Как найти установленную мощность формула

Как рассчитать расчетную мощность от установленной?

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3.
Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Q = √( 3046 2 — 2650 2 ) = 1502 ВАР

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду. Но поскольку двигатель асинхронный, то ротор вращается с отставанием на величину скольжения s.

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

s = ( ( n — n1 )/ n) *100%

Для нашего примера s = ( (3000 — 2870)/3000 ) *100% = 4,3%.

Угловая скорость асинхронного двигателя

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

В чем разница между среднеквадратичным и пиковым значением мощности аудиосистемы?

В мире бытовой электроники вы часто будете слышать о ваттах, энергопотреблении и выходной мощности. Термины используются взаимозаменяемо для обозначения двух значений, то есть среднеквадратичного значения (RMS) и номинальной пиковой (максимальной) мощности. Номинальная мощность является одним из важнейших факторов, способствующих созданию идеальной звуковой системы. Поэтому важно знать, к чему относятся эти два значения, ищите ли вы динамики, усилители или сабвуферы.

При выборе высокопроизводительной развлекательной системы большинство людей предпочитают покупать аудио и звуковое оборудование на основании мощности. Тем не менее, такой подход может привести к определенным трудностям любителей, которые не понимают разницу между среднеквадратичной и пиковой мощностью. Кроме того, некоторые могут игнорировать рейтинги и выбирать руководствуясь знаменитостью бренда, что так или иначе повлияет на конечный результат.

Поэтому, если вы собираетесь потратить свои кровные на колонки объемного звучания, сабвуфер или даже усилитель, вам потребуется базовая информация о номинальной мощности. Описанное ниже всеобъемлющее руководство поможет вам понять эти две ценности, которые помогут вам собрать достойную звуковую систему.

Среднеквадратичная мощность

Среднеквадратичное значение или просто RMS в ваттах относится к непрерывной мощности, подаваемой на колонку или сабвуфер, или к тому, сколько непрерывной мощности может выводить усилитель. Среднеквадратичные значения обычно ниже, чем пиковые значения, но они представляют собой то, что действительно будет воспроизведено аудиосистемой. Представьте, что среднеквадратичная мощность — это средняя мощность, с которой музыкальная колонка может справляться ежедневно без ущерба для качества звука или каких-либо искажений.

Пиковая мощность

Пиковая мощность — это максимальный уровень мощности, с которым динамик или сабвуфер могут справиться за короткую серию без продувки. То же самое относится и к усилителям, как к абсолютной величине мощности, которую они могут выдавать до выхода из строя или без искажений.

Мы можем сравнить пиковые ватты с максимальной скоростью на спидометре вашего автомобиля. Например, вы можете двигаться со скоростью 180 км / ч, но вы не сможете долго поддерживать эту скорость, не нанеся механического или термического повреждения автомобилю. Таким же образом, пиковый уровень мощности может поддерживаться только в течение доли секунды, хотя нет четкого определения того, как долго.

Если устройство работает с постоянной пиковой мощности, провода могут перегреться, что может быстро повредить музыкальные колонки.

Среднеквадратичная мощность против пиковой мощности!

Сделав небольшой обзор различной продукции, вы заметите, что некоторые производители оценивают возможности своих продуктов по мощности, используя либо пиковую мощность в ваттах, либо ее среднеквадратичное значение, в то время как большинство используют оба значения. Например, один товар может быть оценен в 150 Вт, в то время как другая марка может иметь значение в 75 Вт.

На первый взгляд, можно подумать, что первый вариант лучше, потому что он рассчитан на более высокий уровень мощности, чем второй. Однако при ближайшем рассмотрении вы можете заметить, что первый продукт рассчитан на пиковую мощность, а второй рекламирует среднеквадратичную мощность. Как правило, пиковая мощность энергопотребления устройства в два раза превышает среднюю среднеквадратичную мощность, что в основном означает, что вышеуказанные продукты фактически имеют одинаковую мощность: пиковая 150 Вт / среднеквадратичная 75 Вт.

Однако большинство производителей аудио оборудования предпочитают уделять больше внимания максимальной пиковой мощности, чтобы для пользователя продукты выглядели так, как будто они могут «выдать» намного больше, чем они реально способны. Хотя это может звучать убедительно, но работа звукового оборудования на пиковой мощности не только бесит ваших соседей, но и выводит из строя вашу аудиосистему, требуя замены некоторых частей или покупки нового устройства в целом. Таким образом, если вы хотите, чтобы ваша музыкальная колонка прослужил долгие годы, то стоит обратить внимание на среднеквадратичную мощность, потребляемую мощность, и ту, с которой вы хотите наслаждаться музыкой.

Тем не менее, когда дело доходит до этих технических деталей, не смущайтесь номинальной мощностью колонок и характеристиками усилителя. Усилители генерируют мощность в аудиосистеме, что не относится к динамикам и сабвуферам. Поэтому значения мощности колонок относятся к количеству мощности, которое ваши колонки могут обрабатывать от усилителя. С другой стороны, характеристики усилителя относятся к тому, сколько мощности он может выдавать для максимальной производительности звука.

Что можно узнать о электродвигателе, зная его каталожные данные

Каталоги асинхронных двигателей содержат все необходимые данные для выбора двигателей.

В каталогах указываются: типоразмер двигателя, номинальная мощность для режима S1 (длительный режим), частота вращения при номинальной мощности, ток статора при номинальной мощности, коэффициент полезного действия при номинальной мощности, коэффициент мощности при номинальной мощности, кратность начального пускового тока, т. е. отношение начального пускового тока к номинальному, или кратность пусковой мощности, т. е. отношение полной мощности при пуске к номинальной мощности, кратность начального пускового момента, кратности минимального момента, динамический момент инерции ротора.

Кроме этих данных, относящихся к номинальному или пусковому режимам, в каталогах сообщаются более подробные данные об изменении КПД и коэффициента мощности при изменении нагрузки на валу электродвигателя. Эти данные приводятся в табличной или графической форме. Пользуясь этими данными, можно рассчитать также ток статора и скольжение при различных значениях нагрузки на валу.

В каталогах указываются также размеры, необходимые для установки двигателя на объекте и присоединения его к питающей сети.

На различных этапах создания, распределения, установки, эксплуатации и ремонта двигателей требуется различная детальность описания. Для большинства целей достаточна детализация на уровне типоразмера. Каталожное описание типоразмера двигателей серий 4А и АИ содержит признаки, обозначаемые максимально 24 символами.

Примеры. 4А160М4УЗ — асинхронный двигатель серии 4А, со степенью защиты IP44, станина и щиты чугунные, высота оси вращения 160 мм, выполнен в станине средней длины М, четырехполюсный, предназначен для эксплуатации в умеренном климате, категория размещения 3.

4АА56В4СХУ1 — асинхронный двигатель серии 4А со степенью защиты IP44, станина и щиты алюминиевые, высота оси вращения 56 мм, имеет длинный сердечник, четырехполюсный, сельскохозяйственная модификация по условиям окружающей среды, предназначен для эксплуатации в умеренном климате, категория размещения 1.

Номинальной мощностью двигателя называют механическую мощность на валу в режиме работы, для которого он предназначен предприятием-изготовителем.

Ряд номинальных мощностей электродвигателей: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,7; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.

Предельно допустимая мощность двигателя может изменяться при изменении режима работы, температуры охлаждающего агента и высоты установки над уровнем моря.

Двигатели должны сохранять номинальную мощность при отклонениях напряжения сети от номинального значения в пределах ±5 % при номинальной частоте сети и при отклонениях частоты сети в пределах ±2,5 % при номинальном напряжении. При одновременном отклонении напряжения и частоты сети от номинальных значений двигатели должны сохранять номинальную мощность, если сумма абсолютных отклонений не превосходит 6 % и каждое из отклонений не превышает нормы.

Синхронная частота вращения электродвигателя

Ряд синхронных частот вращения асинхронных двигателей установлен ГОСТ и при частоте сети 50 Гц имеет следующие значения: 500, 600, 750, 1000, 1500 и 3000 об/мин.

Динамический момент инерции ротора электродвигателя

Мерой инерционности тела при вращательном движении является момент инерции, равный сумме произведений масс всех точечных элементов на квадрат их расстояний от оси вращения. Момент инерции ротора асинхронного двигателя равен сумме моментов инерции многоступенчатого вала, сердечника, обмотки, вентилятора, шпонки, вращающихся частей подшипников качения, обмоткодержателей и нажимных шайб для фазного ротора и т. д.

Номинальные режимы работы двигателя

Различные условия работы производственных механизмов обуславливают различные режимы работы электроприводов. Поэтому в электромашиностроении номинальные режимы электрических двигателей классифицируются на восемь режимов с условными обозначениями от S1 до S8.
S1 — продолжительный номинальный режим работы. Соответствует режиму, при котором двигатель работает с номинальной нагрузкой столько времени, что превышения температуры всех его частей достигают установившихся значений, которые должны быть равны допустимым (рис. 6.8). Условию τуст=τдоп

соответствуют каталожные данные двигателя

,

,

,

.

Двигатели продолжительного номинального режима работы предназначены преимущественно для обширной группы электроприводов механизмов непрерывного действия.

S2 — кратковременный номинальный режим работы. Режим, при котором периоды номинальной нагрузки чередуются с периодами отключения двигателя, причем за время работы двигатель не успевает нагреться до установившейся температуры, а за время отключения успевает охладиться до температуры окружающей среды (рис. 6.9). Вследствие этого начальное превышение температуры при каждом включении равно нулю, а достигаемое в конце работы превышение температуры двигателя согласно (6.35):

определяется величиной нагрузки, временем работы tрн

и постоянной времени нагрева

. Таким образом, номинальная мощность двигателя кратковременного режима S2 соответствует определенному номинальному времени работы
tрн
, значения которого стандартизованы величинами 15, 30, 60 и 90 мин.

Если фактическое время работы больше номинального, двигатель будет нагреваться до температуры, большей допустимой, и во избежание этого нагрузка должна быть снижена. Таким образом, нельзя использовать двигатель с такой же нагрузкой в длительном режиме, так как установившаяся температура двигателя t o уст

будет больше допустимой
t o доп
(рис. 6.9).
В случае, если фактическое время работы будет меньше номинального, двигатель можно в соответствующей степени перегрузить.
Двигатели кратковременного режима широко используются на электрическом транспорте (двери, разгрузочные механизмы) и для различных кратковременно работающих вспомогательных механизмов в промышленности.

S3 — повторно-кратковременный номинальный режим работы. Режим, при котором периоды работы с номинальной нагрузкой чередуются с периодами отключения двигателя, причем за время работы двигатель не успевает нагреться до установившейся температуры, а за время паузы не успевает охладиться до температуры окружающей среды (рис. 6.10).

По прошествии определенного числа циклов после включения температура двигателя, повышаясь, достигнет квазиустановившегося значения, и будет колебаться вокруг среднего значения t o у.ср

. Максимальное превышение температуры
τmax
не должно превышать допустимого значения
τдоп
. Для наиболее полного использования двигателя по нагреву колебания температуры вокруг среднего установившегося значения должны быть минимальными. Это может быть достигнуто при выполнении условия

S4 — повторно-кратковременный номинальный режим с частыми пусками.Данный режим характеризуется значительным влиянием пусковых динамических процессов на нагрев двигателя. Это может происходить при достаточно большом суммарном времени пуска за цикл работы.

S5 — повторно-кратковременный номинальный режим с частыми реверсами.В цикле работы электропривода присутствуют как тяжелые, длительные по времени пусковые режимы, так и участки с электрическим торможением.

S6 — перемежающийся номинальный режим работы. Характеризуется чередованием периодов работы двигателя с номинальной нагрузкой с периодами работы вхолостую, причем за время работы с нагрузкой двигатель не успевает нагреться до установившейся максимальной температуры, а за время работы вхолостую не успевает охладиться до установившейся минимальной температуры холостого хода. Характеристикой режима S6 является относительная продолжительность нагрузки:

где

и
tхх
– времена работы соответственно с номинальной нагрузкой и в холостую.

Продолжительность цикла не должна превышать 10 мин. Номинальные значения ПН нормируются величинами 15, 25, 40, 60 и 100%.

S7 — перемежающийся номинальный режим работы с частыми реверсами.Этот режим отличается от повторно-кратковременного S5 тем, что в цикле работы отсутствуют периоды отключения двигателя.

S8 — перемежающийся номинальный режим работы с двумя и более скоростями в цикле работы.Тяжелый режим работы, в котором отсутствуют периоды отключения двигателя, одновременно регулируется скорость вращения двигателя (соответственно есть пусковые и тормозные режимы). Этим режимом работы характеризуются приводы подач металлорежущих станков с автоматизированным рабочим циклом при изготовлении сложных изделий.

Таким образом, номинальные режимы S4÷S8 дополняют конкретную информацию об интенсивных повторно-кратковременных режимах и о продолжительных режимах с переменной циклической нагрузкой.

Что такое расчетная мощность?

Под этим определением понимают установленный показатель, позволяющий подключить некое количество единиц техники одновременно. Если превысить их допустимое число, защитная автоматическая система может выйти из строя. Расчет установленной мощности выполняется путем суммирования этого показателя, которым характеризуется каждый подключенный прибор в системе.

Вам это будет интересно Особенности системы уравнения

Важно! Межэтажное пространство жилого дома снабжено электрощитом и вводным устройством, от которого проложены кабели до каждой квартиры. В случае, когда система располагается в жилом помещении, в него прокладывают кабель с необходимым сечением. Для защиты разводящих линий устанавливают автомат, счетное устройство и щит для равномерного распределения нагрузок на каждой линии.

Электрощит

Нагрузка номинальная – это… Что такое Нагрузка номинальная?

Нагрузка номинальная – технологическая нагрузка, указанная в паспорте машины как предельная для предусмотренных условий нормальной эксплуатации.

[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

Рубрика термина: Общие термины, оборудование

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. – Калининград. Под редакцией Ложкина В.П.. 2015-2016.

construction_materials.academic.ru

Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Пример

Допустим, в нашем распоряжении генератор с показателями мощности в 3 кВА и cos φ, равным 0,8. В таком случае номинальная мощность данной установки будет равна:

3 кВА х 0,8=2,4 (кВт)

Теперь можно понять, почему мощность может указываться в тех или иных единицах измерения, в ваттах (Вт) или Вольт Амперах (ВА). Некоторые производители, чтобы избавить потребителя от необходимости проведения вычислений, просто указывают в сопроводительной документации оба значения мощности – номинальной и максимальной. Встречаются также варианты, когда производителем указывается только одна из мощностей и приводится значение коэффициента мощности. Некоторые недобросовестные компании могут скрывать коэффициент мощности от потребителя. Это делается с целью выдать генератор за более мощную, чем на самом деле, установку.

Особенности определения мощности сети

Вообще электрическая сеть сконструирована так, чтобы для ее эксплуатации не требовались специальные знания. Достаточно соблюдать некоторые правила, главной из которых — не допустить перегрузки.

Вам это будет интересно Особенности индуктивного сопротивления

Важно! Несоблюдение правил пользования электросетью может привести к отказу в работе и даже к пожару.

Важно отметить, что технические характеристики розетки и бытового прибора различаются между собой:

  • В розетках максимально допустимый переменный ток измеряется в Амперах: в старом жилом фонде России он равен 6 А, в Европе — 10 или 16 А;
  • Мощность подключаемых приборов измеряется в Ваттах.

Информация на электроприборе может быть обозначена по-разному

Как высчитать мощность электричества? Для вычисления потребуется формула:

Р = U*I, где:

P — мощность,

U — напряжение в Вольтах,

I — сила тока в Амперах.

Напряжение исправной розетки составляет 220-230 Вольт, силу тока можно измерить мультиметром.

Для определения силы тока в розетке стоит использовать мультиметр

Формулы мощности тока

Под мощностью тока так же, как и в механике, понимают работу, которая выполняется за единицу времени. Рассчитать мощность, зная работу, которую выполняет электрический ток за некоторый промежуток времени, поможет физическая формула.

формула мощности тока

P = A/t = UIt/t = UI Таким образом, формула мощности постоянного тока на любом участке цепи выражается как произведение силы тока на напряжение между концами участка.

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторы кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Номинальный вращающий момент

Такой параметр, как вращающий момент электродвигателя, показывает, каким образом механическая мощность устройства зависит от угловой скорости. Эту зависимость иллюстрирует простое соотношение: вращающий момент – это отношение мощности к угловой скорости.

Существует также соотношение между вращающим моментом и радиусом шкива: Момент = Сила * Радиус.

Это равенство говорит о том, что меньшем радиусе вращения сила увеличивается, и наоборот. То есть при проектировании устройства с асинхронным двигателем следует учесть тот факт, что действующая сила увеличивается с приближением к оси вала. В некоторых случаях эта особенность может сыграть важную роль.

Таким образом, для расчета всех необходимых электрических и механических характеристик электродвигателя достаточно знать данные, которые указаны на паспортной табличке или, другими словами, шильдике. Простые формулы помогут правильно настроить работу электрооборудования и оптимально использовать производственные ресурсы.

  • Однофазный электродвигатель: основные виды, принцип работы и инструкция по подключению и настройке. Обзор лучших производителей!

  • Перемотка электродвигателей: пошаговая инструкция по ремонту и восстановлению обмотки двигателя своими руками (инструкция с фото и видео)

Что такое установленная мощность

Для того чтобы заранее спланировать установку в доме или квартире бытовой техники и оборудования, необходимо произвести оценку максимальной мощности, потребление которой будет осуществляться из электрической сети. Простое арифметическое сложение мощностей всех имеющихся потребителей не дает точных результатов, из-за своей неэффективности и неэкономичности.

Как правило, при такой оценке используются определенные факторы, учитывающие коэффициент использования и разновременность работы подключенных устройств. Кроме того, учитываются не только действующие, но и предполагаемые нагрузки. В результате, получается установленная мощность, измеряемая в кВт или кВА.

Значение установленной мощности будет равно сумме номинальных мощностей каждого прибора и устройства. Однако это значение не будет фактически потребляемой мощностью, которая практически всегда выше номинала. Данный параметр необходимо знать для того, чтобы правильно выбрать номинальную мощность того или иного устройства.

В промышленном производстве существует понятие полной установленной мощности. Этот показатель представляет собой арифметическую сумму полных мощностей каждого отдельно взятого потребителя. Он не совпадает с максимальной расчетной полной мощностью, поскольку при его расчетах используются различные коэффициенты и поправки.

Потребляемая электрическая мощность

Ранее публикуя материал о расчётах мощности потребления бытовых электрических приборов, мы размещали таблицу с указанием величин. В данной статье попробуем разобраться с другими видами мощности и как они могут влиять на выбор бытовой техники. Рассмотрим основные электроприборы бытового назначения, имеющиеся в каждом доме.

Для начала вспомним определение что такое мощность. Мощность есть физическая величина равная скорости изменения, передачи или потребления энергоприёмников. То есть, мощность равна работе, выполняемой в определённый промежуток времени к этому же временному участку.

Приобретая в дом электрическую технику мы все смотрим в технических характеристиках на заявленное производителем потребление электрической энергии, которое указывается в единицах мощности ваттах, киловаттах.

Пример технических характеристик холодильника BOSCH:

В плане потребления и экономии электрической энергии нас интересуют два параметра: класс потребления и непосредственно энергопотребление.

Под классом энергопотребления ряда бытовой техники понимают условный показатель расхода электрической энергии. Почему условный? Потому что зависящий от множества внешних и внутренних факторов. Наиболее экономичными считаются три последних принятых класса — А+++, А++, А+. Чем больше плюсов к значению «А» тем экономичнее потребитель.

Чем достигается экономичность — внедрением новых технологий при производстве оборудования и автоматизации управления.

Говоря о энергопотреблении, раз мы начали говорить о холодильниках, то им и продолжим.

Холодильники

В характеристиках, размещённых выше к двухкамерному холодильнику BOSCH указано энергопотребление 383 кВт⋅ч в год. Разделим заявленное потребление на двенадцать месяцев. Получаем – 31,9 кВт⋅ч в месяц! Очень неплохо, но, это указано минимальное значение потребления при выполнении всех надлежащих условий. Говоря по-русски это: купили, установили в тёплом проветриваемом помещении, включили по минимальному режиму охлаждения/заморозки и не месяц не открываем двери.

Поэтому не стоит обольщаться на заявленные характеристики, а учитывать нормальный режим работы холодильника рассчитывая в данном случае нормальное месячное потребление 60-70 кВт.

Параметры потребляемой мощности холодильника складываются из условий:

  • Заявленная производителем мощность,
  • Габариты холодильника,
  • Вид и конструктивное исполнение теплоизоляционного уплотнителя,
  • Наличие системы No Frost,
  • Внешняя температура оборудования,
  • Объём продуктов, помещаемых в холодильное и морозильное отделения,
  • Частота открывания холодильного и морозильного отделения,
  • Чистота наружных вентиляционных отверстий,
  • Проходимость (сток) внутренних каналов конденсата.

Компьютеры

Потребляемая мощность стационарного компьютера или ноутбука величина не постоянная. Здесь нельзя точно озвучить фиксированную сумму потребления в час, сутки, год. Всё зависит от конкретного устройства и установленного в нём оборудования: привода, винчестеры, видеокарты, вентиляторы и т.д. По сути, вся потребляемая мощность ограничивается номиналом блока питания.

Не стоит забывать, что для работы настольного компьютера необходим монитор, который также потребляет электроэнергию. Добавим в этот список выносные аудиосистемы, принтеры, сканеры, МФУ, которые не всегда, но подключаются к работе. Сложив совокупность всех мощностей получаем среднее значение потребления 250-400 Вт.

Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Разные мощности в электроэнергетике

В электроэнергетике под понятием «мощность», в зависимости от того какая она, понимается много разных величин.

Давайте попробуем их систематизировать и разобраться чем они отличаются друг от друга.

Максимальная мощностьнаибольшая величина мощности, определенная к одномоментному использованию энергопринимающими устройствами (объектами электросетевого хозяйства) в соответствии с документами о технологическом присоединении и обусловленная составом энергопринимающего оборудования (объектов электросетевого хозяйства) и технологическим процессом потребителя, в пределах которой сетевая организация принимает на себя обязательства обеспечить передачу электрической энергии, исчисляемая в мегаваттах .

Если потребитель включил все свои энергопринимающие устройства, то за час его потребление не должно превышать величины максимальной мощности, установленной в Акте об осуществлении технологического присоединения (Акте разграничения балансовой принадлежности). В пределах максимальной мощности и не изменяя схему внешнего электроснабжения потребитель может осуществлять свое потребление не согласовывая его с сетевой организацией или гарантирующим поставщиком (энергосбытовой организацией).

За превышение максимальной мощности законодательством предусмотрены серьезные санкции.

Порядок определения превышения максимальной мощности (превышение за месяц, за час или мгновенное превышение) в настоящее время законодательно не урегулирован.

Увеличить объем максимальной мощности или изменить схему внешнего электроснабжение можно с помощью процедуры технологического присоединения.

Разрешенная мощность — в настоящее время такой термин в законодательстве отсутствует. Часто его используют как синоним максимальной мощности.

Присоединенная мощность — совокупная величина номинальной мощности присоединенных к электрической сети (в том числе опосредованно) трансформаторов и энергопринимающих устройств потребителя электрической энергии, исчисляемая в мегавольт-амперах.

Это определение утратило силу при утверждении Правил розничных рынков электроэнергии (Постановления Правительства от 04.05.2012 г. №442). Однако на оптовом рынке до сих пор присоединенная мощность используется. Например, при определении необходимости оборудования точек поставки «транзитных потребителей» системой коммерческого учета, соответствующей требованиям оптового рынка электроэнергии. Для совокупности точек поставки, величина присоединенной мощности которых меньше 2,5% от присоединенной мощности предприятия достаточно создание технического учета.

Хоть определение присоединенной мощности на данный момент и отсутствует, под ней понимается трансформаторная мощность потребителя, то есть мощность вводных трансформаторов, определяемая в мегавольт-амперах.

Сетевая мощность — в законодательстве нет понятия сетевой мощности. Вместо этого короткого определения используется следующее: объем услуг по передаче электрической энергии, оплачиваемых потребителем электрической энергии (мощности) за расчетный период по ставке, отражающей удельную величину расходов на содержание электрических сетей, двухставочной цены (тарифа) на услуги по передаче электрической энергии. Так что для краткости, всё-таки предлагаю использовать более кратное определение.

Сетевая мощность — это объем мощности оплачиваемой потребителями, применяющими в расчетах за услуги по передаче электрической энергии двухставочный тариф. Объем сетевой мощности умножается на ставку на содержание объектов электросетевого хозяйства.

Объем сетевой мощности — равен среднему арифметическому значению из максимальных значений в каждые рабочие сутки расчетного периода из суммарных по всем точкам поставки на соответствующем уровне напряжения, относящимся к энергопринимающему устройству (совокупности энергопринимающих устройств) потребителя электрической энергии (мощности) почасовых объемов потребления электрической энергии в установленные системным оператором плановые часы пиковой нагрузки.

Как правило, прочитав определение выше, никто не понимает как всё-таки определяется объем сетевой мощности. Поэтому на energo.blog есть статья «Расчет объема сетевой мощности» где приведен пошаговый алгоритм.

Как повысить расчетную мощность

Для увеличения расчетных данных вводят дополнительный кабель с нужным сечением, величину которого определяют специалисты. Это дает гарантию, что пиковые нагрузки не выведут из строя электрическую систему. Процесс считается затруднительным из-за обязательного согласования работ с муниципальными структурами и дополнительными затратами.

Средние нагрузки

Вычисление нагрузок выполняется по двум причинам:

  • Зная выделенную мощность для конкретного дома, его жильцы могут обратиться в компанию энергосбыта для того, чтобы получить именно те значения, которые им необходимы;
  • Основываясь на средних нагрузках, выбираются номинальные токи защитных аппаратов и проводники с оптимальным сечением.

Важно! Для определения средних нагрузок необходимо вычислить установленную величину и знать расчетные коэффициенты, которые принимаются во внимание в вычислениях. Один из них — коэффициент спроса. Средние нагрузки нужно знать для вычисления количества потерянной электрической энергии за годовой период.

Вам это будет интересно Коэффициент измерения цветопередачи

Для расчетов средней нагрузки ( используют также отношение общего количества потребляемой за смену энергии с максимальной загруженностью ( ) и длительностью смены, измеряемой в часах ( ):

Правильная мощность двигателя и преобразователя частоты

Производители электродвигателей и частотных преобразователей разработали различные методы для быстрого выбора мощности двигателей и частотных преобразователей под конкретную нагрузку оборудования. Такая же базовая процедура используется большинством инженерных приложений. Однако для инженеров важно четко понимать процедуру выбора.

Одна из лучших процедур использует простую нумерацию, основанную на кривых ограничения нагрузки, чтобы сделать основной выбор мощности двигателя. Эта процедура описана ниже. Затем проверяются другие факторы, чтобы обеспечить оптимальную комбинацию двигателя и преобразователя.

Рекомендуются 4 следующих принципа подбора:

Принцип выбора 1:

Во-первых, базовая скорость должно выбираться таким образом, чтобы двигатель работал как можно с большей скоростью, немного превышающей базовую скорость 50 Гц.

Это желательно, потому что:

  • Тепловая мощность двигателя улучшается при f ≥ 50 Гц из-за более эффективного охлаждения на более высоких скоростях.
  • Потери коммутации преобразователя минимальны, когда он работает в диапазоне ослабления поля выше 50 Гц.
  • При постоянной нагрузке на крутящий момент достигается больший диапазон скорости, когда двигатель работает хорошо в диапазоне ослабления поля с максимальной скоростью. Это означает, что наиболее эффективное использование крутящего момента и скорости привода переменной скорости .

Типичные кривые крутящего момента и мощности при постоянном приводе мощности / крутящего момента

Это может означать экономию средств в виде меньшего двигателя и преобразователя .

Хотя многие производители утверждают, что их преобразователи могут производить выходные частоты до 400 Гц, эти высокие частоты практически не используются, за исключением особых (и необычных) исполнений. Конструкция стандартных каркасных двигателей и снижение пикового крутящего момента в зоне ослабления поля ограничивают их использование на частотах выше 100 Гц.

Максимальная скорость, с которой может запускаться стандартный двигатель с короткозамкнутым ротором , должна всегда проверяться у изготовителя, особенно для более крупных 2-полюсных (3000 об / мин) двигателей более 200 кВт. Шум вентилятора, создаваемый двигателем, также значительно увеличивается по мере увеличения скорости двигателя.

Сравнение крутящего момента, создаваемого 4-полюсным и 6-полюсным двигателями , показано на рисунке 1. Это иллюстрирует более высокую крутящую способность 6-полюсной машины.

Сравнение предельных кривых тепловой мощности для двух двигателей с короткозамкнутым ротором мощностью 90 кВт

a) 90 кВт 4-полюсный двигатель (1475 об / мин)

b) 90 кВт 6-полюсный двигатель (985 об / мин)

Принцип выбора 2:

Выбор двигателя большей мощности просто для того, чтобы быть «безопасным», обычно не рекомендуется, потому что это означает, что также должен быть выбран преобразователь с увеличенным частотным диапазоном. Преобразователи частоты, в частности, ШИМ-тип, рассчитаны на максимальное значение пикового тока, которое представляет собой сумму основных и гармонических токов в двигателе .

Чем больше двигатель, тем больше пиковые токи.

Чтобы избежать этого пикового тока, превышающего расчетный предел, конвертер никогда не должен использоваться с размером двигателя, большим, чем для указанного . Даже когда большой двигатель слегка загружен, его пики гармонических токов высоки.

Принцип выбора 3:

После выбора двигателя достаточно легко выбрать правильный размер преобразователя из каталога производителя . Обычно они рассчитаны на ток (не кВт) на основе определенного напряжения. Это следует использовать только в качестве руководства, поскольку преобразователи всегда должны выбираться на основе максимального непрерывного тока двигателя.

Хотя большинство каталогов основаны на стандартных номинальных значениях мощности двигателя IEC (кВт), двигатели разных производителей имеют несколько разные номинальные токи.

Потребление электроэнергии

Расчет потребляемой мощности — это важная процедура, так как оплата электроэнергии производится именно по этому показателю. Чем больше энергии потребляет электроприбор, тем больше придется платить. Но в быту для измерения используются не ватты, а киловатты. В одном киловатте 1 тыс. ватт.

Номинальный показатель предполагает величину, необходимую для нормального функционирования прибора, например:

  • Для обычного холодильника этот параметр составляет 0,5 киловатт. Для того чтобы экономить электроэнергию, важно уметь проводить полные расчеты. То есть важно знать суммарную мощность всех потребителей тока, находящихся в доме.
  • При применении двух осветительных приборов, обладающих величинами 80 Ватт и 20 Ватт, можно оценить экономическую целесообразность покупки лампы с наименьшей величиной. Если оба прибора будут работать одинаковое количество времени, то первый будет потреблять в четыре раза больше электроэнергии. Следовательно, платить за него также придется в 4 раза больше.

Однако в доме современного человека электроприборов много. Это не только лампочки, поэтому определять суммарную величину несколько сложнее. Нужно знать величину каждого прибора и время его работы.

Для уменьшения финансовых расходов многие устанавливают в своих домах специальные энергосберегающие лампы. Стоит иметь в виду, что некоторые электроприборы способны потреблять энергию даже тогда, когда они не работают, но при этом не отключены от сети.

Содержание

  • 1 Установленная мощность
    • 1.1 Понятие об установленной и расчетной мощности
    • 1.2 Установленная мощность для электрических станций
    • 1.3 Расчетная мощность жилых зданий
    • 1.4 Расчетная мощность общественных зданий
    • 1.5 Расчетная мощность для промышленных объектов
    • 1.6 Что такое расчетная мощность
    • 1.7 Что такое установленная мощность
    • 1.8 Номинальные нагрузки
    • 1.9 Средние значения нагрузок
    • 1.10 Установленная мощность для электрических станций
    • 1.11 Расчетная мощность жилых зданий
    • 1.12 Расчетная мощность общественных зданий
    • 1.13 Расчетная мощность для промышленных объектов
    • 1.14 Как повысить расчетную мощность
  • 2 Установленная и единовременная мощность разница — Все об электричестве
  • 3 Расчетная и установленная мощность
    • 3.1 Что такое расчетная мощность
    • 3.2 Что такое установленная мощность
    • 3.3 Как повысить расчетную мощность

Установленная мощность

Как рассчитать расчетную мощность от установленной?

> Теория > Установленная мощность

Для энергоблоков электростанций, как и для всех других электроустановок и аппаратов, применяются различные условия работы. Суммарная максимальная мощность, при которой несколько установок (или одна) могут работать постоянно, – это установленная мощность. Показатель применяется и для потребления, и для выработки электроэнергии.

Понятие об установленной и расчетной мощности

Установленная мощность соответствует номинальным величинам и является фиксированным техническим показателем установки или системы. Для предприятий ее можно регулировать, например, снятием с эксплуатации части электроустановок. Данная величина применяется для характеристики:

  • отдельного предприятия и здания;
  • отраслевой группы;
  • географической области и всей страны.

Под значением установленной мощности понимается активный мощностной показатель или полный.

Одним из основополагающих факторов во время проектирования электрической установки является расчет мощности, необходимой для долговременной и бесперебойной ее работы. Когда определяют, что такое расчетная мощность, имеют в виду именно эту величину.

Значения установленной и расчетной мощности связаны между собой при выполнении различных проектных работ. Величина расчетной мощности обычно определяется на основе установленной мощности (т.е. суммы номинальных мощностей потребителей электроэнергии, имеющихся в рассматриваемой части электроустановки) после принятия определенных коэффициентов для одновременного включения этих нагрузок.

Пиковая мощность – это самая высокая средняя загрузка, измеренная или рассчитанная за определенный промежуток времени (например, в течение дня, недели, месяца, года). Чаще всего период охватывает один год.

Важно! Пиковый мощностной показатель является основой для выбора энергетического оборудования с точки зрения нагрева рабочим током,  определяет настройки применяемой защиты.

На этапе проектирования обычно предполагается, что расчетная мощность равна пиковой, и берется фиксированный коэффициент мощности.

Расчетная мощность определяется, исходя из следующих зависимостей:

  • максимальный расчетный ток:

I = P /√3 х U cos φ.

  • tg φ = Q/Р;
  • расчетная общая мощность:

S = √(Р² + Q²).

Установленная мощность для электрических станций

В чем измеряется мощность

Для электрических станций установленная мощность вычисляется суммированием номинальных мощностей отдельных генераторов и связанных с ними двигателей. Почти всегда эти значения идентичны. В случаях несовпадения расчет ведут по меньшей мощности.

Установленная мощность российских электростанций

В результате на дорогих станциях с большой экономией топлива стоимость электроэнергии чрезвычайно зависима от режима потребления. Поэтому для крупных станций выгодно использовать установленную мощность максимум часов в год, а для мелких ГТУ с большим расходом горючего включение целесообразнее производить в часы пика нагрузок, когда общее время работы в годовом исчислении невелико.

Расчетная мощность жилых зданий

Установленная мощность в жилом здании определяется на основе суммы потребительских номинальных мощностей всех электроприборов и установок, а расчетная – с учетом ожидаемого коэффициента одновременности их включения.

Электроснабжение квартиры

Каждый абонент имеет акт разграничения, в котором записана установленная мощность и расчетная. Для домов и квартир эти величины отличаются. В дома и некоторые квартиры обычно подводятся три фазы, что позволяет увеличить потребляемый (расчетный) показатель. Однофазный ввод значительно ограничивает потребление. Контролирует нагрузку защитное оборудование, отстроенное от максимально возможных токов.

  1. В случае если в доме или квартире нет силовой установки, расчетная энергия определяется по формуле:

Р1 = Рмакс + М х Рчел, где:

  • Рмакс – мощность самого большого приемника, установленного в квартире,
  • М – число жителей,
  • Рчел – расчетная мощность на одного человека (например, 1 кВт);

Важно! Данная формула не учитывает обогрев жилых помещений.

  1. Расчетная мощность кабеля электропитания многоквартирного здания производится с учетом количества квартир:

Р = Р1 х n x k + Ра + Рл, где:

  • n – число квартир,
  • k – коэффициент одновременности (он находится в пределах от 0,6 до 0,8),
  • Ра – установленная мощность административных электроприемников,
  • Рл – лифтов.

Если данных нет, то Ра берется равным 0,5 кВт, Рл = 20 кВт.

  1. При электрообогреве Ро = Р + К1 х ΣРкв, где:
  • Р – расчетная мощность без электрического отопления,
  • К1 – коэффициент одновременности тепловой нагрузки в n квартирах,
  • Ркв – энергия отопления в одной квартире, кВт.

Важно! Точное определение расчетной мощности, необходимой для обогрева помещений требует подробных расчетов, которые выполняются совместно со строителями и проектировщиками зданий. В жилых домах с преобладающими нагревательными элементами cos φ = 1.

  1. Расчетный мощностной показатель для группы зданий находится по эмпирической формуле:

Рз = 0,95 х k x ΣР, где Р – энергия для одного здания.

Расчет мощности для жилого дома

Расчетная мощность общественных зданий

  1. В целом для общественных зданий применяется формула:

Как рассчитать потребляемую мощность

Р = Ргр х k x а, где:

  • Ргр – установленная мощность группы приемников в кВт,
  • k – коэффициент одновременности для этой группы,
  • a – коэффициент использования номинальной мощности для данной группы приемников.

Оба коэффициента находятся в специальных таблицах.

  1. С учетом фактора спроса на электроэнергию используется другое выражение:

Р = Kс х Ргр, где Kc – коэффициент спроса (определяется по таблице).

Величина Кс для нежилых объектов колеблется от 0,2-0,4 до 1.

В методе коэффициента спроса расчетная нагрузка не зависит только от количества установленных приемников. Это связано с различными коэффициентами спроса. Для больших объектов с множеством разнообразного оборудования следует принимать меньшие значения Кс.

Расчет мощности для групп электроприемников

В непромышленных зданиях: офисах, школах, больницах, театрах, гостиницах и т. д., где доминируют осветительные приемники и нагревательные устройства, предполагают, что cos φ = 1.

Расчетная мощность здания коммунального хозяйства (котельные, насосные станции) должна определяться на основе данных каталога изготовителей электрических устройств, планируемых к установке, в соответствии со следующими формулами:

  1. реактивная мощность одного приемника:

Q1 = tg φ х Р1.

Q = Кс х Qгр, где:

  • для Qгр складываются все вычисленные значения отдельных приемников,
  • Кс – коэффициент спроса.
  1. активный мощностной показатель для группы:

Р = Kс х Ргр.

S = √(Р² + Q²).

Важно! Исходя из приведенных значений мощностей, вычисляется tg φ для группы: tg φ = Q/P. Если его значение больше указанного в технических условиях для подключения, принимается решение о компенсации реактивной мощности.

Коэффициент использования разного оборудования

Для трансформаторной подстанции, с которой будут питаться жилые и коммунальные здания, расчетная мощность определяется:

S =√(P² + Рз² + Рос²) + (Q² + Qз² + Qос²), где:

  • P и Q – показатели для зданий коммунального хозяйства;
  • Рз и Qз – для жилых зданий;
  • Рос и Qос – для установок уличного освещения.

Расчетная мощность для промышленных объектов

Расчетная мощность промышленного предприятия зависит от:

  • типа продукции;
  • используемых технологий;
  • ожидаемой максимальной нагрузки в течение года;
  • типа выпускаемой продукции;
  • типа оборудования и степени его адаптации к технологии.

Существует множество методов расчета, все они должны обладать общими свойствами:

  • простотой вычисления;
  • универсальностью в определении нагрузок для разных уровней потребления и распределения энергии;
  • точностью результатов;
  • легкостью определения показателей, на которых основан метод.

Основные показатели рассчитываются по тем же формулам, но с другими поправочными коэффициентами.

Коэффициенты спроса для СН подстанции

Для трехфазных электромоторов установленная мощность равна:

Р = Рн/(η х cos φ), где:

  • Рн – номинальный мощностной показатель из техпаспорта;
  • η – КПД электромотора;
  • cos φ – мощностной коэффициент.

Увеличение выделенной, согласно техусловиям, мощности необходимо согласовывать с энергоснабжающей организацией. С этой целью проводятся перерасчеты для вводных кабелей и приборов защиты на основе новой установленной мощности. Но решение о выделении зависит от наличия свободных мощностей.

Источник: https://elquanta.ru/teoriya/ustanovlennaya-moshhnost.html

Что такое расчетная мощность

Для упрощения сначала можно изучить типичные бытовые задачи. При подключении оборудования необходимо согласовать с параметрами имеющейся сети реальное потребление электроэнергии. Определенные данные нужны владельцу квартиры для выбора автоматических защитных устройств.

Расчетная мощность определяет, какой максимальный ее уровень возможен в определенных условиях эксплуатации. Для расчета нужны параметры подключенной техники.

Технические параметры бытовой техники

НаименованиеМощность по техпаспорту, ВтКоличествоИтого, кВт

Телевизор 1 250 1 0,25
Телевизор 2 180 1 0,18
Кондиционер 1500 3 4,5
Эл. конвектор 800 10 8
Тепловой вентилятор 1400 1 1,4
Холодильник 140 1 0,14
Варочная панель 4200 1 4,2
Духовой шкаф 3200 1 3,2

Понятно, что совместное включение кондиционеров и электрических конвекторов можно исключить. Однако в процессе приготовления торжественного ужина один духовой шкаф и все конфорки будут потреблять 7,4 кВт. Сильный ток в единой цепи способен разрушить проводку. Риск аварийных ситуаций возрастает при работе со старыми сетями питания, созданными из алюминиевых проводов с недостаточно большим сечением. В подобных объектах недвижимости (220V, одна фаза) действуют ограничения по нагрузке до 4 кВт.

Для подключения мощных потребителей (в частном загородном коттедже) рекомендуются медная проводка и подключение к сети 380V. В этом случае на одну фазу можно распределить до 14 (20) кВт по действующим стандартам. Действительные значения можно уточнить, обратившись в соответствующую снабжающую организацию.

К сведению. Таких возможностей достаточно, чтобы подсоединить даже мощный электродвигатель или сварочный трансформатор. Для подобных потребителей с выраженными реактивными составляющими делают специальный расчет с достаточным запасом по нагрузке.

Что такое установленная мощность

Знакомство с коэффициентом спроса и использования

Как видно из рассмотренного примера, простое сложение исходных параметров не позволит получить точный результат. В действительности, кроме возможности совместного включения, следует учесть длительность и время работы. Подробные сведения о режиме эксплуатации помогут использовать преимущества сравнительно недорогих тарифов (ночью, в праздничные и выходные дни).

Установленная мощность – это суммарный показатель, который рассчитан с учетом различных поправочных коэффициентов. Ниже представлены методики, которые используют для профессиональных и частных вычислений.

Номинальные нагрузки

Для комплексной оценки данного параметра, кроме номинального тока, понадобятся значения реактивной (Pr), активной (Рн) и полной (S) мощности. Точный расчет выполняют с учетом поправочного коэффициента, который определяет продолжительность подключения к источнику питания. Существенное значение имеет тип оборудования.

Так, номинальную мощность (полную) при кратковременных рабочих интервалах можно вычислить по формуле:

S = √(Рн2 + Pr2).

Реактивную составляющую определяют умножением потребления по техническому паспорту на √(П/100) * cos ϕ,

где:

  • П – обозначение суммарной длительности рабочих интервалов;
  • cos ϕ – справочный показатель, указанный в сопроводительной документации к подключенной аппаратуре.

Средние значения нагрузок

кВа в кВт — как правильно перевести мощность

Для решения практических задач многое будет значить потребление за длительный период времени (неделя, квартал). Чтобы получить корректный результат, берут суммарное значение активной компоненты с учетом необходимого промежутка. Также применяют поправочный коэффициент для определения рабочих интервалов. Допустимо применение рассмотренных выше формул. Главное различие – применение средних показателей вместо номинальных.

Установленная мощность для электрических станций

Этот параметр будет отличаться от суммы всех подключенных потребителей и генерирующих устройств. По действующим правилам установочная мощность определяется с учетом только тех агрегатов, которые работают на внешнюю линию электропередач. Складывают значения, указанные в соответствующих технических паспортах.

Разница установленной мощности солнечных электростанций в мире по годам за период 2000-2017

Расчетная мощность жилых зданий

Для корректного разделения технических и экономических показателей в таких объектах применяют следующие группировки потребителей:

  • квартиры;
  • общественная собственность.

Кроме осветительных приборов, необходимо учитывать мощность:

  • лифтового, вентиляционного, насосного оборудования;
  • отопительных устройств;
  • систем безопасности, контроля, пожарной сигнализации.

Пояснения:

  • суммарную нагрузку вычисляют по количеству и удельному потреблению отдельных категорий квартир;
  • мощность лифтовых приводов корректируют с учетом графика использования (спроса);
  • аналогичным образом уточняют потребление энергии электродвигателями насосных станций, других установок;
  • резервные комплекты (пожаротушение и др.) не учитывают.

К сведению. Формулы, поправочные коэффициенты и технологии расчетов подробно представлены в ГОСТ, отраслевых нормативах. Для расчета нагрузок с распределением по разным типам квартир можно воспользоваться справочными данными из строительных правил (СП31-110-2013).

Расчетная мощность общественных зданий

В таких объектах, как и в государственных учреждениях, отдельно рассчитывают потребление силовых установок и светильников. Для первой категории существенное значение будет иметь реактивная составляющая мощности. Исходные данные берут из проектной документации, проверяют по паспортам отдельных единиц техники. При наличии соответствующего автономного объекта уточняют параметры котельной.

Параметры светильников существенно различаются в зависимости от типа. Устаревшие лампы накаливания потребляют много электроэнергии при сравнительно небольшом КПД. Светодиодные приборы экономичнее в 8-10 раз.

Для оценки крупных объектов пользуются усредненными показателями удельной мощности на единицу площади, рабочее место. В некоторых ситуациях на потребление существенное влияние оказывает режим работы или количество посетителей.

Расчетная мощность для промышленных объектов

Такие потребители, как правило, отличаются повышенной энергоемкостью. Соответствующие проекты снабжения создают специализированные организации. По расчетной мощности различают предприятия:

  • малые и мини – до 750 кВ*А;
  • средние – от 75 до 150 МВ*А;
  • крупные – более 150 МВ*А.

Полученные значения используют для равномерного распределения нагрузок муниципальной электросети. Как и в предыдущих примерах, учитывают изменение потребления (суточные, недельные графики).

Как повысить расчетную мощность

Для частных, общественных, производственных и других объектов имеющиеся возможности ограничены утвержденным разрешением. Самовольное подключение мощных нагрузок недопустимо.

Чертеж из проекта электроснабжения частного дома

Изменяют условия по стандартной схеме. Сначала обращаются в снабжающую организацию. После согласования создают проектную документацию, выполняют необходимые рабочие операции.

Источник: https://amperof.ru/teoriya/ustanovlennaya-moshhnost.html

Установленная и единовременная мощность разница — Все об электричестве

Как рассчитать расчетную мощность от установленной?

> Теория > Установленная мощность

Для энергоблоков электростанций, как и для всех других электроустановок и аппаратов, применяются различные условия работы. Суммарная максимальная мощность, при которой несколько установок (или одна) могут работать постоянно, – это установленная мощность. Показатель применяется и для потребления, и для выработки электроэнергии.

Тепловая электростанция

Расчетная и установленная мощность

Как рассчитать расчетную мощность от установленной?

В современных условиях наблюдается постоянный рост потребляемой электроэнергии. Полученные данные показывают, что мощность только кухонного оборудования увеличилась в два раза. Кроме этого, появилось большое количество кондиционеров, компьютеров и другой техники.

Большинство электрических сетей уже не справляются с возрастающими нагрузками. Поэтому каждый хозяин квартиры или частного дома должен иметь представление о том, что такое расчетная и установленная мощность.

Эта проблема в полной мере касается и промышленных предприятий с современным энергоемким оборудованием.

Что такое расчетная мощность

Не только в новых, но и в старых домах владельцы жилья подключают новые виды бытовой техники и оборудования. Увеличение нагрузки может вызвать сбои в работе электрической сети, поэтому вопрос мощности подведенного кабеля нужно выяснить заранее. Эту информацию можно найти в акте разграничения балансовой ответственности или в справке о разрешенных мощностях, где указывается конкретная расчетная и установленная мощность.

Определение расчетной мощности известно также как мощность одновременного включения. Данный параметр указывает на возможное подключение установленного количества потребителей, имеющихся в квартире. В случае включения излишнего оборудования, автоматические защитные устройства просто выйдут из строя.

Сумма мощностей всех приборов будет соответствовать установленной мощности. Однако в случае одновременного включения, в сети возникнут значительные перегрузки, что приведет к срабатыванию защитных устройств.

Именно средства защиты позволяют установить определенный предел нагрузки, разрешенный для конкретного жилья.

Во многом значение расчетной мощности зависит от ввода. Каждая лестничная площадка оборудуется электрощитком с вводным автоматом, через который осуществляется ввод в квартиру кабеля с необходимым сечением. После этого внутри помещения размещаются все остальные элементы системы электроснабжения, в том числе и щит с устройствами распределения нагрузки по отдельным линиям.

В большинстве домов старой постройки подключено однофазное питание с напряжением 220 В. Именно такое подключение препятствует чрезмерной нагрузке на линию и не дает возможности подключения всех современных приборов. Эта проблема решается с помощью трехфазного ввода на 380 вольт. Он состоит из трех линий, перераспределяющих на себя общую нагрузку. В случае интенсивного энергопотребления происходит равномерное распределение нагрузки на каждую фазу.

Поэтому прежде чем планировать приобретение бытовой техники и оборудования, необходимо заранее выяснить, какой ток подведен в квартиру. Если подведены три фазы, то никаких проблем не будет, поскольку на один ввод приходится от 14 до 20 кВт, что позволяет свободно подключать все необходимые приборы.

Однако в старых постройках с однофазным вводом и алюминиевым кабелем, максимальная мощность нагрузки составляет всего 4 кВт. В этом случае об использовании каких-либо устройств, кроме освещения не может быть и речи.

Потребуется выделение дополнительной мощности, и по данному вопросу необходимо обращаться в соответствующие службы.

Что такое установленная мощность

Для того чтобы заранее спланировать установку в доме или квартире бытовой техники и оборудования, необходимо произвести оценку максимальной мощности, потребление которой будет осуществляться из электрической сети. Простое арифметическое сложение мощностей всех имеющихся потребителей не дает точных результатов, из-за своей неэффективности и неэкономичности.

Как правило, при такой оценке используются определенные факторы, учитывающие коэффициент использования и разновременность работы подключенных устройств. Кроме того, учитываются не только действующие, но и предполагаемые нагрузки. В результате, получается установленная мощность, измеряемая в кВт или кВА.

Значение установленной мощности будет равно сумме номинальных мощностей каждого прибора и устройства. Однако это значение не будет фактически потребляемой мощностью, которая практически всегда выше номинала. Данный параметр необходимо знать для того, чтобы правильно выбрать номинальную мощность того или иного устройства.

В промышленном производстве существует понятие полной установленной мощности. Этот показатель представляет собой арифметическую сумму полных мощностей каждого отдельно взятого потребителя. Он не совпадает с максимальной расчетной полной мощностью, поскольку при его расчетах используются различные коэффициенты и поправки.

Как повысить расчетную мощность

Если технические условия позволяют выделить дополнительную мощность, в этом случае на руки выдается соответствующее разрешение на выполнение электромонтажных работ. В итоге будет произведен ввод дополнительного кабеля необходимого сечения, определяемого специалистами. Это позволит выдерживать все предполагаемые нагрузки.

Однако на практике решение этой проблемы сопряжено с большими трудностями, прежде всего это связанными с согласованиями в различных структурах и инстанциях. Кроме того, дополнительные мощности отсутствуют и взять их просто негде.

Существующие сети и так уже работают с полной нагрузкой. Иногда дополнительные мощности находятся в другом районе, что потребует прокладки к дому новой кабельной линии. Внутри дома также выполняется прокладка нового магистрального силового кабеля.

Все изменения оформляются документально и фиксируются в техническом паспорте жилища.

Особые сложности возникают в домах старой постройки с однофазными линиями и отсутствующим заземлением. Здесь не поможет замена старой электропроводки на более новую, пропускная способность все равно останется старой и не позволит включать дополнительные приборы. В этом случае потребуется полная замена проводки на трехфазную линию с установкой всех необходимых защитных и распределительных устройств.

Источник: https://electric-220.ru/news/raschetnaja_i_ustanovlennaja_moshhnost/2016-10-02-1077

В данной статье приведен порядок расчета нагрузки бытовой электрической сети по установленной мощности и коэффициенту спроса (так называемый метод коэффициента спроса).

Рассчитанная по данной методике электрическая бытовая мощность может применяться для выбора аппаратов защиты и сечения кабелей электропроводки.

  1. Методика расчета бытовой мощности

Расчет мощности бытовой электросети по методу коэффициента спроса производится в следующем порядке:

Справочно: Так как в соответствии с действующими правилами силовые и осветительные сети принято разделять, расчет необходимо производить раздельно для силовой сети (розеточных групп) и сети освещения.

1) Определяется установленная (суммарная) электрическая мощность (Pуст) отдельно для силовой сети (розеточной группы) — Pуст-с и сети освещения Pуст-о:

Pуст-с=P1+P2+…+Pn

где: P1,P2,Pn — мощности отдельно взятых электроприемников (электрических приборов) в доме. При отсутствии фактических значений мощностей их можно принять нашей таблице мощностей бытовых электроприборов.

Pуст-о=P1*n1+P2*n2+…+Pn*nn

где: P1,P2,Pn — мощность одной отдельно взятой лампы каждого типа в доме;

n1, n2, nn, — количество ламп каждого типа.

Примечание: при отсутствии данных о мощности и количестве ламп для расчета установленной мощности сети освещения можно воспользоваться нашим онлайн-калькулятором расчета освещения помещения по площади помещения.

2) Исходя из установленной определяем расчетную мощность:

При определении мощности бытовой электросети необходимо учитывать, что все имеющиеся в доме электроприборы, как правило, одновременно в сеть не включаются поэтому для определения расчетной мощности применяется специальный поправочный коэффициент называемый коэффициентом спроса, значение которого принимается исходя из установленной мощности (суммарной мощности бытовых электроприборов):

коэффициент спроса установленной мощности бытовой сети

Примечание: При значении установленной мощности силовой сети до 5 кВт включительно коэффициент спроса рекомендуется принимать равным 1.

Расчетную мощность так же определяем раздельно:

  • Для силовой сети:

Pрс=Pуст-ссс

где: Pуст-с — установленная мощность силовой сети;

Ксс — коэффициент спроса для силовой сети.

  • Для сети освещения:

Pро=Pуст-осо

где: Pуст-о — установленная мощность сети освещения;

Ксо — коэффициент спроса для сети освещения.

  • Общую расчетную мощность бытовой сети можно получить получить сложив расчетные мощности силовой сети и сети освещения:

Pобщ.=Pрс+Pро

Полученные значения расчетных мощностей можно применять для определения расчетного тока сети и выбора аппаратов защиты (автоматических выключателей, УЗО и т.д.), а так же расчета сечения электропроводки. Подробнее об этом читайте в статье: Расчет электрической сети и выбор аппаратов защиты.

Так же для данных расчетов можно воспользоваться следующими нашими онлайн калькуляторами:

  • Онлайн расчет тока сети
  • Онлайн расчет автомата по мощности
  • Онлайн расчет дифавтомата по мощности
  • Онлайн расчет УЗО по мощности
  • Онлайн расчет сечения кабеля по мощности

ВАЖНО! В случае применения для расчета аппаратов защиты (автомата, дифавтомата, УЗО) вышеуказанных онлайн калькуляторов с использованием значения расчетной мощности определенного по методике приведенной в данной статье в калькуляторах при выборе типа указанной мощности следует поставить галочку в пункте: «Мной указана максамальная разрешенная к использованию мощность (проектная/расчетная мощность, либо мощность указанная в договоре электроснабжения)», т.к. в противном случае калькулятор использует при расчете коэффициент спроса который вами уже учтен, что приведет к некорректному расчету.

  1. Пример расчета мощности бытовой сети

Для примера расчета бытовой мощности возьмем частный дом в котором имеются следующие электроприемники:

В силовой сети:

  • стиральная машина — 2000 Вт
  • микроволновая печь — 1800 Вт
  • мультиварка — 1200 Вт
  • кухонная вытяжка — 120 Вт
  • пылесос — 550 Вт
  • телевизор — 130 Вт
  • персональный компьютер — 350 Вт
  • принтер — 60 Вт

В сети освещения: 

  • Лампочки накаливания — 6 шт по 75 Вт
  • Энергосберегающие лампочки — 8 шт по 22 Вт

Производим расчет мощности силовой сети:

  • Установленная мощность (сумма мощностей всех электроприборов): 

Pуст-с=2000+1800+1200+120+550+130+350+60=6210 Вт

теперь переведем данную мощность в киловатты для чего необходимо разделить полученное значение на 1000: 

Pуст-с=6210/1000=6,21 кВт

  • Определяем расчетную мощность силовой сети, для чего умножаем полученную установленную мощность на коэффициент спроса значение которого определяем по таблице выше (Ксс принимаем равным 0,8):

Pрс=Pуст-ссс=6,21*0,8=4,968 кВт 

По аналогии определяем мощность сети освещения:

  • Установленная мощность сети освещения: 

Pуст-о=6*75+8*22=450+176=626 Вт (или 0,626 кВт)

  • Определяем расчетную мощность силовой сети (учитывая малую мощность сети освещения и тот факт, что в такой небольшой сети все лампочки могут одновременно работать длительный период времени коэффициент спроса для сети освещения (Ксо)принимаем равным 1):

Pро=Pуст-ссо=0,626*1=0,626кВт 

  • Общая мощность бытовой сети составит:

Pобщ.=Pрс+Pро=4,968+0,626=5,594 кВт

Применим рассчитанные значения для определения номинального тока автоматического выключателя и сечения кабеля с помощью соответствующих онлайн калькуляторов (на примере силовой сети):

Автоматический выключатель для силовой сети определяем с помощью Онлайн-калькулятора расчета автомата по мощности:

расчет автомата с применением онлайн-калькулятора

Сечение кабеля для силовой сети определяем с помощью Онлайн-калькулятора расчета сечения кабеля по мощности:

расчет сечения кабеля с применением онлайн-калькулятора



Была ли Вам полезна данная статья? Или может быть у Вас остались вопросыПишите в комментариях!

Не нашли на сайте ответа на интересующий Вас вопросЗадайте его на форуме! Наши специалисты обязательно Вам ответят.

↑ Наверх

Что такое установленная мощность

Установленной мощностью называется суммарная номинальная электрическая мощность всех однотипных электрических машин, установленных например на каком-нибудь объекте.

Под установленной мощностью может пониматься как генерируемая, так и потребляемая мощность, применительно к генерирующим или потребляющим предприятиям и организациям, а также к целым географическим регионам или просто к отдельным отраслям. За номинал может быть принята номинальная активная мощность, либо полная мощность.

В частности, в сфере энергетики установленной мощностью электроустановки также называют максимальную активную мощность, с которой электроустановка в состоянии работать на протяжении длительного времени и при этом не перегружаясь, в соответствии с технической документацией на нее.

1472635175 13

При проектировании электроустановок определяют расчетную полную мощность каждого из потребителей, то есть мощность, потребляемую различными нагрузками. Данный этап является необходимым при проектировании низковольтной установки. Это позволяет согласовать потребление, определяемое договором на поставку электроэнергии для конкретного объекта, а также определить номинальную мощность трансформатора высокого/низкого напряжения с учетом требуемой нагрузки. Определяются уровни токовых нагрузок для распределительных устройств.

Данная статья призвана помочь читателю сориентироваться, обратить его внимание на связь полной мощности и активной мощности, на возможности улучшения параметров питания при помощи КРМ, на различные варианты организации освещения, а также указать способы расчетов установленной мощности. Коснемся здесь и темы пусковых токов.

Так, номинальная мощность Pn, указанная на шильдике двигателя, обозначает механическую мощность на валу, полная же мощность Pа отличается от этого значения, поскольку связана с КПД и с коэффициентом мощности конкретного устройства.

Для определения полного тока Iа трехфазного асинхронного двигателя, используют следующую формулу:

Здесь: Iа — полный ток в амперах; Pn – номинальная мощность в киловаттах; Pа – полная мощность в кило-вольт-амперах; U – напряжение между фазами трехфазного двигателя; η — КПД, то есть отношение выходной механической мощности к входной мощности; cosφ — отношение активной входной мощности к полной мощности.

Пиковые значения сверхпереходных токов могут быть крайне высокими, обычно в 12-15 раз выше среднеквадратичного номинала Imn, а иногда и до 25 раз. Контакторы, автоматические выключатели и термореле обязательно выбираются с учетом высоких значений пусковых токов.

Защита не должна срабатывать внезапно при пуске из-за сверхтока, но в результате переходных процессов достигаются предельные режимы для распределительных устройств, из-за этого они могут выйти из строя, или прослужат недолго. Чтобы избежать подобных неприятностей, номинальные параметры распределительных устройств подбирают несколько более высокими.

Сегодня на рынке можно встретить двигатели с высоким КПД, но пусковые токи так или иначе остаются значительными. Для снижения пусковых токов применяют пускатели с соединением треугольником, устройства плавного пуска, а также регулируемые приводы. Так пусковой ток может быть уменьшен вдвое, скажем, вместо 8 ампер 4 ампера.

1472635123 11

Довольно часто, с целью экономии электроэнергии, подаваемый на асинхронный двигатель ток снижают при помощи конденсаторов, путем компенсации реактивной мощности КРМ. Выходная мощность сохраняется, а нагрузка на распределительные устройства снижается. Коэффициент мощности двигателя (cosφ) повышается благодаря КРМ.

Полная входная мощность снижается, снижается и входной ток, напряжение остается неизменным. Для двигателей, длительно работающих при пониженной нагрузке, компенсация реактивной мощности особенно актуальна.

Ток, подаваемый на двигатель, оснащенный установкой КРМ, рассчитывается по формуле:

I = I а · ( cos φ/cos φ’ )

Для резистивных нагрузок, нагревательных приборов, ламп накаливания, ток рассчитывается следующим образом:

для трехфазной цепи:

Для однофазной цепи:

U – напряжение между зажимами прибора.

Применение инертных газов в лампах накаливания дает более направленный свет, повышается светоотдача, срок службы возрастает. В момент включения ток кратковременно превышает номинальный.

У люминесцентных ламп номинальная мощность Pn, указанная на колбе, не включает в себя мощность, которая рассеивается балластом. Ток следует рассчитывать по следующей формуле:

I а = (Pn + P баласта ) / (U · cosφ)

U – напряжение подаваемое на лампу вместе с балластом (дросселем).

Когда на балластном дросселе не указана рассеиваемая мощность, то примерно ее можно считать как 25% от номинала. Значение cos φ, без конденсатора КРМ, принимают равным примерно 0,6; с конденсатором — 0,86; для ламп с электронным балластом — 0,96.

Компактные люминесцентные лампы, очень популярные в последние годы, весьма экономичны, их можно встретить в общественных помещениях, в барах, в коридорах, в цехах. Они заменяют собой лампы накаливания. Также как и у люминесцентных ламп, здесь важно учесть коэффициент мощности. Балласт у них электронный, поэтому cos φ приблизительно 0,96.

Для газоразрядных ламп, в которых работает электрический разряд в газе или паре металлического соединения, характерно значительное время розжига, в это время ток превышает номинальный приблизительно двукратно, но точное значение пускового тока зависит от мощности лампы и от производителя. Важно помнить, что газоразрядные лампы чувствительны к напряжению питания, и если оно упадет ниже 70%, лампа может погаснуть, а после остывания потребуется более минуты для розжига. Лучшая светоотдача у натриевых ламп.

Надеемся, что эта краткая статья поможет вам сориентироваться при расчете установленной мощности, вы обратите внимание на значения коэффициентов мощности ваших приборов и агрегатов, задумаетесь о КРМ, и подберете оборудование оптимальное для ваших целей, при этом максимально эффективное и экономичное.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Описание установленной и расчетной мощности

Количество потребляемой электрической энергии ежегодно возрастает. Основываясь на актуальной статистической информации, даже обычное кухонное оборудование стало потреблять в несколько раз больше энергии, по сравнению с предыдущими годами. Кроме того, в повседневной жизни люди используют компьютеры и многие другие приборы, работающие от сети. Сети электроснабжения часто не могут справиться с такими запросами. Здесь важно разбираться в рассматриваемых понятиях, какой максимальный уровень нагрузки способна выдержать сеть.

Что такое установленная мощность?

Многие модели электротехнического оборудования имеют специальную маркировку, которая указывает на количество тока, выдаваемое во время их нормальной работы в штатном режиме (номинальная величина).

1 %D0%9F%D1%80%D0%B8%D0%B1%D0%BE%D1%80%D1%8B %D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%BE%D0%BF%D0%BE%D1%82%D1%80%D0%B5%D0%B1%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F Приборы энергопотребления

Чтобы выполнить расчет, суммируются номинальные значения этих показателей для всех устройств, работающих от электричества и размещенных на объекте. Под рассматриваемым понятием понимают ту мощность, которая генерируется или потребляется промышленным предприятием, территориальной единицей или обособленной отраслью. В качестве номинала может быть взят активный или полный показатель.

2 %D0%94%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D1%83%D1%8E%D1%89%D0%B0%D1%8F %D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0 Действующая электроустановка

В энергетической промышленности под этим понятием подразумевают наибольшую активность электрической установки при работе в течении длительного промежутка времени без зафиксированных перегрузок, согласно технической инструкции.

Важно! Расчет рассматриваемой величины играет важную роль в процессе проектирования электрических установок. Полученные данные станут залогом бесперебойной работы оборудования на протяжении долгого времени.

Что такое расчетная мощность?

Под этим определением понимают установленный показатель, позволяющий подключить некое количество единиц техники одновременно. Если превысить их допустимое число, защитная автоматическая система может выйти из строя. Расчет установленной мощности выполняется путем суммирования этого показателя, которым характеризуется каждый подключенный прибор в системе.

Важно! Межэтажное пространство жилого дома снабжено электрощитом и вводным устройством, от которого проложены кабели до каждой квартиры. В случае, когда система располагается в жилом помещении, в него прокладывают кабель с необходимым сечением. Для защиты разводящих линий устанавливают автомат, счетное устройство и щит для равномерного распределения нагрузок на каждой линии.

Отличия расчетной мощности от установленной

Нередко возникает вопрос: «Чем отличается установленная мощность от расчетной?». Номинальное значение установленной величины указывается на упаковке оборудования самим изготовителем. Оно дает представление о том, как прибор будет работать в бесперебойном режиме на протяжении долгого времени. Расчетная же величина говорит о фактической величине, которая изменяется в процессе колебания нагрузок по наибольшему возможному воздействию на единицу электросистемы.

Несмотря на различия, оба понятия, все же связаны друг с другом. Такая связь учитывается при осуществлении проектных работ. Установленное значение вычисляется на основе расчетного, с учетом коэффициентов для единовременного включения всех нагрузок в системе.

Как повысить расчетную мощность

Для увеличения расчетных данных вводят дополнительный кабель с нужным сечением, величину которого определяют специалисты. Это дает гарантию, что пиковые нагрузки не выведут из строя электрическую систему. Процесс считается затруднительным из-за обязательного согласования работ с муниципальными структурами и дополнительными затратами.

Средние нагрузки

Вычисление нагрузок выполняется по двум причинам:

Важно! Для определения средних нагрузок необходимо вычислить установленную величину и знать расчетные коэффициенты, которые принимаются во внимание в вычислениях. Один из них – коэффициент спроса. Средние нагрузки нужно знать для вычисления количества потерянной электрической энергии за годовой период.

Для расчетов средней нагрузки ( используют также отношение общего количества потребляемой за смену энергии с максимальной загруженностью ( ) и длительностью смены, измеряемой в часах ( ):

Формулы вычисления мощностей

Для расчета установленной мощности электроустановки можно взять наглядный пример осветительной установки.

4 %D0%9E%D1%81%D0%B2%D0%B5%D1%82%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F %D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B0 Осветительная установка

Установленная мощность ( ) вычисляется во время выбора ламп и по итогам технических расчетов. Для этого складываются мощности всех ламп накаливания в системе, и формула выглядит следующим образом:

, где – номинальные мощности ламп накаливания, – та же базовая величина для люминесцентных ламп с низким давлением, – мощность дуговых ламп (ртутных, низкого давления).

По разным причинам, часть осветительных элементов может не работать. В этом случае расчетная мощность ( ) – это произведение установленного значения ( ) и коэффициента спроса, который рассчитывается по формуле:

Важно! Определение установленной и расчетной мощностей имеет важное значение для многих отраслей промышленности и энергетического комплекса. Расчеты этих величин используют при проектировании осветительных установок, организации электроснабжения в жилых домах, городского освещения и в других областях, которые нуждаются в обеспечении электричеством.

Знание установленных и расчетных значений мощностей позволяет вычислить допустимые нагрузки, которым будет подвергаться эксплуатируемое электротехническое оборудование, что позволит использовать его с максимальной эффективностью.

Источник

Трансформаторные подстанции высочайшего качества

с нами приходит энергия

develop@websor.ru

Расчетные нагрузки промышленных предприятий

Для электрических сетей расчетными нагрузками являются наибольшие возможные нагрузки длительностью не менее 30 мин.
Величина расчетной нагрузки зависит от числа и установленной мощности электроприемников, характера производства и степени автоматизации — производственного процесса.

1. Номинальная (установленная) мощность электроприемников

Номинальная активная мощность для одного электроприемника определяется по формулам:
для приемников освещения и электродвигателей при длительном режиме работы

p143 0 00 01

для электродвигателей повторно-кратковременного режима работы

p143 0 00 02

для трансформаторов электропечей

p143 0 00 03

для трансформаторов сварочных машин и аппаратов и сварочных трансформаторов ручной сварки

p143 0 00 04

где Рн — номинальная мощность приемника освещения или номинальная (паспортная) мощность электродвигателя для длительного режима работы, кВт;
ПВн — номинальная (паспортная) продолжительность включения, отн. ед.;
Рн.п — паспортная мощность электродвигателя при номинальной относительной продолжительности включения, кВт;
Sн — паспортная мощность трансформатора, кВА;
cos φн — коэффициент мощности электропечи, сварочного аппарата или сварочного трансформатора при номинальных условиях.
Номинальная мощность группы электроприемников определяется как сумма номинальных мощностей всех электроприемников:

p143 0 00 05

где ру — номинальная мощность электроприемника, кВт;
n — общее число электроприемников в группе.

2. Расчетные нагрузки

Для одного электроприемника расчетная активная мощность принимается равной:
при длительном режиме работы

p143 0 02 01

при повторно-кратковременном режиме работы

p143 0 02 02

где р у — номинальная мощность электроприемника, кВт.
При повторно-кратковременном режиме работы электроприемника установленная мощность должна быть приведена к длительному режиму работы по одной из формул (3-2) или (3-4).
Расчетная реактивная мощность одного электроприемника определяется из выражения

p143 0 02 03

где φ — фазовый угол тока электроприемника при режиме расчетной нагрузки.
Для группы электроприемников числом до 3 включительно активная и реактивная расчетные мощности определяются как суммы соответственно активных и реактивных нагрузок электроприемников группы.
При ориентировочных расчетах допускается определять расчетную активную мощность одной или нескольких групп электроприемников по формуле

p143 0 02 04

где Кс и Ру — соответственно средняя величина коэффициента спроса и установленная мощность группы однотипных электроприемников;
n — общее число групп электроприемников. Реактивная расчетная мощность может быть определена из выражения

p143 0 02 05

где φ — фазовый угол суммарного тока всей группы электроприемников для режима расчетной нагрузки.
Средние значения коэффициента спроса силовой нагрузки для некоторых производств приведены в табл. 3-1 и 3-2.
Коэффициент спроса осветительной нагрузки промышленных предприятий и относящихся к ним вспомогательных и бытовых сооружений принимается по табл. 3-3.
В общем случае коэффициент спроса группы электроприемников промышленного предприятия определяется как произведение коэффициентов использования (Ки) и максимума (Км):

Коэффициенты использования и максимума группы электроприемников соответственно равны:

p143 0 02 06

p143 0 02 07

где Рсм — средняя активная нагрузка рассматриваемой группы электроприемников за наиболее нагруженную смену предприятия, квт;
Р и Ру — соответственно расчетная и номинальная активная мощности той же группы электроприемников, квт.
Значения коэффициентов использования в зависимости от типа приводимых механизмов и характера производства приведены в табл. 3-1.
Значения коэффициента использования для нескольких групп электроприемников с разными значениями коэффициента использования определяются по формуле (3-12), в которой под Рсм следует понимать сумму средних нагрузок за наиболее нагруженную смену для всех групп электроприемников:

p143 0 02 08

Коэффициент спроса группы электроприемников для ориентировочных расчетов может быть принят в зависимости от коэффициента использования по табл. 3-4.

3. Определение коэффициента максимума

При расчетах на стадии технического проекта или рабочих чертежей расчетные нагрузки определяются с учетом коэффициента максимума, величина которого зависит от коэффициента использования и эффективного числа электроприемников.
Под эффективным числом группы электроприемников с различной установленной мощностью и разными режимами работы понимается такое число приемников, одинаковых по мощности и однородных по режиму работы, которое обеспечивают ту же величину расчетной нагрузки, что и рассматриваемая группа различных по мощности и режиму работы электроприемников.
В общем случае эффективное число электроприемников может быть найдено из выражения

p143 0 03 01

Эффективное число электроприемников может быть принято равным фактическому их числу в следующих случаях:
а) когда мощность всех приемников одинакова;
б) при коэффициенте использования Ки>0,8;
в) когда выполняются указанные в табл. 3-5 соотношения между коэффициентом использования и величиной отношения, равного:

p143 0 03 02

p143 0 03 03
p143 0 03 04

где n — общее число электроприемников группы;
p143 0 03 05— сумма номинальных мощностей всей группы, квт;
p143 0 03 06— число приемников в группе, номинальная мощность каждого из которых больше или равна половине номинальной мощности наиболее мощного приемника в группе;

p143 0 03 07— сумма номинальных мощностей этих приемников, квт.

Мелкие электроприемники, суммарная мощность которых не превосходит 5% номинальной мощности всех электроприемников, при определении p143 0 03 08не учитываются.
В зависимости от величин р* и n * по табл. 3-6 находят величину относительного значения эффективного числа электроприемников:

p143 0 03 09

и определяют эффективное число приемников умножением полученного значения на общее число электроприемников группы:

p143 0 03 010

В зависимости от коэффициента использования Ки и эффективного числа приемников n э по табл. 3-7 определяется коэффициент максимума Км.
Величины расчетных активной и реактивной мощностей группы электроприемников определяется по формулам:

p143 0 03 011
p143 0 03 012

где Рсм — средняя активная мощность для группы электроприемников за наиболее нагруженную смену, кВт;
tgφ — соответствует характерному для данной группы электроприемников значению фазового угла в режиме максимальной активной мощности.
Полная расчетная мощность определяется из выражения

p143 0 03 013

расчетный ток — по формуле

p143 0 03 014

где U 1 — номинальное напряжение сети, кв.
Коэффициент мощности при режиме расчетной нагрузки равен:

p143 0 03 015

При определении эффективного числа электроприемников для большого числа питающих линий, нескольких трансформаторных пунктов, распределительных подстанций и т. п. допускается применять упрощенную методику расчета, которая заключается в следующем.
Для отдельных линий или подстанций, для которых ранее были определены величины номинальной мощности и эффективного числа электроприемников вычисляются мощности условных электроприемников по формуле

p143 0 03 016

где Ру и n э — соответственно номинальная мощность и эффективное число электроприемников рассматриваемой линии или подстанции.
При этом не учитывается нагрузка резервных электроприемников, ремонтных сварочных трансформаторов и других ремонтных электроприемников, пожарных насосов, а также электроприемников, работающих кратковременно (дренажные насосы, задвижки, вентили, щитовые затворы и т. п.). Нагрузка таких электроприемников учитывается только при расчете питающих эти приемники линий и линий, питающих силовые распределительные пункты, к которым они подключены.
Определение эффективного числа электроприемников, коэффициентов максимума и спроса для условных электроприемников, вычисленных по формуле (3-26), производится методом, изложенным выше для индивидуальных приемников.
При окончательном подсчете нагрузок должны быть учтены реактивные мощности присоединенных к сети батарей конденсаторов (мощности батарей статических конденсаторов учитываются со знаком «минус»), а также потери активной и реактивной мощности в понижающих трансформаторах.
Для электроприемников с малоизменяющейся во времени нагрузкой (насосы водоснабжения, вентиляторы, отопительные и нагревательные приборы, печи сопротивления и т. п.) коэффициент спроса может быть принят равным коэффициенту использования:

Изложенный метод определения расчетных нагрузок рекомендуется применять на всех ступенях и для всех элементов системы электроснабжения промышленных предприятий без введения в расчеты понижающих коэффициентов. Допускается применение коэффициента участия в максимуме в пределах 0,9—0,95 в случаях, когда при определении нагрузок на высших ступенях системы электроснабжения можно ожидать несовпадения во времени максимально загруженных смен, а также при ориентировочных расчетах.
В табл. 3-8 дано число часов использования максимальной мощности для осветительной нагрузки промышленных предприятий.

Пример 3-1.

В отделении цеха промышленного предприятия установлена группа электродвигателей на номинальное напряжение 380 в с длительным режимом работы. По величине коэффициента использования электроприемники разбиваются на три подгруппы, для каждой из которых в табл. 3-9 указаны число и мощность двигателей, суммарная номинальная мощность, величины коэффициентов использования и мощности.
Требуется определить расчетные нагрузки для всей группы электродвигателей отделения.

Источник


Главная / Электроснабжение строительно-монтажных работ / Электрические нагрузки и графики потребления электрической энергии / Определение расчетной мощности по установленной мощности и коэффициенту спроса

Определение расчетной мощности по установленной мощности и коэффициенту спроса является приближенным методом в частности потому, что Кс меняется с изменением числа однородных приемников в одном узле, а в справочниках дается постоянной величиной и рекомендуется лишь как предварительный.

Пример 1. Определить расчетную нагрузку группы приемников бетоносмесительного цеха ДСК. Исходные данные (выделены полужирным шрифтом) и результаты расчета сведены в таблице ниже.

Исходные данные и результаты расчета

Группа приемников Число приемников n, шт. Суммарная установленная мощность, Ру кВт Коэффициент спроса Кс COS φ tg φ Расчетные нагрузки
активная Рр, кВт реактивная Qp, квар полная S, кВ А
Конвейер 16 191,4 0,8 0,75 0,882 153,1 135
Вибратор 23 158,5 0,6 0,75 0,882 95 83,8
Вентилятор, насос 8 18 0,8 0,85 0,62 14,4 8,9
Дозатор 2 9 0,35 0,5 1,732 3,2 5,4
Итого 49 376,9 0,6 0,697 1,03 225,7 232,2 324,2

Величины Кр, Кс и cos φ приняты по справочным материалам. Кр принят равным 1. Значения Кс для всех групп вычислены по суммарным установленным и расчетным мощностям:

Формула

Метод упорядоченных диаграмм

Наиболее универсальным и рекомендуемым является метод упорядоченных диаграмм, который положен в основу «Временных руководящих указаний».

Расчетная нагрузка группы приемников Pр, соответствующая известному получасовому максимуму нагрузки Рр (30), определяется по формуле

Pр = Кмакс Pсм,

где Кмакс — коэффициент максимума активной мощности — выбирается из таблицы, ключом к которой является коэффициент использования Ки, выбираемый по справочникам для каждой группы приемников:

Формула

где в числителе стоит квадрат суммы номинальных активных мощностей всех n-приемников данной группы, а в знаменателе — сумма квадратов номинальных активных мощностей отдельных приемников группы. Если все приемники группы имеют одинаковую номинальную мощность, то

nэ=(nРN)2/ nР2N=n.

Если приемники группы имеют различные номинальные мощности, то nэ<n, br=»»>
РсмиРу

При nэ <4 расчетная мощность может быть определена как сумма номинальных мощностей:</n,>

Формула

Расчетная активная мощность узла электроснабжения, включающего n групп приемников, определяется по формуле

Формула

где Рсм — средняя мощность группы за наиболее загруженную смену.

Кмакс выбирается из справочных таблиц по общему эффективному количеству приемников для всего узла и по среднему значению коэффициента использования Ки, который определяется по формуле

Формула

Qp определяется по аналогичным формулам:

Qp Кмакс Qсм;
Qcm = Рсмtgφ;

Полная мощность вычисляется так:

Sp= √P2p + Q2p.

Расчет осветительных нагрузок может быть проведен методом удельной нагрузки на единицу площади по формуле

Pр.о= Pуд S,

где Pуд — выбирается по справочным данным; S — площадь помещения, м2.

«Электроснабжение строительно-монтажных работ», Г.Н. Глушков

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти число обратное единице
  • Сайт как найти работу в чите
  • Украли телефон как найти коробки нет
  • Как исправить выражение более красивее
  • Как найти песню в осу по названию

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии