Заказать задачи по любым предметам можно здесь от 10 минут
Векторное произведение векторов
Определение
Определение |
Векторным произведением векторов $ overline{a} $ и $ overline{b} $ является вектор $ overline{c} $, который расположен перпендикулярно к плоскости, образуемой векторами $ overline{a} $ и $ overline{b} $. Само произведение обозначается как $ [overline{a},overline{b}] $, либо $ overline{a} times overline{b} $. |
Векторное произведение векторов, формула которого зависит от исходных данных задачи, можно найти двумя способами.
Формула
Формула 1 |
Если известен синус угла между векторами $ overline{a} $ и $ overline{b} $, то найти векторное произведение векторов можно по формуле: $$ [overline{a},overline{b}] = |overline{a}| cdot |overline{b}| cdot sin (overline{a},overline{b}) $$ |
Формула 2 |
В случае когда векторы $ overline{a} $ и $ overline{b} $ заданы в координатной форме, то их произведение определяется по формуле: $$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} $$ где векторы $ overline{i},overline{j},overline{k} $ называются единичными векторами соответствующих осей $ Ox, Oy, Oz $. |
Определитель во второй формуле можно раскрыть по первой строке:
$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} = overline{i} (a_2 b_3 — a_3 b_2) — overline{j} (a_1 b_3 — a_3 b_1) + overline{k} (a_1 b_2 — a_2 b_1) $$
Итого вторая формула приобретает окончательный короткий вид:
$$ overline{a} times overline{b} = (a_2 b_3 — a_3 b_2; a_3 b_1 — a_1 b_3; a_1 b_2 — a_2 b_1) $$
Свойства
- При изменении порядка множителей меняется знак на противоположный: $$ [overline{a},overline{b}] = -[overline{b},overline{a}] $$
- Вынос константы за знак произведения: $$ lambda [overline{a},overline{b}] = [lambda overline{a}, overline{b}] = [overline{a}, lambda overline{b}] $$
- $$ [overline{a}+overline{b}, overline{c}] = [overline{a},overline{c}] + [overline{b}, overline{c}] $$
Примеры решений
Пример 1 |
Найти векторное произведение векторов, заданных координатами $$ overline{a} = (2,1,-3) $$ $$ overline{b} = (1,2,-1) $$ |
Решение |
Составляем определитель, первая строка которого состоит из единичных векторов, а вторая и третья из координат векторов $ overline{a} $ и $ overline{b} $: $$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ 2&1&-3\1&2&-1 end{vmatrix} = overline{i} (-1+6) — overline{j}(-2+3) + overline{k}(4-1) = 5overline{i} — overline{j} + 3overline{k} $$ Полученный ответ можно записать в удобном виде: $$ overline{a} times overline{b} = (5, -1, 3) $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ overline{a} times overline{b} = (5, -1, 3) $$ |
Геометрический смысл
- Модуль векторного произведения векторов $ overline{a} $ и $ overline{b} $ в геометрическом смысле равен площади параллелограмма, построенного на этих векторах: $$ S_{parall} = |overline{a} times overline{b}| $$
- Половина этого модуля это площадь треугольника: $$ S_Delta = frac{1}{2} |overline{a} times overline{b} | $$
- Если векторное произведение равно нулю $ overline{a} times overline{b} = 0 $, то векторы коллинеарны.
Пример 2 |
Найти площадь треугольника по заданным векторам $$ overline{a} = (2,1,3) $$ $$ overline{b} = (-1,2,1) $$ |
Решение |
Используя геометрический смысл, в частности вторую формулу находим половину модуля векторного произведения векторов. Находим определитель: $$ begin{vmatrix} overline{i}&overline{j}&overline{k}\2&1&3\-1&2&1 end{vmatrix} = overline{i}(1-6) — overline{j}(2+3) + overline{k}(4+1) = -5overline{i} — 5overline{j} + 5overline{k} $$ Вычисляем модуль полученного вектора как корень квадратный из суммы квадратов координат этого вектора: $$ |overline{a} times overline{b}| = sqrt{(-5)^2 + (-5)^2 + 5^2} = sqrt{25 + 25 + 25} = sqrt{75} $$ По формуле нахождения площади треугольника имеем: $$ S_Delta = frac{1}{2} |overline{a} times overline{b}| = frac{1}{2} sqrt{75} = 4.33 $$ |
Ответ |
$$ S_Delta = 4.33 $$ |
Любовь Петровна Гаврилюк
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Угол между векторами
Для того чтобы мы могли ввести понятие векторного произведения двух векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.
Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет называться углом между этими векторами (рис. 1).
Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ
Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них нулевой, то угол между этими векторами будет равен $0^circ$.
Обозначение: $∠(overline{α},overline{β})$
Понятие векторного произведения векторов и формула нахождения
Определение 1
Векторным произведением двух векторов называется вектор, перпендикулярный обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.
Обозначение: $overline{α}хoverline{β}$.
Математически это выглядит следующим образом:
- $|overline{α}хoverline{β}|=|overline{α}||overline{β}|sin∠(overline{α},overline{β})$
- $overline{α}хoverline{β}⊥overline{α}$, $overline{α}хoverline{β}⊥overline{β}$
- $(overline{α}хoverline{β},overline{α},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)
«Как найти векторное произведение векторов» 👇
Рисунок 2. Произведение векторов. Автор24 — интернет-биржа студенческих работ
Очевидно, что внешнее произведение векторов будет равняться нулевому вектору в двух случаях:
- Если длина одного или обоих векторов равняется нулю.
- Если угол между этими векторами будет равняться $180^circ$ или $0^circ$ (так как в этом случае синус равняется нулю).
Чтобы наглядно увидеть, как находится векторное произведение векторов, рассмотрим следующие примеры решения.
Пример 1
Найти длину вектора $overline{δ}$, который будет являться результатом векторного произведения векторов, с координатами $overline{α}=(0,4,0)$ и $overline{β}=(3,0,0)$.
Решение.
Изобразим эти векторы в декартовом координатном пространстве (рис. 3):
Рисунок 3. Векторы в декартовом координатном пространстве. Автор24 — интернет-биржа студенческих работ
Видим, что эти векторы лежат на осях $Ox$ и $Oy$, соответственно. Следовательно, угол между ними будет равняться $90^circ$. Найдем длины этих векторов:
$|overline{α}|=sqrt{0+16+0}=4$
$|overline{β}|=sqrt{9+0+0}=3$
Тогда, по определению 1, получим модуль $|overline{δ}|$
$|overline{δ}|=|overline{α}||overline{β}|sin90^circ=4cdot 3cdot 1=12$
Ответ: $12$.
Вычисление векторного произведения по координатам векторов
Из определения 1 сразу же вытекает и способ нахождения векторного произведения для двух векторов. Поскольку вектор кроме значения имеет еще и направление, находить его только при помощи скалярной величины невозможно. Но помимо него существует еще способ нахождения с помощью координат данных нам векторов.
Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые будут иметь координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно. Тогда вектор векторного произведения (а именно его координаты) можно найти по следующей формуле:
$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}$
Иначе, раскрывая определитель, получим следующие координаты
$overline{α}хoverline{β}=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$
Пример 2
Найти вектор векторного произведения коллинеарных векторов $overline{α}$ и $overline{β}$ с координатами $(0,3,3)$ и $(-1,2,6)$.
Решение.
Воспользуемся формулой, приведенной выше. Получим
$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\0&3&3\-1&2&6end{vmatrix}=(18-6)overline{i}-(0+3)overline{j}+(0+3)overline{k}=12overline{i}-3overline{j}+3overline{k}=(12,-3,3)$
Ответ: $(12,-3,3)$.
Свойства векторного произведения векторов
Для произвольных смешанных трех векторов $overline{α}$, $overline{β}$ и $overline{γ}$, а также $r∈R$ справедливы следующие свойства:
-
$overline{α}хoverline{β}=-(overline{β}хoverline{α})$
Верность этого свойства будет следовать из третьего пункта определения 1.
-
$(roverline{α})хoverline{β}=r(overline{α}хoverline{β})$ и $overline{α}х(roverline{β})=r(overline{α}хoverline{β})$
Из формулы для нахождения векторного произведения будем получать:
$(roverline{α})overline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\rα_1&rα_2&rα_3\β_1&β_2&β_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=r(overline{α}хoverline{β})$
$overline{α}х(roverline{β})=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\rβ_1&rβ_2&rβ_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=r(overline{α}хoverline{β})$
-
$overline{α}х(overline{β}+overline{γ})=overline{α}overline{β}+overline{α}overline{γ}$ и $(overline{α}+overline{β})overline{γ}=overline{α}overline{γ}+overline{β}overline{γ}$.
Данное свойство векторного произведения векторов также можно проверить с помощью формулы.
Следующее свойство называют геометрическим смыслом векторного произведения:
-
Длина вектора векторного произведения равняется площади параллелограмма, который нужно было построить между ними (рис. 4)
Рисунок 4. Длина вектора векторного произведения. Автор24 — интернет-биржа студенческих работ
Пример 3
Найдите площадь параллелограмма, вершины которого имеют координаты $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ и $(3,8,0)$.
Решение.
Вначале изобразим данный параллелограмм в координатном пространстве (рис.5):
Рисунок 5. Параллелограмм в координатном пространстве. Автор24 — интернет-биржа студенческих работ
Видим, что две стороны этого параллелограмма построены с помощью коллинеарных векторов с координатами $overline{α}=(3,0,0)$ и $overline{β}=(0,8,0)$. Используя четвертое свойство, получим:
$S=|overline{α}хoverline{β}|$
Найдем вектор $overline{α}хoverline{β}$:
$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\3&0&0\0&8&0end{vmatrix}=0overline{i}-0overline{j}+24overline{k}=(0,0,24)$
Следовательно
$S=|overline{α}хoverline{β}|=sqrt{0+0+24^2}=24$
Ответ: $24$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
В данной публикации мы рассмотрим, каким образом можно найти векторное произведение двух векторов, приведем геометрическую интерпретацию, алгебраическую формулу и свойства этого действия, а также разберем пример решения задачи.
- Геометрическая интерпретация
- Формула векторного произведения
- Свойства векторного произведения
- Пример задачи
Геометрическая интерпретация
Векторное произведение двух ненулевых векторов a и b – это вектор c, который обозначается как [a, b] или a x b.
Длина вектора c равна площади параллелограмма, построенного с помощью векторов a и b.
При этом c перпендикулярен плоскости, в которой расположены a и b, и расположен так, чтобы наименьшее вращение от a к b выполнялось против часовой стрелки (с точки зрения конца вектора).
Формула векторного произведения
Произведение векторов a = {ax; ay, az} и b = {bx; by, bz} вычисляется с помощью одной из формул ниже:
Свойства векторного произведения
1. Векторное произведение двух ненулевых векторов равняется нулю тогда и только тогда, когда эти векторы являются коллинеарными.
[a, b] = 0, если
a || b
.
2. Модуль векторного произведения двух векторов равняется площади параллелограмма, образованного этими векторами.
Sпарал. = |a x b|
3. Площадь треугольника, образованного двумя векторами, равняется половине их векторного произведения.
SΔ = 1/2 · |a x b|
4. Вектор, являющийся векторным произведением двух других векторов, перпендикулярен им.
c ⟂ a, c ⟂ b.
5. a x b = –b x a
6. (m a) x a = a x (m b) = m (a x b)
7. (a + b) x c = a x c + b x c
Пример задачи
Вычислим векторное произведение a = {2; 4; 5} и b = {9; -3; 1}.
Решение:
Ответ: a x b = {19; 43; -42}.
Определение
векторного произведения.
Определение.
Векторным произведением
двух векторов
и
называется вектор
,
удовлетворяющий следующим условиям:
а) вектор
перпендикулярен плоскости векторов
и
и направлен так, что тройка векторов
,
,
правая;
б) длина вектора
численно равна площади
Рис. 2.19
параллелограмма,
построенного на векторах
и
,
т.е.,
где—
угол между векторамии
(рис. 2.19).
Очевидно, что
,
,
,
,
,
.
Пример 11.
Проверить справедливость равенства
.
Решение.
,
,
.
Метод Жуковского.
Рассмотрим метод
Жуковского
построения вектора
.
Пусть угол между
векторами
и
равен
.
Векторы
и
приложим к общему началу
(рис. 2.20).
Через точкуперпендикулярно вектору
проведем плоскость
.
Из конца вектораопустим перпендикуляр на плоскость
.
Точку пересечения этого перпендикуляра
и плоскости обозначим через.
Проведем в плоскостивектор
и построим вектор
.
Рис. 2.20
Покажем,
что вектор.
а) Из построения
следует, что вектор
перпендикулярен
векторам,
,
и векторы,
,
образуют правую тройку.
б)
.
Из а) и б) следует,
что
.
Если проекцию
вектора
на плоскость
обозначить
через,
то
.
Свойства векторного
произведения.
Векторное
произведение двух векторов обладает
следующими свойствами:
1)
(векторное произведениеантикоммутативно,
т.е. при перестановке сомножителей
направление вектора меняется на
противоположное, при этом его модуль
остаётся неизменным).
Это свойство
следует из определения векторного
произведения. Если тройка векторов
правая, то тройка
—
левая.
2)
(ассоциативный
закон).
Это
свойство легко доказывается из определения
векторного произведения.
3)
(дистрибутивный
закон.)
►.◄
4)
.
Это свойство следует из определения
векторного произведения, а именно из
того, что модуль векторного произведения
равен площади параллелограмма,
построенного на векторахи
.
Это свойство дает возможность записать
в удобной форме
параллельность двух векторов.
Например,
означает, что вектор
коллинеарен биссектрисе первого
координатного угла.
Векторное
произведение в координатной форме.
Пользуясь свойствами
векторного произведения и равенствами
,
,
,
,
,
,
вычислим
=
=
,
т.е.
или
.
Применение
векторного произведения.
Векторное
произведение
векторов
и
применяется:
для нахождения
площади параллелограмма, построенного
на векторах
и
;
для нахождения
площади треугольника, построенного на
векторах
и
;
для нахождения
синуса угла между векторами
и
;
для нахождения
вектора, перпендикулярного векторам
и
.
1) Площадь
параллелограмма, построенного на
векторахи
,
может быть вычислена по формуле,
где—
угол между векторамии
.
Замечание.
Если
и
,
тои
.
Отсюда следует, чтомодуль
определителя второго порядка
численно равен площади параллелограмма,
построенного на векторах
и
.
2) Площадь
треугольника, построенного на векторах
и
,
равна половине площади параллелограмма,
построенного на этих же векторах, т.е.,
где—
угол между векторамии
.
3) Синус угла между
векторами
и
может быть вычислен по формуле
.
4) Вектор
перпендикулярен вектору
и вектору
.
Замечание.
Векторное произведение может быть
использовано при решении системы
линейных однородных уравнений вида
Если векторы
и
неколлинеарны, то
является
решением исходной системы.
►Действительно,
из системы уравнений следует, что вектор
перпендикулярен векторам
и
,
а, следовательно,.◄
● Пример 12.
Дано:
,
,
,
,
.
Найти площадь
параллелограмма, построенного на
векторах
и
.
Найти синус угла
между векторами
и
.
Решение.
Площадь параллелограмма, построенного
на векторах
и
равнамодулю
векторного произведения векторов
и
,
т.е..
.
=
.
.
Ответ:
,
.
● Пример 13.
Дано:
,
,
,
,
.
Найти значение
параметра
,
при котором векторыи
коллинеарны.
Решение.
Первый способ.
Так как векторы
и
коллинеарны, то их векторное произведение
равно нулю.=0,
а так как,
тои
.
Второй способ.
Векторы
и
составляют базис системы векторов
,
,
и
.
В базисеи
.
Так как векторыи
коллинеарны, то
,
откуда●
● Пример 14.
Найти координаты вектора
,
длина которого равна 15, зная, что он
перпендикулярен осии вектору
и образует острый угол с осью
.
Решение.
и
,
поэтому.
,
откуда
Так как вектор
образует острый угол с осью
,
то вторая его координата положительна,
тогдаи
●
● Пример 15. Найти
площадь параллелограмма
,
если известны координаты трёх его вершин,
и
.
Решение.
.
,
,
,
.
● Пример 16.
,
,
— вершины треугольника
.
Найти недостающую координатуточки
.
если площадь треугольникаравна 3.
Решение.
Площадь
равна половине площади параллелограмма,
построенного на векторахи
,
т.е..
,
,
.
,
откуда16,
и
.
Ответ:
или
.
● Пример 17.
Решить систему
Решение.
Из уравнений системы следует, что вектор
перпендикулярен векторам
и
.
Тогда— решение данной системы.
●
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #