностей этих событий без вероятности их совместного осуществления: Р(А+В) = Р(А)+Р(В)-Р(АВ)

Рассмотрим пример.

В лотерее выпущено 10 000 билетов, из них: 10 выигрышей по 200 рублей, 100 выигрышей по 100 рублей, 500 выигрышей по 50 рублей и 1000 выигрышей по 10 рублей. Какова вероятность того, что человек, купивший билет, выиграет не менее 50 рублей?

Решение: Введем для удобства обозначение событий А — «человек выиграл 50 рублей», В — «человек выиграл 100 рублей», С — «человек выиграл 200 рублей», D — «человек выиграл не менее 50 рублей». Событие D означает, что выигрыш может составлять 50 и более рублей, то есть 50, 100 или 200 рублей: М=А+В+С. События А, В, С – попарно несовместны.

Воспользуемся теоремой: Р(М)=Р(А)+Р(В)+Р(С)=0,061.

Задача.

Дана вероятность исходного события. Чему равна вероятность противоположного события?

Вероятность исходного события А обозначим Р(А). Вероятность противоположного события Р(Ᾱ).

Решение:

События А и Ᾱ образуют полную группу событий, вероятность которой равна 1.

Тогда вероятность противоположного события находится по формуле:

P(Ᾱ)=1-P(A)

  1. События являются независимыми, если вероятность наступления любого из них не зависит от появления остальных событий рассматриваемого множества событий.

Например, монета брошена два раза.

A – выпала «Решка»

B – выпал «Орёл»

Вероятность появления «Орла» во втором испытании не зависит от результата первого испытания.

Теорема умножения вероятностей независимых событий: вероятность совместного появления независимых событий A и B равна произведению вероятностей этих событий:

Р(АВ)=Р(А)·Р(В)

Рассмотрим пример.

Задача.

Подбрасываются две монеты. Найдите вероятность выпадения двух орлов.

Решение:

Введем обозначение событий:

A1– на 1-й монете выпадет орёл;

A2– на 2-й монете выпадет орёл.

Событие “выпадение двух орлов” заключается в том, что на 1-й монете появится орёл и на 2-й монете появится орёл, следовательно, это произведение событий A1A2. Вероятность выпадения орла на одной монете не зависит от результата броска другой монеты, следовательно, события A1 и A2 независимы. По теореме умножения вероятностей независимых событий получим:

P(A1A2) = P(A1)· P(A2) = 1/2 · 1/2 = 1/4.

  1. Событие B называется зависимым, если вероятность P(B) зависит от появления или непоявления события А. Вероятность события B, вычисленная в предположении того, что событие А уже произошло, называется условной вероятностью наступления события В  и обозначается PA(B).

Отыскать вероятность совместного появления зависимых событий помогает теорема умножения вероятностей зависимых событий: вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло: P(AB) = P(A)·PA(B).

Связь теории вероятностей с теорией множеств.

В математике принято устанавливать связи между различными разделами. Связь между теорией вероятностей и теорией множеств устанавливается следующим образом: события отождествляются с множествами. В таком случае понятию исход будет эквивалентно понятие элемент множества. При таком подходе выберите из списка, какому понятию из теории множеств соответствует данное понятие из теории вероятностей:

— Невозможное событие (подмножество, бесконечное множество, пустое множество, пересечение множеств, объединение множеств, разность множеств, декартово произведение множеств)

— Сумма событий (подмножество, бесконечное множество, пустое множество, пересечение множеств, объединение множеств, разность множеств, декартово произведение множеств)

— Произведение событий (подмножество, бесконечное множество, пустое множество, пересечение множеств, объединение множеств, разность множеств, декартово произведение множеств)

Примеры и разбор решения заданий тренировочного модуля

1. В урне 6 черных, 5 красных и 4 белых шара. Последовательно извлекают три шара без возврата. Найдите вероятность того, что первый шар окажется черным, второй – красным и третий – белым.

Решение.

А – первый шар окажется черным

В — второй шар красный

С — третий шар белый

Ответ: 4/91.

2. Колю отпускают гулять при условии сделанных уроков с вероятностью 0,8. Папа выдает ему деньги на мороженое с вероятностью 0,6. С какой вероятностью Коля пойдет гулять без мороженого?

Решение.

A – папа выдал Коле денег на мороженое

B – Колю отпустили гулять

Вероятность того, что Коля пойдёт гулять, есть в условии задачи P(B) = 0,8. Вероятность, что папа не выдаст ему деньги на мороженое, равна P(Ᾱ) = 1 – P(A) = 1 – 0,6 = 0,4. Вероятность одновременного осуществления двух независимых событий – произведение их вероятностей P(ᾹB) = P(Ᾱ)·P(B) = 0,8·0,4 = 0,32.

Ответ: 0,32.

Понравилось? Добавьте в закладки

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события $B$ при дополнительном условии, что произошло событие $А$.

Условной вероятностью $P_A(B)=P(B|A)$ (два обозначения) называют вероятность события $В$, вычисленную в предположении, что событие $А$ уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

$$P(AB)=P(B)cdot P(A|B) = P(A) cdot P(B|A).$$

В частности, отсюда получаем формулы для условной вероятности:

$$P(A|B)=frac{P(AB)}{P(B)}, quad P(B|A)=frac{P(AB)}{P(A)}.$$

Примеры решений на условную вероятность

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А, если событие В произошло, будет
.
Вероятность события А при условии, что событие В не произошло, будет
.

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение. После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле
.

Действительно, вероятность появления белого шара при первом испытании
.

Найдем вероятность того, что в первом испытании появится черный шар, а во втором — белый. Общее число исходов — совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение. Пусть А — событие, состоящее в том, что на линию вышел трамвай маршрута №1, В — маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

;

;

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение. Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А — появление первой карты такой масти, В — появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому придется воспользоваться теоремой умножения в ее общей форме:

,
где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая — 8).

Получаем
.

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:
.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как в мобильном банке найти реквизиты карты
  • Как найти первичную обмотку автотрансформатора
  • Как найти радиус окружности в котором сегмент
  • Как найти свой штраф с камеры
  • Как найти вторую работу если уже работаешь

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии