Как найти уравнение части окружности

Уравнение окружности.

Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.

В формулировке окружности упоминается расстояние между точкой окружности и центром.

Формула расстояния между двумя точками М11; у1) и М22; у2) имеет вид:

,

Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.

Отметим произвольную точку М(х; у) на этой окружности.

.

Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.

Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .

Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:

В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

источники:

Геометрия. Урок 5. Окружность

http://www.resolventa.ru/demo/diaggia6.htm

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Уравнение окружности.

Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.

В формулировке окружности упоминается расстояние между точкой окружности и центром.

Формула расстояния между двумя точками М11; у1) и М22; у2) имеет вид:

,

Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.

Отметим произвольную точку М(х; у) на этой окружности.

.

Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.

Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .

Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:

В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):

Уравнение окружности

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

Так как |СМ| = ( sqrt <(x — a)^2 + (у — b)^2>), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

или 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

источники:

http://www.calc.ru/Uravneniye-Okruzhnosti.html

http://razdupli.ru/teor/31_uravnenie-okruzhnosti.php

Содержание:

Окружность:

Определение: Кривой второго порядка называется линия, описываемая уравнением Окружность - определение и вычисление с примерами решения

Замечание: Если коэффициенты Окружность - определение и вычисление с примерами решения

При определенных значениях параметров, входящих в это уравнение, оно дает канонические у равнения окружности, эллипса (не путать с овалом), гиперболы и параболы. Рассмотрим эти кривые второго порядка в указанной последовательности.

Определение: Окружностью называется геометрическое место точек равноудаленных от выделенной точки Окружность - определение и вычисление с примерами решения называемой центром окружности, на расстояние R, которое называется радиусом окружности.

Получим уравнение окружности (Рис. 27). Пусть точка М(х;у) лежит на окружности:

Окружность - определение и вычисление с примерами решения

Рис. 27. Вывод уравнения окружности.

Из рисунка видно, что по теореме Пифагора Окружность - определение и вычисление с примерами решения которое определяет уравнение окружности (Рис. 28): Окружность - определение и вычисление с примерами решения

Рис. 28. Окружность. Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения то уравнение принимает вид Окружность - определение и вычисление с примерами решения который называется каноническим уравнением окружности.

Пример:

Составить уравнение окружности, центр которой совпадает с точкой М (2; 1), прямая линия Окружность - определение и вычисление с примерами решения является касательной к окружности.

Окружность - определение и вычисление с примерами решения

Решение:

Радиус окружности равен расстоянию от центра окружности точки М (2; 1) до прямой l, т.е.

Окружность - определение и вычисление с примерами решения

В уравнении окружности Окружность - определение и вычисление с примерами решения таким образом оно имеет вид: Окружность - определение и вычисление с примерами решения

Пример:

Составить уравнение окружности, касающейся двух параллельных прямых Окружность - определение и вычисление с примерами решения причем одной из них в т. А (1; 2).

Окружность - определение и вычисление с примерами решения

Решение:

Прежде всего определим, на какой из прямых Окружность - определение и вычисление с примерами решения или Окружность - определение и вычисление с примерами решениялежит точка A(1; 2). Для этого подставим ее координаты в уравнения прямых Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения следовательно, точка A(1; 2) принадлежит линии Окружность - определение и вычисление с примерами решения(в сокращенной форме это предложение пишут так: Окружность - определение и вычисление с примерами решения где значок Окружность - определение и вычисление с примерами решения означает “принадлежит”. Таким образом, диаметр окружности D равен расстоянию от точки A(1; 2) до прямой Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

а радиус окружности Окружность - определение и вычисление с примерами решения Найдём координаты центра окружности точки Окружность - определение и вычисление с примерами решения которая делит отрезок АВ пополам. Вначале составим уравнение прямой (АВ) и вычислим координаты точки Окружность - определение и вычисление с примерами решения перейдем от общего уравнения прямой Окружность - определение и вычисление с примерами решения к уравнению прямой с угловым коэффициентом Окружность - определение и вычисление с примерами решения Так как прямаяОкружность - определение и вычисление с примерами решениято её угловой коэффициент Окружность - определение и вычисление с примерами решения Прямая (АВ) проходит через известную точку A(1;2), следовательно, Окружность - определение и вычисление с примерами решения Отсюда находим Окружность - определение и вычисление с примерами решения Таким образом,уравнение прямой (АВ):Окружность - определение и вычисление с примерами решения

Найдем координаты точки B, которая является пересечением прямых Окружность - определение и вычисление с примерами решения и (АВ), т.е. решим систему линейных алгебраических уравнений, составленную из уравнений прямых Окружность - определение и вычисление с примерами решения и (АВ): (В): Окружность - определение и вычисление с примерами решения Подставим выражение для переменной у из второго у равнения в первое, получим Окружность - определение и вычисление с примерами решения Подставив это значение во второе уравнение системы, найдем Окружность - определение и вычисление с примерами решения т.е. Окружность - определение и вычисление с примерами решения

Для вычисления координат точки О применим формулы деления отрезка пополам (О): Окружность - определение и вычисление с примерами решения в этой формуле Окружность - определение и вычисление с примерами решения (координаты точки О), Окружность - определение и вычисление с примерами решения (координаты точки А), Окружность - определение и вычисление с примерами решения (координаты точки В), следовательно, Окружность - определение и вычисление с примерами решения т.е. координаты точки О Окружность - определение и вычисление с примерами решения

Таким образом, уравнение искомой окружности имеет вид: Окружность - определение и вычисление с примерами решения

Окружность в высшей математике

Рассмотрим уравнение

Окружность - определение и вычисление с примерами решения

которое получается из уравнения (I), если положить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Если в формулу, выражающую расстояние между двумя точками, подставить Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения, то получим Окружность - определение и вычисление с примерами решения Из уравнения (1) находим, что Окружность - определение и вычисление с примерами решения, т. е. Окружность - определение и вычисление с примерами решения. Это значит, что все точки Окружность - определение и вычисление с примерами решения, координаты которых удовлетворяют уравнению (1), находятся на расстоянии Окружность - определение и вычисление с примерами решения от начала координат. Следовательно, геометрическое место точек, координаты которых удовлетворяют уравнению (1), есть окружность радиуса Окружность - определение и вычисление с примерами решения с центром в начале координат. Аналогично получаем, что уравнение Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения определяет окружность радиуса Окружность - определение и вычисление с примерами решения с центром в точке Окружность - определение и вычисление с примерами решения.

Пример:

Найдем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом, равным 10.

Решение:

ПолагаяОкружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения получим Окружность - определение и вычисление с примерами решения.

Разрешим это уравнение относительно Окружность - определение и вычисление с примерами решения, будем иметь

Окружность - определение и вычисление с примерами решения

и

Окружность - определение и вычисление с примерами решения

Первое из этих уравнений есть уравнение верхней половины окружности, второе—нижней.

Центральный угол. Градусная мера дуги

Дуга окружности. Если отметить на окружности точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, то окружность разделится на две дуги: большую дугу (мажорная дуга) и меньшую дугу (минорная дуга). Если точка Окружность - определение и вычисление с примерами решения является какой-либо точкой дуги Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Если точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются концами диаметра, го каждая дуга является полуокружностью.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Центральный угол. Угол, вершина которого находится в центре окружности, называется центральным углом. Дугу окружности можно измерять в градусах. Градусная мера дуги равна градусной мере соответствующего центрального угла: Окружность - определение и вычисление с примерами решения

Сумма всех центральных углов окружности, не имеющих общую внутреннюю точку, равна Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Дуги окружности и их величины

Окружность - определение и вычисление с примерами решения

Пример: Окружность - определение и вычисление с примерами решения минорная дуга: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения мажорная дуга: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Конгруэнтные дуги

В окружности конгруэнтным центральным углам соответствуют конгруэнтные дуги и наоборот.

Если Окружность - определение и вычисление с примерами решения

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Длина дуги

Какую часть составляет центральный угол от всей окружности, такую же часть длина дуги составляет от длины всей окружности.

Длина дуги в Окружность - определение и вычисление с примерами решения равна Окружность - определение и вычисление с примерами решения части длины окружности.

Длина дуги, соответствующей центральному углу с градусной мерой Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения части длины окружности: Окружность - определение и вычисление с примерами решения

Длина дуги выражается единицами измерения длины (мм, см, м, и т.д.)

Окружность - определение и вычисление с примерами решения

Пример №1

Длина окружности равна 72 см. Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения.

Решение:

Так как центральный угол Окружность - определение и вычисление с примерами решения составляет Окружность - определение и вычисление с примерами решения часть полного угла, то длина искомой дуги: Окружность - определение и вычисление с примерами решения

Пример №2

Найдите длину дуги, соответствующей центральному углу Окружность - определение и вычисление с примерами решения в окружности радиусом 15 см.

Решение: подставляя значения Окружность - определение и вычисление с примерами решения в формулу длины дуги находим: Окружность - определение и вычисление с примерами решения

Окружность и хорда

Теорема о конгруэнтных хордах

Теорема 1. Хорды, стягивающие конгруэнтные дуги окружности, конгруэнтны.

Обратная теорема 1. Дуги, стягиваемые конгруэнтными хордами окружности, конгруэнтны.

1)Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

2)Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1:

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о серединном перпендикуляре хорд

Теорема 2.

Диаметр, перпендикулярный хорде, делит хорду и соответствующую дугу пополам.

Если Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 2.

Дано: Окружность - определение и вычисление с примерами решения— центральный угол, Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Начертите радиусы Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Следствие 1. Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и ее дугу пополам.

Следствие 2. Центр окружности расположен на серединном перпендикуляре хорды. Серединный перпендикуляр хорды проходит через центр окружности.

Пример: Найдите расстояние от центра до хорды длиной 30 единиц в окружности радиусом 17 единиц. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения. Из Окружность - определение и вычисление с примерами решения по теореме Пифагора имеем: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема о хордах, находящихся на одинаковом расстоянии от центра окружности

Теорема 3.

Конгруэнтные хорды окружности находятся на одинаковом расстоянии от центра окружности.

Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения

Обратная теорема 3. Хорды, находящиеся на одинаковом расстоянии от центра окружности, конгруэнтны.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 3

Дано: Окружность с центром Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Докажите: Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Прямая, проходящая через центр окружности и перпендикулярная хорде, делит хорду и стягивающую ее дугу пополам. Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения — серединные перпендикуляры конгруэнтных хорд Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения. Окружность - определение и вычисление с примерами решения, так как они являются половиной конгруэнтных хорд. Начертим радиусы окружности Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения. Прямоугольные треугольники, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения конгруэнтны (по катету и гипотенузе). Так как Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения являются соответствующими сторонами данных треугольников, то они конгруэнтны: Окружность - определение и вычисление с примерами решения. Теорема доказана.

Задача. Хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра окружности. Окружность - определение и вычисление с примерами решения. Если радиус окружности равен 41 единице, то найдите Окружность - определение и вычисление с примерами решения.

Решение: Так как хорды Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения находятся на одинаковом расстоянии от центра, то они конгруэнтны: Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения Соединим точки Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения с точкой Окружность - определение и вычисление с примерами решения В прямоугольном треугольнике Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения; Окружность - определение и вычисление с примерами решения

Так как Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется углом вписанным в окружность. Дуга, соответствующая углу, вписанному в окружность, называется дугой, на которую опирается этот угол.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения является углом вписанным в окружность с центром Окружность - определение и вычисление с примерами решения, а Окружность - определение и вычисление с примерами решения дуга, на которую опирается этот угол. Ниже показаны три разных угла, вписанных в окружность.

Окружность - определение и вычисление с примерами решения

Угол, вписанный в окружность:

Теорема 1. Градусная мера угла, вписанного в окружность, равна половине градусной меры дуги, на которую он опирается. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Доказательство (текстовое): Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения радиусы окружности и Окружность - определение и вычисление с примерами решения равнобедренный треугольник. Значит, Окружность - определение и вычисление с примерами решения Так как Окружность - определение и вычисление с примерами решения является внешним углом Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения Если примем, что Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения Так как градусные меры центрального угла и опирающейся на него дуги равны, то Окружность - определение и вычисление с примерами решения Следовательно, Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решения

Следствие 1. Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Следствие 2. Угол, вписанный в окружность и опирающийся на диаметр (полуокружность), является прямым углом.

Окружность - определение и вычисление с примерами решения

Конгруэнтные углы, вписанные в окружность

Следствие 3. Вписанные углы, опирающиеся на одну и ту же дугу, конгруэнтны. Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения.

Следствие 4. Вписанные углы, опирающиеся на конгруэнтные дуги, конгруэнтны. Если Окружность - определение и вычисление с примерами решения, то Окружность - определение и вычисление с примерами решения.

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Касательная к окружности

Касательная. Признак касательной

Прямая, имеющая одну общую точку с окружностью, называется касательной. Теорема 1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Окружность - определение и вычисление с примерами решения

Прямая Окружность - определение и вычисление с примерами решения является касательной к окружности. Значит, Окружность - определение и вычисление с примерами решения Обратная теорема (признак касательной): Прямая, проходящая через точку окружности и перпендикулярная радиусу, проведенному в эту точку, является касательной окружности.

Прямая, касающаяся обеих окружностей, называется общей касательной этих окружностей. Окружности, касаясь друг друга изнутри или извне, могут иметь общую касательную в одной точке. Также окружности могут касаться одной касательной в разных точках.

Окружность - определение и вычисление с примерами решения

Две окружности могут иметь несколько общих касательных или вообще не иметь общих касательных.

Окружность - определение и вычисление с примерами решения

Доказательство теоремы 1. Если прямая Окружность - определение и вычисление с примерами решения — касательная к окружности, значит, она имеет единственную общую точку с окружностью. Допустим, что прямая Окружность - определение и вычисление с примерами решения не перпендикулярна радиусу Окружность - определение и вычисление с примерами решения Проведем Окружность - определение и вычисление с примерами решения и на прямой Окружность - определение и вычисление с примерами решения выделим отрезок Окружность - определение и вычисление с примерами решения Тогда Окружность - определение и вычисление с примерами решения так как Окружность - определение и вычисление с примерами решения Значит, точка Окружность - определение и вычисление с примерами решения также находится на окружности. То есть прямая Окружность - определение и вычисление с примерами решения имеет с окружностью две общие точки, что противоречит условию. Значит, Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Свойства касательных, проведенных к окружности из одной точки

Теорема 2. Отрезки касательных к окружности, проведенных из одной точки, конгруэнтны, и центр окружности находится на биссектрисе угла, образованного касательными.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения касательные, проведенные из точки Окружность - определение и вычисление с примерами решения к окружности с центром Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Углы, образованные секущими и касательными

Прямая, имеющая две общие точки с окружностью, называется секущей окружности.

Углы между двумя секущими

Вершина угла находится внутри окружности

Теорема. Если вершина угла, образованного двумя секущими, находится внутри окружности, то градусная мера угла равна полусумме величин дуг на которые опирается этот угол и угол вертикальный данному. Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Углы между касательной и секущей

Вершина угла находится на окружности

Теорема. Если вершина угла, образованного касательной и секущей, находится на окружности, то градусная мера угла равна половине градусной меры дуги, на которую он опирается.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Углы, образованные касательной и секущей

Вершина угла находится вне окружности

Теорема 1.

Градусная мера угла, образованного секущей и касательной, двумя касательными, двумя секущими окружности (если вершина угла находится вне окружности), равна половине разности градусных мер дуг, находящихся между сторонами угла.

Окружность - определение и вычисление с примерами решения

Отрезки секущих и касательных

Длина отрезков, секущих окружность

Теорема 1. При пересечении двух хорд, произведение отрезков одной хорды, полученных точкой пересечения, равно произведению отрезков второй хорды.

Окружность - определение и вычисление с примерами решения Окружность - определение и вычисление с примерами решения

Теорема 2. Если из точки Окружность - определение и вычисление с примерами решения провести две прямые, пересекающие окружность соответственно в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения, Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения то верно равенство Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Теорема 3. Если из точки Окружность - определение и вычисление с примерами решения проведены прямая, которая пересекает окружность в точках Окружность - определение и вычисление с примерами решения и Окружность - определение и вычисление с примерами решения и касательная к окружности в точке Окружность - определение и вычисление с примерами решения то верно равенство: Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Уравнение окружности

Используя формулу расстояния между двумя точками, можно написать уравнение окружности с радиусом Окружность - определение и вычисление с примерами решения и с центром в начале координат. Расстояние между центром окружности Окружность - определение и вычисление с примерами решения и ее любой точкой Окружность - определение и вычисление с примерами решения равно радиусу Окружность - определение и вычисление с примерами решения окружности.

Окружность - определение и вычисление с примерами решения Расстояние между двумя точками

Окружность - определение и вычисление с примерами решения Упрощение

Окружность - определение и вычисление с примерами решения Возведение обеих частей в квадрат

Окружность - определение и вычисление с примерами решения

Уравнение окружности с центром в начале координат и радиусом Окружность - определение и вычисление с примерами решения: Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в начале координат Окружность - определение и вычисление с примерами решения и радиусом 2 имеет вид: Окружность - определение и вычисление с примерами решения

По формуле расстояния между центром окружности Окружность - определение и вычисление с примерами решения и точки Окружность - определение и вычисление с примерами решения на окружности радиуса Окружность - определение и вычисление с примерами решения имеем Окружность - определение и вычисление с примерами решенияВозведя в квадрат обе части, получаем уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Например, уравнение окружности с центром в точке Окружность - определение и вычисление с примерами решения и радиусом 4 имеет вид: Окружность - определение и вычисление с примерами решения

Пример №3

Постройте на координатной плоскости окружность, заданную уравнением Окружность - определение и вычисление с примерами решения

Решение: Напишем уравнение в виде Окружность - определение и вычисление с примерами решения Как видно, Окружность - определение и вычисление с примерами решения

Отметим 4 точки, находящиеся на расстоянии 5 единиц от начала координат. Например, Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения Проведем окружность через эти точки.

Окружность - определение и вычисление с примерами решения

Пример №4

Точка Окружность - определение и вычисление с примерами решения находится на окружности, центром которой является начало координат. Напишите уравнение этой окружности.

Решение: Записав координаты точки Окружность - определение и вычисление с примерами решения в уравнении Окружность - определение и вычисление с примерами решения, получим: Окружность - определение и вычисление с примерами решения Уравнение этой окружности: Окружность - определение и вычисление с примерами решения

Пример №5

Найдем центр и радиус окружности, заданной уравнением Окружность - определение и вычисление с примерами решения

Решение: Окружность - определение и вычисление с примерами решения

Центр окружности точка Окружность - определение и вычисление с примерами решения Радиус Окружность - определение и вычисление с примерами решения

Пример №6

Мобильные телефоны работают с помощью передачи сигналов посредством спутников из одной передающей станции в другую. Компания мобильного оператора старается расположить передающую станцию так, чтобы обслуживать больше пользователей. Представим, что три больших города находятся в точках Окружность - определение и вычисление с примерами решения На координатной плоскости 1 единица равна расстоянию в 100 км. Передающая станция должна быть расположена в точке, находящейся на одинаковом расстоянии от этих городов. Напишите координаты этой точки и уравнение соответствующей окружности.

Решение: Сначала соединим эти точки и найдем точку пересечения серединных перпендикуляров сторон полученного треугольника. Эта точка Окружность - определение и вычисление с примерами решения Эта точка, являясь центром окружности, показывает месторасположение станции. Расстояние между центром и любой из заданных точек является радиусом окружности, Окружность - определение и вычисление с примерами решения

Уравнение окружности: Окружность - определение и вычисление с примерами решенияОкружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Заметка. Определив линейные уравнения, соответствующие серединным перпендикулярам, можно найти координаты центра окружности решением системы уравнений.

Координаты точек, находящихся на окружности, и тригонометрические отношения

Если точка Окружность - определение и вычисление с примерами решения при повороте радиуса Окружность - определение и вычисление с примерами решения вокруг точки Окружность - определение и вычисление с примерами решения против движения часовой стрелки на угол Окружность - определение и вычисление с примерами решения преобразуется в точку Окружность - определение и вычисление с примерами решения то Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Для координат точки Окружность - определение и вычисление с примерами решения соответствующей углу поворота Окружность - определение и вычисление с примерами решения на окружности, верны формулы Окружность - определение и вычисление с примерами решения В этих формулах Окружность - определение и вычисление с примерами решения — угол, отсчитываемый от положительной оси Окружность - определение и вычисление с примерами решенияпротив движения часовой стрелки. Если точка Окружность - определение и вычисление с примерами решения не находится на оси ординат, то Окружность - определение и вычисление с примерами решения.

Синусы смежных углов равны, а косинусы взаимно противоположны.

Окружность - определение и вычисление с примерами решения

Из этих формул при Окружность - определение и вычисление с примерами решения почленным делением получаем:

Окружность - определение и вычисление с примерами решения

С помощью формул, приведенных выше, вычисление синуса, косинуса, тангенса для тупого угла можно свести к вычислению синуса, косинуса, тангенса острого угла, соответственно.

Сектор и сегмент

Сектор часть круга, ограниченная центральным углом, образованным двумя радиусами и соответствующей этому углу дугой. Площадь сектора, соответствующего центральному углу, составляет ту часть площади круга, которую составляет центральный угол от полного угла.

Окружность - определение и вычисление с примерами решения

Например, часть круга, соответствующая центральному углу Окружность - определение и вычисление с примерами решения, составляет Окружность - определение и вычисление с примерами решения часть всего круга. Так как площадь круга Окружность - определение и вычисление с примерами решения, то площадь этого сектора будет Окружность - определение и вычисление с примерами решения Сегмент часть круга, ограниченная хордой и соответствующей дугой.

Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

Площадь сектора

Площадь сектора: Окружность - определение и вычисление с примерами решения

Площадь сегмента: Окружность - определение и вычисление с примерами решения

Указание: При нахождении площади сегмента, соответствующего большей дуге, к площади соответствующего сектора прибавляется площадь Окружность - определение и вычисление с примерами решения

Окружность - определение и вычисление с примерами решения

  • Эллипс
  • Гипербола
  • Парабола
  • Многогранник
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники


Download Article


Download Article

The equation of a circle gives you the center coordinates and radius, allowing you to represent all of the literally infinite points around the boundary of the circle. But how exactly do you write it? Read on to learn how to write the equation of a circle in standard form, as well as how to convert general form to standard form. Once you’ve got that down, you can try your hand at some sample problems and check your answers. Let’s get started!

Things You Should Know

  1. Image titled Write Equations for Circles Step 1

    1

  2. Image titled Write Equations for Circles Step 2

    2

    The general form of the equation of a circle is {displaystyle x^{2}+y^{2}+Dx+Ey+F=0}. This equation technically has all the same information the standard form has, it’s just expressed differently. Let’s break it down:[2]

  3. Advertisement

  1. Image titled Write Equations for Circles Step 3

    1

  2. Image titled Write Equations for Circles Step 4

    2

    Plug in values for the radius and center coordinates to complete a standard equation. This is probably the simplest type of problem you’ll have dealing with the equation of a circle. Just place the values where they go in the the standard form {displaystyle (x-h)^{2}+(y-k)^{2}=r^{2}}.[4]

  3. Image titled Write Equations for Circles Step 5

    3

  4. Advertisement

  1. Image titled Write Equations for Circles Step 6

    1

  2. Image titled Write Equations for Circles Step 7

    2

    Move the constant to the other side of the equation. Since the number is moving to the other side of the equation, the sign in front of it changes. So if it was negative on the left side, it’ll be positive on the right side (and vice versa).[7]

  3. Image titled Write Equations for Circles Step 8

    3

  4. Image titled Write Equations for Circles Step 9

    4

  5. Image titled Write Equations for Circles Step 10

    5

  6. Image titled Write Equations for Circles Step 11

    6

    Add the numbers to both sides of the equation. Keeping your groups together on the left side of the equation, add your third number to each parenthetical expression. Then, add each of those numbers to the right side of the equation to maintain equality.[11]

  7. Image titled Write Equations for Circles Step 12

    7

    Solve the x and y groups. Now you have what you may recognize as a basic trinomial in each parenthesis. Use the quadratic formula to find the number you need for each parenthetical expression in the standard equation of a circle.[12]

  8. Image titled Write Equations for Circles Step 13

    8

    Simplify the right side of the equation. Almost there! Add the numbers on the right side, then square them. The equation you’re left with will be the standard form for the equation of a circle. From here, you can easily determine the center points and radius if you need to graph the circle.[13]

  9. Advertisement

  1. Image titled Write Equations for Circles Step 14

    1

    Write the equation of the circle with center {displaystyle (-3,-1)} and radius {displaystyle {sqrt {10}}}.[14]

    • Hint: pay attention to the negative signs in front of the center coordinates.
  2. Image titled Write Equations for Circles Step 15

    2

    Find the center coordinates of the circle with the equation {displaystyle (x+5)^{2}+(y+2)^{2}=81}.[15]

    • Hint: look at the signs in the parentheses and compare them to the standard form for the equation.
  3. Image titled Write Equations for Circles Step 16

    3

    Find the center coordinates and radius for the circle {displaystyle x^{2}+y^{2}+4x+8y-29=0}.[16]

    • Hint: complete the square twice to convert general form to standard form. Don’t forget that anything you add on the left side you also have to add on the right side.

  4. Image titled Write Equations for Circles Step 17

    4

    Is {displaystyle x^{2}+y^{2}+8x+20=0} the equation of a circle? Why or why not?[17]

    • Hint: a circle can never have a negative radius.

  5. Advertisement

  1. Image titled Write Equations for Circles Step 18

    1

  2. Image titled Write Equations for Circles Step 19

    2

    The center coordinates are {displaystyle (-5,-2)}. You’re given the equation of the circle {displaystyle (x+5)^{2}+(y+2)^{2}=81}. Since the signs in the parentheses in the standard form are -, the + signs in this equation tell you that the center coordinates must be negative.[19]

  3. Image titled Write Equations for Circles Step 20

    3

  4. Image titled Write Equations for Circles Step 21

    4

  5. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 1,210 times.

Did this article help you?

Алгебраической кривой второго порядка
называется линия, уравнение которой в
декартовой системе координат имеет вид
,
в котором А, В и С не могут быть одновременно
равны нулю, т.е.
.

1. Окружность и её уравнения.

Окружностью называется
геометрическое место точек, равноудалённых
от точки, называемой центром окружности.

Теорема Окружность радиуса Rс
центром в точке
Mo(x0,y0)
имеет уравнение


(1)

Доказательство. Пусть

текущая точка окружности. По определению
окружности расстояние
равно
R(рис.1)

Рис.
1.Окружность

Выразив расстояние между точками

получим

Обе части уравнения неотрицательны.
Поэтому после возведения их в квадрат
получим эквивалентное уравнение

Пример1 Определить координаты
центра и радиус окружности
.

Решение. Выделив полные квадраты,
получим

Итак, центр окружности —
,
радиус равен 2

Эллипс

Эллипсом называется геометрическое
место точек плоскости, для каждой из
которых сумма расстояний до двух данных
точек той же плоскости, называемых
фокусами эллипса, есть величина
постоянная.

В отличие от окружности, записать в
«удобном» виде уравнение эллипса
в произвольной системе координат не
удается. Поэтому для фиксированного
эллипса приходится подбирать систему
координат так, чтобы его уравнение было
достаточно простым.

Пусть F1
и F2
фокусы эллипса. Начало т.О
системы координат расположим на
середине отрезка
.
Ось
направим
вдоль этого отрезка, ось —
перпендикулярно к этому отрезку.

т.
,
т.
,

Тогда по определению эллипса

Перенесем один из корней вправо и обе
части возведем в квадрат:

После того, как раскроем скобки и приведем
подобные члены, приходим к выражению

Разделим обе части этого уравнения на
4 и возведем в квадрат

Раскроем скобку и приведем подобные
члены

Учитывая, что
,
имеем равенство

Наконец, разделив обе части на
,
получим уравнение  
(2)

Уравнение(2) называется каноническим
уравнением эллипса.

Исследование полученного уравнения
показывают:

  • Эллипс имеет оси симметрии (Ох, Оу);

  • начало координат- центр симметрии

Проведем построение эллипса, заданного
уравнением (2). Заметим, что из-за симметрии
достаточно нарисовать часть эллипса,
лежащую в верхней полуплоскости.
Уравнение этой линии мы получим, выразив
у из уравнения
(2)
и взяв перед корнем знак «+»,

Построим график этой функции. Область
определения — отрезок
,
y(0) = b, при
увеличении переменного
от
0 до
функция
монотонно убывает. В силу симметрии
графика относительно оси
функция
y
монотонно растет при изменении
от
a
до 0. Производная

определена во всех точках интервала

и, следовательно, график является
гладким (не содержит изломов, касательная
есть в любой точке). Вторая производная

отрицательна во всех точках интервала
,
следовательно, график — выпуклый вверх.

Осталось не исследованным поведение
кривой вблизи концов отрезка
.
Выразим из уравнения (2)
переменное
через
y:
.
Очевидно, что в точке y
= 0 эта функция имеет производную,
то есть касательная к этому графику в
точке
существует. Легко проверить, что она
параллельна оси Oy.
Из симметрии эллипса делаем вывод, что
это гладкая кривая и строим ее с учетом
полученных данных (рис. 3).

Рис.3.Эллипс

Точки пересечения эллипса с его осями
симметрии называются вершинами
эллипса, центр симметрии центром
эллипса, отрезок между двумя вершинами,
содержащий фокусы, называется большой
осью
эллипса, половина его длины —
большой полуосью эллипса. Отрезок
между вершинами на оси симметрии, не
содержащей фокусов, называется малой
осью
эллипса, половина его длины —
малой полуосью. . Величина
,
являющаяся половиной расстояния между
фокусами, определяется из формулы (12.5)
для величины
,
а именно,
(3).

Величина

называется эксцентриситетом
эллипса. Эксцентриситет
эллипса
характеризует степень вытянутости
эллипса. Чем ближе эксцентриситет к
нулю, тем больше эллипс похож на
окружность. Чем ближе эксцентриситет
к 1, тем сильнее вытянут эллипс. Отметим,
что по определению для эллипса
.

Пример 2 Постройте кривую
.
Найдите фокусы и эксцентриситет.

Решение. Разделим обе части уравнения
на 36. Получаем уравнение

Это — каноническое уравнение эллипса,

,

.
Делаем чертеж (рис. 4)

Рис.4.Эллипс,
заданный уравнением

Из соотношения (3)
находим
,
.
Фокусы —
,
,
эксцентриситет —
.

Пример 3   Построить эллипс
.
Найти его фокусы и эксцентриситет.

Решение. Уравнение запишем в виде

Это уравнение не является каноническим
уравнением эллипса, так как в соответствии
с уравнением (2)
в нем
,

,

,
а должно быть
.
Однако, если переобозначить оси, то есть
положить
,
,
то уравнение (2)
в координатах
примет
вид

Это — каноническое уравнение эллипса
при
,

.
Делаем чертеж (рис. 5).

Рис.12.8.Эллипс,
заданный уравнением

Из соотношения (3)
находим
.
Значит, фокусы в системе координат

имеют координаты
,
,
а в системе координат

— координаты,
.
Эксцентриситет равен
.

Из примера 3 ясно, что построение кривой
(эллипса) с уравнением (2)
при
можно
вести так же, как и для эллипса, заданного
каноническим уравнением: отложить
полуось
на
оси
,
полуось
 —
на оси Оу и
через получившиеся вершины провести
эллипс. Различие заключается в том, что
фокусы теперь располагаются на оси
ординат (большой оси), величину
нужно
вычислять по формуле
,
и
.

Соседние файлы в папке модуль2

  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти заказчиков для дизайнера интерьера
  • Как найти ноутбук на сайте acer
  • Как составить сравнительный анализ стихотворения
  • Как найти коэффициент угла наклона касательной
  • Как найти константу равновесия химической реакции

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии