Перейти к содержимому
Задача №34. Ускорение при торможении и длина пути торможения автомобиля
Определить ускорение автомобиля при торможении и длину пути торможения, если автомобиль за время торможения равное 5 секундам снизил скорость с 10 метров в секунду до 5 метров в секунду.
Дано: v0=10 м/с; v1=5 м/с; t=5 с
Найти: a — ?; L — ?
Решение:
Ускорение при торможении определяем по формуле
м/с2
Путь при торможении определяем по формуле
м
Ответ: ускорение автомобиля при торможении составило -1 метр в секунду в квадрате, путь при торможении равен 37,5 метрам
Enter the velocity before braking and the total stopping distance into the calculator to determine the Braking Acceleration.
- All Acceleration Calculators
- Braking Force Calculator
- Stopping Distance Calculator
- Brake Caliper Clamping Force Calculator
Braking Acceleration Formula
The following equation is used to calculate the Braking Acceleration.
Ab = V^2 / (2*SD)
- Where Ab is the Braking Acceleration (m/s^2)
- V is the velocity before braking (m/s)
- SD is the total stopping distance (m)
Braking acceleration is also often referred to as braking deceleration.
What are the units for Braking Acceleration?
The most common units for Braking Acceleration are m/s^2.
How to Calculate Braking Acceleration?
Example Problem:
The following example problem outlines the steps and information needed to calculate the Braking Acceleration.
First, determine the velocity before braking. In this example, the velocity before braking is determined to be 150 (m/s).
Next, determine the total stopping distance. For this problem, the total stopping distance is measured to be 10 (m).
Finally, calculate the Braking Acceleration using the formula above:
Ab = V^2 / (2*SD)
Inserting the values from above and solving the equation with the imputed values gives:
Ab = 150^2 / (2*10) = 1125 (m/s^2)
Загрузить PDF
Загрузить PDF
Ускорение характеризует быстроту изменения скорости движущегося тела.[1]
Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. [2]
Ускорение измеряется в метрах в секунду за секунду (м/с2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.
-
1
Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt, где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.[3]
- Единицами измерения ускорения являются метры в секунду за секунду, то есть м/с2.
- Ускорение является векторной величиной, то есть задается как значением, так и направлением.[4]
Значение – это числовая характеристика ускорения, а направление – это направление движения тела. Если тело замедляется, то ускорение будет отрицательным.
-
2
Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = vк — vн и Δt = tк — tн, где vк – конечная скорость, vн – начальная скорость, tк – конечное время, tн – начальное время.[5]
- Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
- Если в задаче начальное время не дано, то подразумевается, что tн = 0.
-
3
Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: a = Δv / Δt = (vк — vн)/(tк — tн). Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.
- Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
- Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
- Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
- Напишите переменные: vк = 46,1 м/с, vн = 18,5 м/с, tк = 2,47 с, tн = 0 с.
- Вычисление: a = (46,1 — 18,5)/2,47 = 11,17 м/с2.
- Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
- Напишите формулу: a = Δv / Δt = (vк — vн)/(tк — tн)
- Напишите переменные: vк = 0 м/с, vн = 22,4 м/с, tк = 2,55 с, tн = 0 с.
- Вычисление: а = (0 — 22,4)/2,55 = -8,78 м/с2.
Реклама
-
1
Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело.[6]
Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.- Второй закон Ньютона описывается формулой: Fрез = m x a, где Fрез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
- Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с2).
-
2
Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.
- Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
-
3
Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы.[7]
Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.- Например, вы с братом перетягиваете канат. Вы тянете канат с силой 5 Н, а ваш брат тянет канат (в противоположном направлении) с силой 7 Н. Результирующая сила равна 2 Н и направлена в сторону вашего брата.
- Помните, что 1 Н = 1 кг∙м/с2.[8]
-
4
Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.
- Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
- Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
-
5
Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.
- Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
- a = F/m = 10/2 = 5 м/с2
Реклама
-
1
Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:
Движение автомобиля Изменение скорости Значение и направление ускорения Движется вправо (+) и ускоряется + → ++ (более положительное) Положительное Движется вправо (+) и замедляется ++ → + (менее положительное) Отрицательное Движется влево (-) и ускоряется — → — (более отрицательное) Отрицательное Движется влево (-) и замедляется — → — (менее отрицательное) Положительное Движется с постоянной скоростью Не меняется Равно 0 -
2
Направление силы. Помните, что ускорение всегда сонаправлено силе, действующей на тело. В некоторых задачах даются данные, цель которых заключается в том, чтобы ввести вас в заблуждение.
- Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с2. Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
- Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с2.
-
3
Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):
Реклама
- Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
- Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 — 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с2.
Об этой статье
Эту страницу просматривали 190 271 раз.
Была ли эта статья полезной?
В этой главе. . .
- Изучаем скорость перемещения
- Разбираемся с разными видами скорости
- Замедляемся и разгоняемся
- Исследуем связь между ускорением, временем и перемещением
- Связываем скорость, ускорение и перемещение
Представьте себе, что вы участвуете в гонке “ Формула-1” и в гоночном автомобиле мчитесь навстречу славе. Скорость огромна, ветер свистит, а уверенность в победе высока, ведь отрыв от соперников значителен и осталось пройти последний поворот. Похоже, что ближайший преследователь, чемпион прошлого года, также прилагает значительные усилия — в зеркале заднего вида на мгновение показалась серебристая обшивка его болида. Необходимо что-то предпринять, поскольку преследователь очень быстро сокращает отставание.
Вам известно все или почти все о скорости и ускорении. С такими знаниями вы знаете, что нужно делать: жмете на педаль газа, и болид ускоряется. Знание законов изменения скорости позволило с легкостью пройти последний поворот. А вот и взмах клетчатого флага на финише, к которому вы пришли за рекордное время. Отлично! Безусловно, вам помогло знание именно тех тем, которые излагаются в этой главе: перемещение, скорость и ускорение.
Наверняка у вас уже есть интуитивное представление об этих понятиях, иначе вы не смогли бы управлять автомобилем или даже велосипедом. Перемещение описывает изменение места расположения, скорость характеризует быстроту перемещения, а ускорение знакомо всякому, кому приходилось перемещаться в автомобиле. С этими понятиями люди сталкиваются ежедневно, а физика поможет организовать их изучение. Знание этих физических понятий позволяет планировать дороги и транспортные развязки, строить и запускать космические корабли, отслеживать движение планет, предсказывать погоду, а также… приводит нас в бешенство в дорожной пробке.
Понимание законов физики включает понимание основ движения, и именно этой теме посвящена данная глава. Приступаем.
Содержание
- Передвигаемся и перемещаемся
- Разбираемся с осями
- Измеряем скорость
- Подробнее о скорости: что же это такое
- Смотрим на спидометр: мгновенная скорость
- Движемся постоянно: равномерная скорость
- Движемся вперед и назад: неравномерное движение
- Жмем на секундомер и определяем среднюю скорость
- Средняя скорость и неравномерное движение
- Ускоряемся и замедляемся
- Определяем ускорение
- Определяем единицу ускорения
- Положительное и отрицательное ускорение
- Среднее и мгновенное ускорение
- Равномерное и неравномерное ускорение
- Связываем ускорение, время и перемещение
- Не такие уж и далекие связи
- Выводим более сложные соотношения
- Связываем скорость, ускорение и перемещение
Передвигаемся и перемещаемся
С точки зрения физики перемещение возникает при переходе какого-то объекта из точки 1 в точку 2. Попросту говоря, перемещение — это пройденное объектом расстояние. Рассмотрим, например, движущийся вдоль линейки мячик для игры в гольф, который показан на рис. 3.1. Допустим, что сначала мячик находится возле отметки 0 (схема А).
Пока что все в порядке. Допустим, что мячик сместился на новое место, например на 3 метра вправо (схема Б). В таком случае говорят, что мячик переместился, или произошло перемещение. В данном случае перемещение равно 3 метрам. В исходном положении мячик находился на отметке 0 метров, а в конечном положении — на отметке +3 метра.
В физике перемещение часто обозначают символом ( s ), т.е. в данном случае ( s ) равно 3 метрам.
Как и любое другое измерение в физике, перемещение выражается в некоторых единицах, обычно в сантиметрах или метрах. Но часто можно встретить и другие единицы: километр, дюйм, фут, миля или даже световой год (расстояние, которое проходит свет за один год и которое тяжело измерить обычной линейкой; оно приблизительно равно 9 460 800 000 000 километрам или 9 460 800 000 000 000 метрам).
Ученые любят очень подробно описывать разные ситуации. Например, исходное положение часто обозначают символом( s_0 )(или, в англоязычной литературе,( s_i ) где ( i ) обозначает “initial”, т.е. исходный). А конечное положение часто обозначают символом ( s_1 ) (или, в англоязычной литературе, ( s_f ) где ( f ) обозначает “final”, т.е. конечный). Таким образом, положения на схеме А и схеме Б на рис. 3.1 выражаются символами ( s_0 ) и ( s_1 ) соответственно. А перемещение ( s ) между ними равно их разности, т.е. конечное положение минус исходное положение:
Перемещения не обязательно должны быть положительными: они могут быть нулевыми или даже отрицательными. На схеме В на рис. 3.1 показана ситуация, когда неугомонный мячик переместился в новое положение у отметки -4 метра. Чему равно перемещение в этом случае? Ответ зависит от выбранного исходного положения. Исходное положение также часто называют начальной точкой (в которой начинается действие), которую можно выбрать произвольным образом. Если в качестве исходного положения выбрать положение 0 на линейке, то получим следующее перемещение:
Обратите внимание, что ( s ) отрицательно!
В качестве начальной точки можно выбрать отличное от 0 положение. Например, для перехода между исходным положением на схеме А на рис. 3.1 и конечным положением на схеме В получим следующее перемещение:
Величина перемещения зависит от выбора начальной точки. В простых задачах выбор начальной точки очевиден, а как быть в более сложных случаях, например, когда движение происходит не вдоль линейки?
Разбираемся с осями
В реальном мире объекты редко движутся вдоль линеек, как мячик для гольфа на рис. 3.1. Часто движение происходит в двух или даже трех измерениях пространства. Чтобы измерить движение в двух пространственных измерениях, нужно иметь две пересекающиеся линейки, которые называются осями. Горизонтальную ось называют осью X, а вертикальную — осью Y, а при движении в трехмерном пространстве используют еще одну ось Z (если представить, что оси X и Y лежат в плоскости страницы, то ось Z как бы “торчит” из нее).
На рис. 3.2 показан пример движения мячика для гольфа в двумерном пространстве. Мячик движется из центра рисунка в верхний правый угол.
Используя оси, можно сказать, что мячик передвинулся на +4 метра по оси X и на +3 метра по оси Y. Новое положение мячика обозначается парой чисел (4; 3), где первое число относится к оси X, а второе — к оси Y, т.е. оно выражается в формате ( (x,y) ).
Чему равно перемещение? Изменение положения по оси X обозначается символом ( Delta x ) (греческий символ ( Delta ) произносится “дельта” и означает “изменение”) и равно: конечное положение минус исходное положение. Если мячик стартует из центра рисунка, т.е. из положения (0; 0), то изменение положения по оси X равно:
Аналогично, изменение положения по оси Y равно:
Допустим, что нужно вычислить величину суммарного перемещения по обеим осям X и Y. Иначе говоря, насколько далеко удалился мячик от исходного положения в центре рисунка? Это можно подсчитать на основе теоремы Пифагора, т.е. выполнить следующие вычисления:
Итак, величина перемещения мячика равна 5 метрам.
Согласно теореме Пифагора, сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы.
Измеряем скорость
В предыдущих разделах рассматривалось движение в одном или двух пространственных измерениях. Однако реальные перемещения происходят за некоторый промежуток времени, т.е. с некоторой скоростью. Например, за какое время произошло перемещение на рис. 3.1 из исходного положения в конечное положение: за 12 лет или 12 секунд?
Остальная часть этой главы посвящена измерению скорости перемещений. Аналогично измерению перемещения в пространстве, можно измерять разницу во времени между началом и концом движения, которая обычно выражается следующим образом:
Здесь ( t_1 ) обозначает конечное время, ( t_0 ) — начальное время, а их разность — количество времени, необходимого для перемещения, например движения мячика от начального к конечному положению. Когда ученые хотят узнать, насколько быстро происходит это событие, то фактически это значит, что они хотят измерить скорость.
Подробнее о скорости: что же это такое
Наверняка вам известно из опыта, что скорость определяется следующим образом:
скорость = расстояние/время.
Например, если расстояние ( s ) пройдено за время ( t ), то скорость ( v ) равна:
Переменная ( v ) обозначает только величину скорости, но истинная скорость также имеет направление (более подробно это описывается в главе 4). Иначе говоря, скорость является вектором (векторы обычно обозначаются полужирным начертанием, например ( mathbf{v} )). Векторы обладают величиной и направлением, т.е., зная скорость, мы знаем не только быстроту, но и направление движения. Аналогично, перемещение в более общем смысле является вектором, т.е. характеризуется не только величиной, но и направлением смещения (более подробно векторы описываются в главе 4).
Достаточно просто, не так ли? Точнее говоря (физики очень любят точность), скорость равняется изменению положения, деленному на изменение времени. Потому скорость движения вдоль оси X можно выразить следующим образом:
В реальном мире скорость может принимать очень разные формы, некоторые из них описываются в следующих разделах.
Смотрим на спидометр: мгновенная скорость
Итак, у нас уже есть общее представление о скорости. Именно ее измеряет спидометр автомобиля, не так ли? Когда вы катите по прямолинейному шоссе, все, что нужно делать, — всего лишь следить за показаниями спидометра. “Уже 140 километров в час. Пожалуй, сбросим скорость до 120”. Именно так мы часто поступаем в жизни, а иначе говоря, так мы определяем мгновенную скорость.
Понятие мгновенной скорости играет важную роль в понимании физических процессов. В данный момент времени спидометр показывает 120 километров в час, значит, ваша мгновенная скорость равна именно этой величине. Если вы ускоритесь до 150 километров в час, то ваша мгновенная скорость станет равной этой новой величине. Мгновенная скорость — это скорость в данный момент времени. Спустя две секунды мгновенная скорость может стать совершенно другой.
Движемся постоянно: равномерная скорость
А что если долгое время автомобиль едет со скоростью 120 километров в час? В физике эта скорость называется равномерной (или постоянной), а в жизни она возможна только при движении на абсолютно ровных и прямолинейных дорогах, когда долгое время можно поддерживать движение без изменения скорости.
Равномерное движение с постоянной скоростью является простейшим видом движения, поскольку оно никак не меняется.
Движемся вперед и назад: неравномерное движение
Название этого типа движения говорит само за себя: неравномерное движение означает движение со скоростью, меняющейся со временем. Именно с такой скоростью мы чаще всего сталкиваемся в повседневной жизни. Вот как выглядит уравнение изменения скорости от исходной скорости ( v_1 ) до конечной скорости ( v_0 ):
Остальная часть этой главы посвящена ускорению, которое характеризует неравномерность движения.
Жмем на секундомер и определяем среднюю скорость
Выражение со скоростями не так уж неосязаемо, как может показаться. Измерения скорости можно сделать более конкретными. Допустим, что вам хочется совершить путешествие из Нью-Йорка в Лос-Анджелес, которые находятся на расстоянии около 2781 миль друг от друга. Если предположить, на это путешествие ушло 4 суток, то какой была ваша скорость?
Скорость можно найти, если поделить пройденное расстояние на затраченное на это время:
Итак, результат 695,3 получен, но в каких единицах он выражен?
В этом выражении мили делятся на сутки, т.е. результат равен 695,3 милям в сутки. Это не совсем стандартная единица измерений и вполне естественно было бы поинтересоваться: а сколько это миль в час? Для ответа на этот вопрос нужно перевести сутки в часы, как показано в главе 2. Поскольку в сутках 24 часа, то получим следующий результат:
Итак, получен более понятный результат 28,97 миль в час. Смущает лишь столь малая величина скорости, ведь обычно машины едут со скоростью в 2-3 раза быстрее, однако среднюю скорость для всего путешествия мы вычислили, разделив все расстояния на все время, включая время отдыха.
Среднюю скорость часто обозначают с помощью штриха над переменной: ( overline{v} ) .
Средняя скорость и неравномерное движение
Средняя скорость отличается от мгновенной, если только вы не движетесь равномерно, когда скорость вообще не меняется. А средняя скорость неравномерного движения, когда все расстояние делится на все время, может отличаться от мгновенной скорости.
Путешествуя из Нью-Йорка в Лос-Анджелес, вам наверняка придется провести несколько ночей в отелях, и во время вашего отдыха мгновенная скорость автомобиля равна 0 миль в час, а средняя скорость — 28,97 миль в час! Дело в том, что средняя скорость получена в результате деления всего расстояния на все время.
Средняя скорость может зависеть от фактически пройденного пути. Допустим, что, путешествуя по штату Огайо, вы решили подвезти попутчика в штат Индиана и погостить у вашей сестры в штате Мичиган. Все путешествие может иметь вид, показанный на рис. 3.3: первые 80 миль — в штат Индиана, а потом 30 миль — в штат Мичиган.
Если ехать со скоростью 55 миль в час, то для преодоления всего пути длиной 80 + 30 = 110 миль потребуется 2 часа. Но если взять расстояние по прямой между начальной и конечной точкой путешествия, которое равно 85,4 миль, то средняя скорость будет равна:
Таким образом, получена средняя скорость для расстояния от начальной до конечной точки путешествия вдоль пунктирной линии. Но если вам нужно определить скорость для каждого из двух отрезков фактически пройденного пути, то нужно измерить длину каждого из двух отрезков и разделить их на время их прохождения.
При движении с равномерной скоростью это можно сделать легко и просто, поскольку в таком случае средняя скорость равняется мгновенной скорости в любой точке пути.
Изучая движение, нужно учитывать не только скорость, но и направление движения. Именно по этой причине огромное значение имеет понятие вектора скорости. Более подробно векторы описываются в главе 4.
Ускоряемся и замедляемся
Как и в случае со скоростью, вам уже наверняка знакомо понятие ускорения. Ускорение характеризует быстроту изменения скорости. При выезде с подземной парковки порой приходится слышать визг шин — кто-то пытается ускориться, подрезать и обогнать вас на выезде. Вот он проскакивает перед вами буквально в нескольких сантиметрах и резко тормозит прямо перед вами, принуждая вас резко нажать на педаль тормоза. Именно в таких ситуациях очень полезно и важно знать основы физики.
Определяем ускорение
С точки зрения физики ускорение (( a )) — это изменение скорости (( Delta v )) за единицу времени (( Delta t )):
Это соотношение можно переписать иначе для известных начальной и конечной скоростей в начальный и конечный моменты времени соответственно:
Ускорение, как и скорость, является векторной величиной и часто обозначается полужирным начертанием: ( mathbf{a} ). Иначе говоря, ускорение, как и скорость, характеризуется направлением. Более подробно векторы описываются в главе 4.
Определяем единицу ускорения
Единицу ускорения можно легко определить, если проанализировать определение ускорения, в котором изменение скорости делится на изменение времени:
Подставляя единицы измерения, получим:
Итак, единица ускорения — это единица расстояния, деленная на единицу времени в квадрате. Иначе говоря, ускорение — это скорость изменения скорости.
Поскольку ускорение — это расстояние, деленное на время в квадрате, то среди единиц измерения можно встретить следующие: километр на секунду в квадрате, метр на секунду в квадрате, сантиметр на секунду в квадрате, миля на секунду в квадрате, фут на секунду в квадрате и т.д.
Шутки ради допустим, что вы едете со скоростью 75 миль в час и в зеркале заднего вида видите проблесковый маячок дорожного патруля. Жмете на тормоза и останавливаетесь спустя 20 секунд. Инспектор дорожного патруля подходит к вам и сообщает: “Выдвигались со скоростью 75 миль в час в зоне, где скорость движения ограничена величиной 30 миль в час”. Что можно ответить? Попробуйте поразить воображение инспектора своими познаниями физики.
Быстро подсчитайте величину своего замедления после сигнала инспектора, чтобы поразить его своим исключительным законопослушанием! Достаньте калькулятор и начните вводить в него данные. Преобразуйте величину скорости 75 миль в час в более впечатляющие единицы измерения, например в сантиметры в секунду. Для этого сначала преобразуйте единицу измерения скорости, т.е. выразите ее в милях в секунду:
Теперь попробуем преобразовать мили в секунду в более впечатляющие для инспектора единицы измерения, например в сантиметры в секунду. Как известно, 1 миля содержит 5280 футов, а 1 фут — 12 дюймов. Тогда пройденное расстояние в дюймах в секунду равно:
В главе 2 уже упоминалось, что 1 дюйм равен 2,54 сантиметрам, потому пройденное расстояние в сантиметрах в секунду равно:
Таким образом исходная скорость движения была равна 3,4⋅103 сантиметров в секунду, а конечная — 0 сантиметров в секунду. Это изменение скорости произошло за 20 секунд. Так чему же равняется ускорение? Напомним еще раз формулу ускорения:
Подставляя числа, получим:
Итак, ускорение равно 170 см/с2. Однако попробуем присмотреться к этому результату более внимательно и вспомнить точное определение ускорения:
Конечная скорость равна 0 см/с, а исходная — 3,4⋅103 см/с, так что подставляя значения в эту формулу, получим:
Иначе говоря, мы получили -170 см/с2, а не +170 см/с2, что с точки зрения физики (и законов дорожного движения) имеет большое значение. Если бы ваше ускорение было равно +170 см/с2, то конечная скорость через 20 секунд была бы равна 150 миль в час, а не 0 миль в час. Ни один инспектор дорожного движения не обрадовался бы такому конечному результату.
Теперь вам осталось только очаровательно улыбнуться и сказать инспектору: “Возможно, я ехал несколько быстрее, чем следовало, но я чрезвычайно законопослушный гражданин и, едва услышав вашу сирену, мгновенно затормозил с замедлением -170 см/с2”. Возможно, инспектор будет настолько впечатлен этим результатом и вашими познаниями физики, что отпустит вас без наказания.
Аналогично скорости, ускорение может принимать разный вид в разных физических задачах. Ускорение может быть положительным, отрицательным, средним, мгновенным, равномерным или неравномерным. В следующих разделах описываются некоторые такие ситуации.
Положительное и отрицательное ускорение
При решении физических задач всегда нужно внимательно следить за знаком используемой величины. Ускорение, как и скорость, может быть отрицательным или положительным. При торможении автомобиля его скорость меняется с положительной до 0, а потому ускорение имеет отрицательный знак.
Ускорение, как и скорость, обладает знаком.
Не следует думать, что отрицательное ускорение всегда означает замедление, а положительное ускорение всегда означает ускорение. На рис. 3.4 показан пример ситуации, когда мячик для игры в гольф движется с замедлением из начального положения (схема А на рис. 3.4) в конечное положение (схема Б на рис. 3.4), но с положительным ускорением.
Поскольку отрицательная величина скорости уменьшается, то в целом ускорение мячика имеет положительную величину. Иначе говоря, для уменьшения отрицательной скорости нужно сделать положительное приращение скорости, т.е. ускорение при этом будет положительным.
Знак ускорения сообщает нам о том, как меняется скорость. Положительное ускорение означает, что скорость увеличивается в положительном направлении и уменьшается в отрицательном направлении. И наоборот, отрицательное ускорение означает, что скорость увеличивается в отрицательном направлении и уменьшается в положительном направлении.
Среднее и мгновенное ускорение
Аналогично скорости, ускорение может иметь мгновенное или среднее значение. Среднее ускорение равно отношению изменения скорости к изменению времени. Среднее ускорение обозначается штрихом сверху, ( overline{a} ), и вычисляется аналогично средней скорости, т.е. от конечной скорости отнимается начальная скорость и полученная разность делится на все время (т.е. на разность конечного и начального времени):
Это соотношение дает нам среднее ускорение, но фактическое ускорение в произвольный момент времени не всегда равно среднему ускорению. Например, в предыдущем примере после того, как вы заметили сигнал инспектора, вы очень сильно нажимаете педаль тормоза, и автомобиль тормозит с очень большим ускорением. Но перед самой остановкой вы отпускаете педаль тормоза, и ваш автомобиль тормозит с уже меньшим ускорением. Оба эти мгновенные значения отличаются от величины среднего ускорения, вычисленного после деления всего изменения скорости на все время торможения.
Равномерное и неравномерное ускорение
Движение с неравномерным ускорением означает движение с изменением ускорения. Например, при движении в городе часто приходится тормозить перед знаками и сигналами остановки движения, а потом снова разгоняться.
Однако существуют ситуации, когда ускорение остается неизменным во время движения, например ускорение свободного падения под действием силы притяжения Земли. Это ускорение в общем случае равно 9,8 метров в секунду в квадрате, направлено к центру Земли и неизменно.
Связываем ускорение, время и перемещение
Итак, в этой главе вы познакомились с четырьмя параметрами движения: ускорением, скоростью, временем и перемещением. Перемещение и время связаны следующим простым соотношением для скорости:
Аналогично, скорость и время связаны следующим простым соотношением для ускорения:
Однако эти соотношения связывают только по два “уровня” переменных, т.е. скорость с перемещением и временем, а ускорение со скоростью и временем. А как связать три “уровня” переменных, т.е. ускорение со временем и перемещением?
Допустим, что вы участвуете в гонке и после пробного заезда хотели бы знать ускорение, которое способен обеспечить ваш автомобиль по известному пройденному пути 402 метра за 5,5 секунд. Таким образом, получается задача, в которой нужно связать ускорение с перемещением и временем.
Итак, для решения этой задачи нужно вывести уравнение связи ускорения с перемещением и временем.
Работу с уравнениями можно заметно упростить, если использовать алгебраические подстановки, например использовать переменную ( v ) вместо разности ( v_1-v_0 ) и переменную ( t ) вместо разности ( t_1-t_0 ). В случае необходимости после получения решения можно сделать обратную подстановку, заменяя переменную ( v ) разностью ( v_1-v_0 ) и переменную ( t ) разностью ( t_1-t_0 ).
Не такие уж и далекие связи
Попробуем связать ускорение, перемещение и время, жонглируя разными переменными, пока не получим нужный результат. Перемещение равно средней скорости, умноженной на время:
Итак, у нас есть отправная точка. Какова средняя скорость автомобиля из предыдущего примера? Начальная скорость была равна 0, а конечная — очень большой. Поскольку ускорение было постоянным, то скорость росла линейно от нуля до конечного значения (рис. 3.5).
При постоянном ускорении средняя скорость равна половине суммы конечной и начальной скоростей:
Конечная скорость равна:
Тогда средняя скорость равна:
Теперь подставим это выражение для средней скорости в уравнение для перемещения ( s=overline{v}t ) и получим:
Теперь вместо переменной ( t ) можно подставить исходную разность конечного и начального моментов времени и получим:
Ура! Мы вывели одно из наиболее важных соотношений между ускорением, перемещением, временем и скоростью, которые используются в физических задачах.
Выводим более сложные соотношения
А что если движение началось не с нулевой начальной скоростью? Как в таком случае связать ускорение, время и перемещение? Как такое начальное значение скорости, например 100 миль в час, повлияет на величину пройденного расстояния? Поскольку расстояние равно скорости, умноженной на время, то искомое соотношение имеет следующий вид:
Такое выражение не так уж и легко запомнить, если, конечно, вы не обладаете фотографической памятью. Сложно даже запомнить более простую формулу связи между перемещением и временем для движения с постоянным ускорением, с нулевого начального момента и с нулевой начальной скоростью:
Если движение начинается не с нулевой скоростью, то к предыдущему выражению нужно добавить расстояние, которое было бы пройдено за то же время с начальной скоростью. Подобные соображения на основе здравого смысла значительно упрощают решение физических задач. Механическое запоминание формул без понимания их смысла не всегда поможет вам найти ошибку в вычислениях.
Так каким же было ускорение автомобиля в одном из предыдущих примеров? Теперь мы знаем, как связаны перемещение, ускорение и время, и для ответа на этот вопрос нужно применить алгебраические навыки. Итак, мы имеем:
После деления обеих частей на ( t^2 ) и умножения на 2 получим:
Великолепно! Подставляя числа, получим:
Итак, получилось, что ускорение автомобиля равно 27 метров в секунду в квадрате. Насколько велико это ускорение? Например, ускорение свободного падения в поле тяготения Земли, ( g ), равно около 9,8 метров в секунду в квадрате, т.е. ускорение автомобиля приблизительно равно ( 2,7g ).
Связываем скорость, ускорение и перемещение
До сих мы достаточно успешно справлялись со всеми предложенными задачами. А что если немножко усложнить их условия? Допустим, что в примере с автомобилем вам известно только ускорение 26,3 метров в секунду в квадрате и конечная скорость 146,3 метров в секунду, а нужно определить пройденное расстояние. Справитесь ли вы с таким заданием? Внимательный читатель уверенно ответит: “Никаких проблем, только дайте мне калькулятор”.
Прежняя задача в новой формулировке кажется более сложной, поскольку в прежних соотношениях всегда присутствовало время. Это значит, что, зная время движения, вы легко сможете решить задачу даже в новой более сложной формулировке. Чтобы определить время движения, достаточно знать ускорение, а также начальную и конечную скорости.
Поскольку:
то получим выражение для времени движения:
Теперь, зная время, можно определить пройденное расстояние по формуле:
Второй член можно исключить, потому что ( v_0 ) = 0. Итак, после подстановки чисел получим:
Как выглядит формула связи перемещения, ускорения и скорости? Для ее получения нужно найти выражение для времени движения:
Поскольку при движении с равномерным ускорением ( s=overline{v}t ), a ( overline{v}={}^1!/!_2(v_1-v_0) ), то получим:
Подставляя в эту формулу выражение для времени движения, получим:
После несложных алгебраических преобразований получим:
Перемещая член ( 2a ) в другую часть уравнения, получим еще одно важное соотношение, которое связывает скорость, ускорение и перемещение:
Уф, это выражение стоит запомнить!
После решения всех этих задач каждый читатель по праву может считать себя повелителем движения.
Глава 3. Утоляем жажду скорости
4.2 (84%) 5 votes
На
рис. I
приведена схема сил, действующих на
автомобиль при торможении.
2.1. Расчетная схема автомобиля при торможении
Рис. 1. Схема сил,
действующих на автомобиль при торможении
На автомобиль при
торможении действуют следующие силы:
Gа—
сила тяжести автомобиля;
Z1,
Z2
— нормальные реакции опорной поверхности;
Ру
— боковые силы и Rу
— боковые реакции (они будут только при
криволинейном движении);
Рw
— сила
сопротивления воздуха.
Рх—
продольные реакции дороги, которые
можно считать равнодействующими
нормальных сил;
Pf
— сила сопротивления качению;
Рτ
– сила
торможения
Рх
=
Рτ
+ Pf
Pj—
инерционная сила автомобиля в
поступательном движении;
Mj
— инерционный момент вращающихся масс.
2.2.
Предельная тормозная сила,
которая может быть реализована на колесе
определяется формулой
Pτ
max
= φ·Zk
(1)
где
φ-
коэффициент сцепления колеса с дорогой.
Если
составить согласно схеме (рис. 1) два
уравнения равновесия моментов относительно
задней оси и решить их относительно
неизвестных вертикальных реакций Z1
и Z2,
то получим следующие расчетные зависимости
(2)
где
а1,
а2
—
координаты
центра тяжести;
jτ
—
ускорение замедлений;
hq
—
высота центра тяжести;
L
—
база автомобиля;
Ga
— вес автомобиля.
Как
видно из формул (2), в процессе торможения
автомобиля переменным величинам в них
являются ускорения замедлений (jτ).
Остальные величины: а1,
а2,
hq
и
Ga
являются постоянными (они также
будут переменными, если автомобиль
будет порожним или загружен частично).
Определим
предельное значение ускорений замедления
из уравнений динамики. Пренебрегая
сопротивлением качению (~ 3%),
сопротивлением
воздуха Pw
(~2,3%),
согласно рис 1 можно написать уравнение
равновесия
Pj
= Pτ1
+ Pτ2
(3)
Раскроем
это
уравнение через массу автомобиля.
Получим
(4)
Сократив
левую и правую части уравнения (4) на Ga,
получим
(5)
Из
формулу (5) следует, что максимальные
значения ускорений замедлений не зависят
от веса (массы) автомобиля, а находятся
в прямо пропорциональной зависимости
от коэффициента сцепления φ,
т.е. от дороги (коэффициент сцепления
изменяется в широких пределах: от
0,1 до 0,8).
Рассмотрим
один конкретный пример. Возьмем
максимально возможное значение
коэффициента сцепления φ
= 0,8
(бетон, асфальтобетон и асфальт гладкий).
В результате этого
получим
Таким
образом, самые максимальные значения
ускорений замедления, которые только
можно получить при торможений автомобиля
не могут быть больше 8 м/с2.
Пользуясь
формулами (2), построим график изменения
вертикальных (нормальных) реакций в
функции замедлений —
jτ
(в
функции дороги — φ).
Из графика (рис.2)
можно сделать следующие выводы:
1. При торможении
автомобиля вертикальные реакции на
передней оси увеличиваются, а на задней
оси — уменьшаются.
Рис.2. Изменения
нормальных реакций на колесах автомобиля
при торможении автомобиля
Это
позволяет сделать важный вывод о том,
что передняя
ось автомобиля должна тормозиться
эффективнее,
чем задняя (привести примеры конструктивных
решений для выполнения этого требования,
например, на автомобиле ГАЗ-66).
2. Как
видно из рис. 1, есть три зоны
торможения
Зона «а» — если
значения коэффициента сцепления
небольшие, то вначале тормозится передняя
ось, а задняя ось — недотормаживается.
В этом случае, во-первых, торможение
автомобиля в целом неэффективно,
во-вторых, может произойти блокировка
передних колес, которые, как известно,
являются управляемыми и, в-третьих,
тормозная сила на заднюю ось недостаточна.
Таким образом,
торможение автомобиля в целом нельзя
признать эффективным.
Зона «б» — при
больших значениях коэффициента сцепления
вначале тормозится задняя ось
автомобиля, а передняя ось в этом случае
недоторможивается.
И в этом случае,
во-первых, торможение автомобиля также
будет неэффективным и, во-вторых,
блокировка задних колес может привести
к заносу автомобиля. Таким образом, и в
этом случае торможение автомобиля
нельзя признать эффективным.
И
третье — для каждого автомобиля есть
только одно значение φp,
при котором полностью используется
сцепной вес автомобиля, т.е. когда обе
оси автомобиля тормозятся на грани
блокировки колес.
Последний
вывод важен с точки зрения того, что при
проектировании автомобиля необходимо
закладывать такое значение φp
(расчетное значение коэффициента
сцепления), которое наиболее полно
характеризует условия эксплуатации
автомобиля (по асфальтированным дорогам,
по щебеночной дороге, по улучшенной
грунтовой дороге и т.д.)
3. Оси автомобиля
необходимо тормозить в функции изменения
вертикальных реакций на колесах (это
можно обеспечить при применении
регуляторов тормозных сил).
4. Оси автомобиля
необходимо тормозить в функции дороги
— (это можно обеспечить при установке
антиблокировочной системы).
Так встает вопрос
обоснования и выбора характеристики
тормозной системы.
Вот
примеры реальных значений φp
для
некоторых автомобилей:
1. Волга
— φp
= 0,46
(разбитая грунтовая дорога).
2. УАЗ
— φp
=
0,26 (песок).
3.
ГАЗ-66 — φp
=
0,25 (песок).
4.
ЗИЛ-131 — φp
= 0,31
(разбитая грунтовая дорога).
Как
видим, многие значения φp
не
соответствуют наиболее характерным
условиям эксплуатации автомобилей.
Рассмотрим
характеристики регуляторов тормозных
сил.
На рис. 3 представлена
характеристика регулятора тормозных
сил с компенсатором.
Из
графика рис.3 следует, что до точки «а»
давление на входе в регулятор и давление
на выходе из регулятора одинаковое (Р1
= Р2).
В
точке «а» срабатывает компенсатор,
в результате чего давление на выходе
из регулятора будет меньше, чем давление
на входе (Р1
≠ Р2,
Р1
> Р2).
Рис.3. Характеристика
регулятора с компенсатором
Таким образом,
если связать давление воздуха (или
жидкости), направляемого в тормозные
камеры с нагрузкой на колесах автомобиля,
то можно создавать в тормозных камерах
давление в функции изменения нормальной
нагрузки (реакций).
На рис.4 представлена
характеристика лучевого регулятора.
Из характеристики следует, что если
нагрузка на среднюю и заднюю оси
автомобиля одинаковая, то давление на
входе и выходе из регулятора одинаковое,
и, следовательно, оси автомобиля
тормозятся одинаково.
Если же уменьшить
нагрузку на заднюю ось, то уменьшается
и нагрузка на выходе, а, следовательно,
задняя ось тормозится менее эффективно.
Таким образом,
связь давлений можно описать формулой
Р2
=
iP1
,
(6)
где
i
—
передаточное
число.
Передаточное
число (I)
выражает отношение площадей над поршнем
и под поршнем регулятора тормозных сил
автомобиля КамАЗ-5320.
Линия 1 графика
(рис.4) соответствует полностью груженому
автомобилю и определяет отношение
давления на входе и выходе как
Рис.4. Характеристика
лучевого регулятора тормозных сил
(автомобиль КамАЗ-5320)
1 — автомобиль
полностью загружен;
2 — автомобиль с
частичной нагрузкой.
Если
же уменьшить нагрузку на заднюю ось, то
уменьшается и передаточное число
(i)
и
тогда
Р1
≠ Р2,
то есть Р2
будет
меньше Р1,
а следовательно задняя ось автомобиля
тормозится менее эффективно, что и
требуется.
Однако, автомобиль
надо тормозить не только в функции
нагрузки на колеса, но и в функции дороги
(коэффициент сцепления). Это может быть
обеспечено при применении на автомобилях
антиблокировочных систем.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #