Как найти угол зная синус косинус тангенс

Как найти угол имея цифровое значение синуса, косинуса, тангенса,котангенса? например есть значение sin a=0,3452 какой угол этому соответствует?

Функции: синус (sin), косинус (cos), тангенс (tg), котангенс (ctg), называются тригонометрическими. Они выражают зависимости длин сторон от углов треугольника при гипотенузе. Определяются отношением какой-либо из сторон треугольника к другой. То есть, показывают, насколько одна сторона больше другой. Это отношение может быть характерно только для строго определенного угла. Выражаются тригонометрические функции в безразмерных единицах.

Если известно значение какой-либо тригонометрической функции (в данном случае, синуса — sin), а требуется найти соответствующий ему угол в градусах, то нужно:

  • найти обратную тригонометрическую функцию, так называемую «arc»: arcsin, arccos, arctg, arcctg.. Эти функции находятся: по таблицам Брадиса, в которых для каждого угла приведены свои — строго определенные значения тригонометрических функций (таблицами Брадиса пользовались в «докомпьютерный век»), с помощью «инженерных» калькуляторов или компьютерными программами, в частности — Excel. Для того, чтобы определить значение угла по таблицам Брадиса, нужно водить пальцем по их строкам (с тысячами значений), где найти нужную величину (то ли 5, то ли 6 знаков после запятой). И увидеть соответствующее ему значение угла. Так что, с помощью Excel это делается несравненно быстрее и точнее.
  • Однако функции arc показывают значение в радианах. Искомый угол равен 0,35245 радиан. Если нужно в градусах, то следуют применить еще и формулу перевода радиан в градусы.

asin

Определение значения arcsin угла (в радианах) и значения в градусах — с помощью функций Excel

Итак, ответ получен:

Синусу угла альфа со значением 0,3452 соответствует угол 20,194 градуса.

автор вопроса выбрал этот ответ лучшим

RIOLI­t
[176K]

6 лет назад 

Данному значению синуса соответствует угол- немногим более 20 градусов, это- по таблице, а если есть значение гипотенузы, то- по отношению- можно найти катет и другие элементы треугольника и- возможно- все улы, здесь- главное- зацепка- кончик ниточки, чтобы размотать весь клубочек,( а имея в

хозяйстве инженерный калькулятор, можно сразу- по функции найти угол с точностью до н- ого знака после запятой…)

Можно без компьютера, без калькулятора, без таблиц Брадиса найти этот угол. Для этого нужен такой инструмент, как транспортир. Можно воспользоваться угломером. Если есть чертежный прибор, который еще называют кульман, то и им. Но сначала высисляют катет и гипотенузу. Чем больше длина, тем точгее. Допустим, гипотенуза 100 мм, тогда противолежащий катет будет равен 100*0,3452=34,52мм. Берем клетчатую бумагу, по вертикали откладываем 35 мм от горизонтальной линии вверх. Из верхней точки циркулем с разведенными ножками на 100 мм делаем засечку на глризонтальной линии. Соединяем три точки линиями и измеряем угол.

Если честно, то в повседневной жизни не припомню, чтобы приходилось определять углы по синусу или тагенсу. Вот строить углы приходится постоянно. Например, нужно обрезать плинтуса под углом 45 градусов. Никакой транспортир или угломер не нужен. На заводе плинтус обрезан под прямым углом, тогда просто отмеряешь два одинаковых катета и проводишь гипотенузу, угол получантся сам собой. Так же легко строить углы 30 и 60 градусов, так как гипотенуза равна двум противолежащим катетам.

Еще углы можно измерять смартфоном илитпланшетом, если в нем установлено приложение по измерению углов, очень удобная штука, не надо покупать строительный уровень.

bezde­lnik
[34.1K]

6 лет назад 

Найти угол имея цифровое значение синуса, косинуса, тангенса можно по таблицам Брадиса, на логарифмической линейке или на калькуляторе. Если sin a=0,3452, то a=20,194… градуса. Можно найти приближенное значение тригонометрических функций по их графикам, для синуса и косинуса это графики синусоиды и косинусоиды. Найдя значения синуса и косинуса значения тангенса и котангенса можно вычислить по формулам tg a = Sin a /Cos a, ctg a = Cos a/Sin a

DartF­allen
[68.2K]

6 лет назад 

Я открою Вам одну старую и великую тайну! Все эти величины давно вычислены и сведены в таблицу. Носит она название таблицы Браддиса.

Когда я учился в старших классах у каждого ученика была желтенькая такая брошюрка, в которой и представлены многие данные и не только для градусной меры углов. Величины эти постоянные и периодического пересчета не требуют.

Вот как-то так…

Block­phild
[0]

8 месяцев назад 

Зачем так все сложно и это в век компьютеров? Иди сюда -> https://allcalc.ru/n­ode/1039

вставляй величины катетов и гипотенуз —> жми на кнопку -> ВЫЧИСЛИТЬ и вот тебе результат в градусах и радианах.

Недостаток: нужно иметь интернет

Не надо никаких там EXCEL, таблиц Брадисов и прочей ерунды, мы в 21 веке живем, все делается очень быстро.

Успехов!

bezde­lnik
[34.1K]

5 лет назад 

Для некоторых значений тригонометрических функций соответствующие углы общеизвестны из учебников по математике. Например,для углов 0°, 30°, 45°, 60°, 90° синус равен 0, 1/2, √2/2, √3/2, 1 ,соответственно, а косинус такие же значения в обратном порядке. Это должны знать все получившие среднее школьное образование.

Знаете ответ?

Смотрите также:

В треугольнике АВС угол С равен 90°, АВ=10, АС=√51. Как найти sin A?

Как вычислить площадь параллелограма по формуле S=a·b·sin A с след.данными?

В треугольнике ABC угол C = 90°, sin A = 4/5, AC=9. Найти AB. Как решить?

Как доказать теорему о равенстве синусов острых углов?

Как построить угол, если известен синус?

Если синус X равен 1, чему равен косинус X(см)?

Как найти котангенс, тангенс, синус, косинус?

Как выучить таблицу значений синуса, косинуса, тангенса разных углов?

Перечислите все формулы, объединяющие синус, косинус, тангенс и котангенс?

Как записать две различные функции для синуса и косинуса?

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Развёрнутый, прямой, острый и тупой углы

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается a.

Угол A обозначается соответствующей греческой буквой alpha.

Гипотенуза и катеты

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет a, лежащий напротив угла alpha, называется противолежащим (по отношению к углу alpha). Другой катет b, который лежит на одной из сторон угла alpha, называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

sin A=genfrac{}{}{}{0}{displaystyle a}{displaystyle c}.

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

cos A=genfrac{}{}{}{0}{displaystyle b}{displaystyle c}.

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

tg A =genfrac{}{}{}{0}{displaystyle a}{displaystyle b}.

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

tg A=genfrac{}{}{}{0}{displaystyle sin A}{displaystyle cos A}.

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

ctg A =genfrac{}{}{}{0}{displaystyle cos A}{displaystyle sin A}.

Обратите внимание на основные формулы для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

sin displaystyle alpha = frac{a}{c} sin{}^2 alpha +cosdisplaystyle {}^2 alpha =1 alpha + beta = 90 ^{circ} 
cos displaystyle alpha = frac{b}{c} 1+tg displaystyle {}^2 alpha =frac{1}{cos ^2 alpha} cosalpha = sin beta
tg displaystyle alpha = frac{a}{b} 1+ctg displaystyle {}^2 alpha =frac{1}{sin ^2 alpha} sinalpha = cosbeta
ctg displaystyle alpha = frac{b}{a} tgalpha = ctgbeta

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна 180^{circ}. Значит, сумма двух острых углов прямоугольного треугольника равнa 90^{circ}.
  2. С одной стороны, sin A =genfrac{}{}{}{0}{displaystyle a}{displaystyle c} как отношение противолежащего катета к гипотенузе. С другой стороны, cos B =genfrac{}{}{}{0}{displaystyle a}{displaystyle c}, поскольку для угла beta катет а будет прилежащим. Получаем, что cos beta =sin alpha. Иными словами, cos left( 90^{circ}-A right) = sin A.
  3. Возьмем теорему Пифагора: a^2+b^2=c^2. Поделим обе части на c^2, получаем displaystyle left ( frac{a}{c} right )^2+left ( frac{b}{c} right )^2=left ( frac{c}{c} right )^2 , то есть sin ^2 A+cos^2 A=1.
    Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на cos^2 A, получим: 1+tg ^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle cos ^2 A }. Это значит, что если нам дан тангенс острого угла alpha, то мы сразу можем найти его косинус. Аналогично,1+ctg ^2 A =genfrac{}{}{}{0}{1}{sin ^2 A }.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна 180^{circ}.

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: a^2+b^2=c^2.

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от 0^{circ} до 90^{circ}.

varphi 0 genfrac{}{}{}{0}{displaystyle pi}{displaystyle 6} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 4} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 3} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 2}
sinvarphi 0 displaystyle frac{1}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{sqrt{3}}{2} 1
cosvarphi 1 displaystyle frac{sqrt{3}}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{1}{2} 0
tgvarphi 0 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 1 sqrt{3}
ctgvarphi sqrt{3} 1 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 0

Обратите внимание на два прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Докажем теорему:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

В самом деле, пусть АВС и A_1B_1C_1 — два прямоугольных треугольника с прямыми углами С и C_1 и равными острыми углами А и A_1.

Треугольники АВС и A_1B_1C_1 подобны по первому признаку подобия треугольников, поэтому displaystyle frac{AB}{A_1 B_1}=frac{BC}{B_1 C_1}=frac{AC}{A_1 C_1 } .

Из этих равенств следует, что displaystyle frac{BC}{AB}=frac{B_1 C_1}{A_1 B_1} , т. е. sin А = sin A_1.

Аналогично, displaystyle frac{AC}{AB}=frac{A_1C_1}{A_1 B_1}, т. е. cos А = cosA_1, и displaystyle frac{BC}{AC}=frac{B_1C_1}{A_1 C_1}, т. е. tg A = tg A_1.

Это значит, что синус, косинус и тангенс зависят только от величины угла.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача 1. В треугольнике ABC угол C равен 90^{circ}, sin A = 0,1. Найдите cos B.

Задача решается за четыре секунды.

Поскольку A+B = 90^{circ}, sin A = cos B = 0,1.

Задача 2В треугольнике ABC угол C равен 90^{circ}, AB=5, sin A = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Найдите AC.

Решение:

sin A = genfrac{}{}{}{0}{displaystyle a}{displaystyle c} = genfrac{}{}{}{0}{displaystyle BC}{displaystyle AB} = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Отсюда

BC= genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25} cdot AB = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 5}.

Найдем AC по теореме Пифагора.

AC=sqrt{AB^2-BC^2} = genfrac{}{}{}{0}{displaystyle 24}{displaystyle 5} = 4,8.

Ответ: 4,8.

Задача 3. В треугольнике АВС угол С равен 90^circ , AВ = 13, ВС = 5. Найдите косинус и тангенс острого угла А. Ответ округлите до сотых.

Решение:

Для угла А противолежащий катет – это ВС,

АВ является гипотенузой треугольника, лежит против angle C. Значит, sin A displaystyle = frac{BC}{AB}= frac{5}{13}.

Катет, прилежащий к angle A – это катет АС, следовательно, cos⁡ А displaystyle = frac{AC}{AB}=frac{AC}{13}.

Длину катета АС найдем по теореме Пифагора: AC^2+BC^2=AB^2.

Тогда AC = sqrt{AB^2-BC^2}=sqrt{(13)^2-5^2}=sqrt{144}=12.

cos⁡ А displaystyle = frac{12}{13}=0,923 ... approx 0,92 ;

tg A displaystyle = frac{BC}{AC} = frac{5}{12}=0,416...approx 0,42.

Ответ: 0,92; 0,42.

Заметим, что если катеты прямоугольного треугольника равны 5 и 12, то гипотенуза равна 13. Это одна из так называемых Пифагоровых троек. О них мы расскажем в других статьях сайта.

Задача 4. В треугольнике АВС угол С равен 90^circ , AC = 2, sin A= displaystyle frac{sqrt{17}}{17} .

Найдите BC.
Решение:

AC = b = 2, BC = a, AB = c.

Так как sin A displaystyle = frac{a}{c} = frac{BC}{AB} = frac{sqrt{17}}{17}, displaystyle frac{a}{c} = frac{sqrt{17}}{17} , displaystyle c = frac{17a}{sqrt{17}}=sqrt{17}a.

По теореме Пифагора a^2+b^2=c^2, получим

a^2+2^2=(sqrt{17} a)^2;

a^2+4=17a^2;

16a^2=4, displaystyle a= frac{1}{2}=0,5;

BC = 0,5.

Ответ: 0,5.

Задача 5. В треугольнике АВС угол С равен 90^circ , AC = 4, tg A = displaystyle frac{33}{4sqrt{33}} . Найдите AB.

Решение:

AC = b = 4, tg A displaystyle = frac{a}{b}=frac{33}{4sqrt{33}},

displaystyle frac{a}{4}=frac{33}{4sqrt{33}}, displaystyle a=frac{4 cdot 33}{4 cdot sqrt{33}}=sqrt{33},

AB = c = sqrt{a^2+b^2}=sqrt{(sqrt{33})^2+4^2}=sqrt{33+16} =7.

Ответ: 7.

Задача 6.

В треугольнике АВС угол С равен 90^ circ, CH – высота, AB = 13, tg A = displaystyle frac{1}{5} . Найдите AH.

Решение:

AВ = с = 13, tg A = displaystyle frac{a}{b}=frac{1}{5} , тогда b = 5a.

По теореме Пифагора triangleABC: a^2+b^2=c^2,

a^2+(5a)^2=13^2,

26 a^2=169,

displaystyle a=sqrt{frac{169}{26}}=frac{13}{sqrt{26}}, тогда displaystyle b = 5a=5cdot frac{13}{sqrt{26}}=frac{65}{sqrt{26}}.

triangle AHC approx triangle ACB (по двум углам), следовательно displaystyle frac{AH}{AC}=frac{AC}{AB} , откуда

displaystyle AH = frac{AC^2}{AB}=frac{b^2}{c}=left ( frac{65}{sqrt{26}}right )^2:13=12,5.

Ответ: 12,5.

Задача 7. В треугольнике АВС угол С равен 90^circ,

CH – высота, BC = 3, sin A = displaystyle frac{1}{6} .

Найдите AH.

Решение:

Так как sin A = displaystyle frac{a}{c} = frac{BC}{AB} = frac{1}{6}, тогда displaystyle frac{3}{c} = frac{1}{6} , c = АВ = 18.

sin A = displaystyle frac{a}{c} = cos⁡ B = displaystyle frac{1}{6} .

Рассмотрим triangle BHC:

{cos B=  }displaystyle frac{BH}{BC} = displaystyle frac{1}{6} , получим displaystyle frac{BH}{3}=displaystyle frac{1}{6},

тогда BH = displaystyle frac{3}{6}=displaystyle frac{1}{2} = 0,5,

AH = AB — BH = 18 — 0,5 = 17,5.

Ответ: 17,5.

Задача 8. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BC = 3, cos A = displaystyle frac{sqrt{35}}{6}.

Найдите АH.

Решение:

Так как для triangle АВС: cos A = displaystyle frac{AC}{AB}= sin В = displaystyle frac{sqrt{35}}{6},

а для triangle ВНС: sin В = displaystyle frac{CH}{BC} = displaystyle frac{sqrt{35}}{6} , откуда СН = displaystyle frac{BC cdot  sqrt{35}}{6}=displaystyle frac{3 cdot sqrt{35}}{6}=displaystyle frac{sqrt{35}}{2},

По теореме Пифагора найдем ВН:

BH = sqrt{{BC}^2-{CH}^2}=sqrt{3^2-{left(displaystyle frac{sqrt{35}}{2}right)}^2}=

=sqrt{9-displaystyle frac{35}{4}}=sqrt{displaystyle frac{1}{4}}=displaystyle frac{1}{2}=0,5.

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому для triangle АВС получим:

{CH}^2=AH cdot BH, тогда AH= displaystyle frac{ {CH}^2}{BH}, ; AH= displaystyle frac{ {left(displaystyle frac{sqrt{35}}{2}right)}^2}{0,5}=displaystyle frac{35 cdot 2}{4}=17,5.

Ответ: 17,5.

Задача 9. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 24 и BН = 7. Найдите sin A.

Решение:

По определению sin A= displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = {cos B}.

Рассмотрим triangle BHC : {cos B=  }displaystyle frac{BH}{BC}.

ВС найдем по теореме Пифагора:

ВС= sqrt{{BH}^2+{CH}^2}=sqrt{7^2+{24}^2}=sqrt{49+576}=sqrt{625}=25,

тогда {cos B=  }displaystyle frac{BH}{BC}=displaystyle frac{7}{25}=0,28, а значит и sin A = {cos B  }= 0,28.

Ответ: 0,28.

Задача 10. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 8 и BН = 4. Найдите tg A.

Решение:

По определению sin A = displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = ;   cos A = displaystyle frac{b}{c} = displaystyle frac{AC}{AB} = {sin B },

тогда tg A = displaystyle frac{sin A}{{cos A }}=displaystyle frac{cosB}{sinB}=ctgB, который найдем из triangle BHC:

ctgB=displaystyle frac{BH}{CH}=displaystyle frac{4}{8}=0,5.

Ответ: 0,5.

Задача 11. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, tg A = displaystyle frac{2}{3}. Найдите АН.

Решение:

По определению tg A= displaystyle frac{BC}{AC}=ctgB=displaystyle frac{2}{3}.

Для triangle BHC: ctgB=displaystyle frac{BH}{CH}=displaystyle frac{2}{3} , значит displaystyle frac{12}{CH}=displaystyle frac{2}{3}, СН = displaystyle frac{12 cdot 3}{2}=18.

Для triangle АHC: tg A= displaystyle frac{CH}{AH}=displaystyle frac{2}{3}, то displaystyle frac{18}{AH}=displaystyle frac{2}{3}, AH = displaystyle frac{18 cdot 3}{2}=27.

Ответ: 27.

Задача 12. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, sin A = displaystyle frac{2}{3}. Найдите АВ.

Решение:

Так как cos В = displaystyle frac{BC}{AB} = sin A = displaystyle frac{2}{3}.

Из triangle СВН имеем cos В = displaystyle frac{HB}{BC} = displaystyle frac{2}{3}, тогда ВС = displaystyle frac{3 cdot  HB}{2}=displaystyle frac{3 cdot 12}{2}=18.

В triangle АВС имеем sinA = displaystyle frac{BC}{AB} = displaystyle frac{2}{3}, тогда AВ = displaystyle frac{3 cdot BC}{2}=displaystyle frac{3 cdot 18}{2}=27.

Ответ: 27.

Задача 13. В треугольнике АВС угол С равен 90{}^circ, из вершины прямого угла к гипотенузе проведена высота СН. Найдите cos A, AC и AB, если СН = 12, ВС = 20.

Решение:

Найдем НВ по теореме Пифагора из triangle ВСН:

HB = sqrt{BC^2-BH^2}=sqrt{20^2-12^2}=sqrt{(20-12)(20+12)}=

sqrt{8 cdot 32}= sqrt{8 cdot 2 cdot 16}=16.

sin В = displaystyle frac{CH}{BC} = displaystyle frac{12}{20}=displaystyle frac{3}{5}.

Для triangle АВС: cos A = displaystyle frac{AC}{AB}=sin B=displaystyle frac{3}{5}, получили cos A = 0,6.

Найдем АС и АВ несколькими способами.

1-й способ.

Так как cos A = displaystyle frac{AC}{AB}=displaystyle frac{3}{5}, то пусть АС = 3х, АВ = 5х,

тогда по теореме Пифагора {AC}^2+{BC}^2= {AB}^2, получим {(3x)}^2+{(20)}^2= {(5x)}^2
{25x}^2-{9x}^2= {20}^2 ,

{16x}^2= {20}^2,

x^2= {left(displaystyle frac{20}{4}right)}^2,
х = 5 ( так как хtextgreater 0). Значит, AC=15,  AB=25.

2-й способ.

triangle HBC approx triangle CBA (по двум углам), значит displaystyle frac{HB}{CB}=frac{HC}{AC}=frac{BC}{AB} или displaystyle frac{16}{20}={12}{AC}={20}{AB} = k,

k = displaystyle frac{16}{20}=displaystyle frac{4}{5} , тогда displaystyle frac{12}{AC}=displaystyle frac{4}{5}, АС = displaystyle frac{12 cdot 5}{4}=15; displaystyle frac{20}{AB}=displaystyle frac{4}{5}, АВ = displaystyle frac{20 cdot 5}{4}=25.

3-й способ.

{CH}^2=AH cdot HB (высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой) , тогда {12}^2=AH cdot 16, АН = 144:16 = 9.

АВ = АН + НВ = 9 + 16 = 25.

По теореме Пифагора найдем АС:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{25}^2-{20}^2}=sqrt{(25-20)(25+20)} = sqrt{5cdot 45}=sqrt{5cdot 5cdot 9}=15.

Ответ: cos A = 0,6; АС = 15, АВ = 25.

Задача 14.

Высота ВН прямоугольного треугольника АВС, проведенная из вершины прямого угла В, равна 24 и отсекает от гипотенузы АС отрезок НС, равный 18.

Найдите АВ и cos А.

Решение:

Из прямоугольного triangle ВНС по теореме Пифагора найдем гипотенузу ВС и cos C:

ВС = sqrt{{HC}^2+{BH}^2}=sqrt{{18}^2+{24}^2}=sqrt{324+576}= sqrt{900}=30;

cos C = displaystyle frac{HC}{BC}=displaystyle frac{18}{30}=displaystyle frac{3}{5}.

Для triangle АВС: sin А = displaystyle frac{BC}{AC} = cos C = displaystyle frac{3}{5}.

Для triangle АНВ: sin А = displaystyle frac{BH}{AB} = displaystyle frac{3}{5}, то displaystyle frac{24}{AB} = displaystyle frac{3}{5}, АВ = displaystyle frac{24 cdot 5}{3}=40.

Из основного тригонометрического тождества найдем

cos A = sqrt{1-{sin}^2A}=sqrt{1-0,36}=sqrt{0,64}=0,8.

Ответ: АВ = 40, cos A = 0,8.

Задача 15.

Гипотенуза АС прямоугольного треугольника АСЕ равна 50, sin А = displaystyle frac{7}{25}.

Найдите площадь треугольника.

Решение:

В прямоугольном triangle АСЕ sin А = displaystyle frac{CE}{AC},

значит CE=AC cdot sinA=50 cdot displaystyle frac{7}{25} = 14.

Второй катет найдем, используя теорему Пифагора: AE= sqrt{{AC}^2-{CE}^2};

AE = sqrt{{50}^2-{14}^2}=sqrt{(50-14)(50+14)} =sqrt{36cdot 64}=6cdot8=48.

Площадь прямоугольного треугольника равна S = displaystyle frac{1}{2}ab,

поэтому S_{ACE}= displaystyle frac{1}{2} AEcdot CE=displaystyle frac{48cdot 14}{2}=336.

Ответ: 336.

Задача 16.

В треугольнике АВС угол С — прямой, катеты АВ = 13 и ВС = 12, СК — высота.

Найдите sin angle ACK. Результат округлите до сотых.

Решение:

triangle CAK approx triangle BAC ( angle A-общий, angle AKC=angle ACB=90{}^circ ),

значит angle ACK=angle ABC, sin angle ACK=displaystyle frac{AK}{AC}=displaystyle frac{AC}{AB}.

Найдем АС по теореме Пифагора из triangle САВ:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{13}^2-{12}^2}=

=sqrt{(13-12)(13+12)}=sqrt{25}= 5.

Тогда sin angle ACK=displaystyle frac{5}{13}=0,384..approx 0,38.

Ответ: 0,38.

Задача 17. В треугольнике АВС АС = ВС, АВ = 72, cos A = displaystyle frac{12}{13}. Найдите высоту СН.

Решение:

Так как АС = ВС, то triangle АВС — равнобедренный с основанием АВ, тогда

высота СН является медианой, то есть АН = НВ = displaystyle frac{1}{2}AB=36.

Поскольку triangle АСН — прямоугольный,

cos A = displaystyle frac{AH}{AC}= displaystyle frac{12}{13}, то есть displaystyle frac{36}{AC}= displaystyle frac{12}{13} Rightarrow АС = displaystyle frac{36 cdot 13}{12}=39.

По теореме Пифагора {AH}^2+{CH}^2={AC}^2, тогда

CH = sqrt{{AC}^2-{AH}^2} = sqrt{{39}^2-{36}^2}=

=sqrt{(39-36)(39+36)}=sqrt{3cdot 3cdot 25}=15.

Ответ: 15.

Задача 18. В треугольнике АВС угол С равен 90{}^circ, sin A = displaystyle frac{11}{14}, AC = 10sqrt{3}. Найдите АВ.

Решение:

1-й способ.

Поскольку sin A = displaystyle frac{BC}{AB}= displaystyle frac{11}{14}, то можно обозначить

ВС = 11х, АВ = 14х.

По теореме Пифагора AC^2+{BC}^2={AB}^2;

{(10sqrt{3})}^2+{(11x)}^2={(14x)}^2;

{(14x)}^2-{(11x)}^2 = 3 cdot 100;

(14х- 11х)(14х + 11х) = 3 cdot 100;

3cdot 25 x^2 = 3 cdot 100.

x^2=4, учитывая, что длина стороны положительна, х = 2,

следовательно, АВ = 14 cdot 2 = 28.

2-й способ.

Воспользуемся основным тригонометрическим тождеством {sin}^2A+{cos}^2A=1;

cos A = sqrt{1-{sin}^2A}=sqrt{1-{left(displaystyle frac{11}{14}right)}^2}=sqrt{displaystyle frac{196-121}{196}}=sqrt{displaystyle frac{75}{196}}=displaystyle frac{5sqrt{3}}{14}.

По определению cos A = displaystyle frac{AC}{AB}, значит displaystyle frac{AC}{AB}= displaystyle frac{5sqrt{3}}{14}.

Так как АС=10sqrt{3}, то displaystyle frac{10sqrt{3}}{AB}= displaystyle frac{5sqrt{3}}{14}, откуда АВ = displaystyle frac{10sqrt{3} cdot 14}{5sqrt{3}} = 28.

Ответ: 28.

Задача 19. Найдите углы ромба АВСD, если его диагонали АС и ВD равны 4sqrt{3} и 4.

Решение:

Пусть angle ВАО = alpha .

Диагонали ромба делят его углы пополам, значит, angle DAO=angle BAO = alpha .

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно, в прямоугольном треугольнике АВО катет АО = displaystyle frac{1}{2} AC=2sqrt{3}, а катет ВО = displaystyle frac{1}{2}BD =2.

Поэтому tgalpha =displaystyle frac{BO}{AO}=displaystyle frac{2}{2sqrt{3}}=displaystyle frac{1}{sqrt{3}}, откуда alpha =30{}^circ .

angle BAD=2alpha =60{}^circ , ; angle ADC=angle ABC=180{}^circ -60{}^circ =120{}^circ .

Ответ: {60}^circ, {120}^circ, {60}^circ, {120}^circ .

Часто в задачах встречаются треугольники с углами 90^{circ},, 30^{circ} и 60^{circ} или с углами 90^{circ},, 45^{circ} и 45^{circ}. Основные соотношения для них запоминайте наизусть!

Прямоугольные треугольники с углами 30, 60, 90 и 45, 45, 90 градусов

Для треугольника с углами 90^{circ},, 30^{circ} и 60^{circ} катет, лежащий напротив угла в 30^{circ}, равен половине гипотенузы.

Треугольник с углами 90^{circ},, 45^{circ} и 45^{circ} — равнобедренный. В нем гипотенуза в sqrt{2} раз больше катета.

Задача 20.

В треугольнике АВС угол С равен 90{}^circ, угол А равен 30{}^circ, АВ = 2sqrt{3} .

Найдите высоту CH.

Решение:

Рассмотрим triangle АВС:

По свойству катета, лежащего против угла {30}^circ, имеем ВС = displaystyle frac{1}{2} АВ = sqrt{3}.

В triangle BHC: angle BHC=90{}^circ ,;  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно, ВН = displaystyle frac{1}{2} BC = displaystyle frac{sqrt{3}}{2}.

По теореме Пифагора найдем НС:

HC = sqrt{{BC}^2-{BH}^2}=sqrt{{left(sqrt{3}right)}^2-{left(displaystyle frac{sqrt{3}}{2}right)}^2}=sqrt{3-displaystyle frac{3}{4}}=

=sqrt{2displaystyle frac{1}{4}}=sqrt{displaystyle frac{9}{4}}=displaystyle frac{3}{2}=1,5.

Ответ: 1,5.

Задача 21.

В треугольнике АВС угол С равен 90{}^circ, CH — высота, АВ = 2, angle A=30{}^circ . Найдите АH.

Решение:

Из triangle АВС найдем ВС = displaystyle frac{1}{2} АВ = 1 (по свойству катета, лежащего против угла 30{}^circ),

angle A=30{}^circ , то angle B=60{}^circ .

Из triangle ВСН: angle BHC=90{}^circ ,  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно,

ВН = displaystyle frac{1}{2} ВС = displaystyle frac{1}{2}.

АН = АВ — НВ = 2 — displaystyle frac{1}{2} = 1,5.

Ответ: 1,5.

Еще раз повторим, что такое синус, косинус и тангенс угла в прямоугольном треугольнике.

Как запомнить эти соотношения? Лучший способ – решать много задач, и на уроках геометрии, и готовясь к ЕГЭ. Тогда все формулы, равенства, соотношения запомнятся сами собой.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Если вам понравился разбор данной темы — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Синус, косинус и тангенс острого угла прямоугольного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Косинус острого угла прямоугольного треугольника

Cos (α) острого угла прямоугольного треуголь

Cos (α) острого угла прямоугольного треугольника — это отношение прилежащего катета(AC) к гипотенузе(AB).Пимер:α = 40°; AC = 6,98см; AB = 9см. cos (40°) = 6,989   = 0,776

Угол (градусы) Синус (Sin) Косинус (Cos)
1
0.0174524064 0.9998476952
0.0348994967 0.9993908270
0.0523359562 0.9986295348
0.0697564737 0.9975640503
0.0871557427 0.9961946981
0.1045284633 0.9945218954
0.1218693434 0.9925461516
0.1391731010 0.9902680687
0.1564344650 0.9876883406
10° 0.1736481777 0.9848077530
11° 0.1908089954 0.9816271834
12° 0.2079116908 0.9781476007
13° 0.2249510543 0.9743700648
14° 0.2419218956 0.9702957263
15° 0.2588190451 0.9659258263
16° 0.2756373558 0.9612616959
17° 0.2923717047 0.9563047560
18° 0.3090169944 0.9510565163
19° 0.3255681545 0.9455185756
20° 0.3420201433 0.9396926208
21° 0.3583679495 0.9335804265
22° 0.3746065934 0.9271838546
23° 0.3907311285 0.9205048535
24° 0.4067366431 0.9135454576
25° 0.4226182617 0.9063077870
26° 0.4383711468 0.8987940463
27° 0.4539904997 0.8910065242
28° 0.4694715628 0.8829475929
29° 0.4848096202 0.8746197071
30° 0.5 0.8660254038
31° 0.5150380749 0.8571673007
32° 0.5299192642 0.8480480962
33° 0.5446390350 0.8386705679
34° 0.5591929035 0.8290375726
35° 0.5735764364 0.8191520443
36° 0.5877852523 0.8090169944
37° 0.6018150232 0.7986355100
38° 0.6156614753 0.7880107536
39° 0.6293203910 0.7771459615
40° 0.6427876097 0.7660444431
41° 0.6560590290 0.7547095802
42° 0.6691306064 0.7431448255
43° 0.6819983601 0.7313537016
44° 0.6946583705 0.7193398003
45° 0.7071067812 0.7071067812
46° 0.7193398003 0.6946583705
47° 0.7313537016 0.6819983601
48° 0.7431448255 0.6691306064
49° 0.7547095802 0.6560590290
50° 0.7660444431 0.6427876097
51° 0.7771459615 0.6293203910
52° 0.7880107536 0.6156614753
53° 0.7986355100 0.6018150232
54° 0.8090169944 0.5877852523
55° 0.8191520443 0.5735764364
56° 0.8290375726 0.5591929035
57° 0.8386705679 0.5446390350
58° 0.8480480962 0.5299192642
59° 0.8571673007 0.5150380749
60° 0.8660254038 0.5
61° 0.8746197071 0.4848096202
62° 0.8829475929 0.4694715628
63° 0.8910065242 0.4539904997
64° 0.8987940463 0.4383711468
65° 0.9063077870 0.4226182617
66° 0.9135454576 0.4067366431
67° 0.9205048535 0.3907311285
68° 0.9271838546 0.3746065934
69° 0.9335804265 0.3583679495
70° 0.9396926208 0.3420201433
71° 0.9455185756 0.3255681545
72° 0.9510565163 0.3090169944
73° 0.9563047560 0.2923717047
74° 0.9612616959 0.2756373558
75° 0.9659258263 0.2588190451
76° 0.9702957263 0.2419218956
77° 0.9743700648 0.2249510543
78° 0.9781476007 0.2079116908
79° 0.9816271834 0.1908089954
80° 0.9848077530 0.1736481777
81° 0.9876883406 0.1564344650
82° 0.9902680687 0.1391731010
83° 0.9925461516 0.1218693434
84° 0.9945218954 0.1045284633
85° 0.9961946981 0.0871557427
86° 0.9975640503 0.0697564737
87° 0.9986295348 0.0523359562
88° 0.9993908270 0.0348994967
89° 0.9998476952 0.0174524064
90° 1
91° 0.9998476952 -0.0174524064
92° 0.9993908270 -0.0348994967
93° 0.9986295348 -0.0523359562
94° 0.9975640503 -0.0697564737
95° 0.9961946981 -0.0871557427
96° 0.9945218954 -0.1045284633
97° 0.9925461516 -0.1218693434
98° 0.9902680687 -0.1391731010
99° 0.9876883406 -0.1564344650
100° 0.9848077530 -0.1736481777
101° 0.9816271834 -0.1908089954
102° 0.9781476007 -0.2079116908
103° 0.9743700648 -0.2249510543
104° 0.9702957263 -0.2419218956
105° 0.9659258263 -0.2588190451
106° 0.9612616959 -0.2756373558
107° 0.9563047560 -0.2923717047
108° 0.9510565163 -0.3090169944
109° 0.9455185756 -0.3255681545
110° 0.9396926208 -0.3420201433
111° 0.9335804265 -0.3583679495
112° 0.9271838546 -0.3746065934
113° 0.9205048535 -0.3907311285
114° 0.9135454576 -0.4067366431
115° 0.9063077870 -0.4226182617
116° 0.8987940463 -0.4383711468
117° 0.8910065242 -0.4539904997
118° 0.8829475929 -0.4694715628
119° 0.8746197071 -0.4848096202
120° 0.8660254038 -0.5
121° 0.8571673007 -0.5150380749
122° 0.8480480962 -0.5299192642
123° 0.8386705679 -0.5446390350
124° 0.8290375726 -0.5591929035
125° 0.8191520443 -0.5735764364
126° 0.8090169944 -0.5877852523
127° 0.7986355100 -0.6018150232
128° 0.7880107536 -0.6156614753
129° 0.7771459615 -0.6293203910
130° 0.7660444431 -0.6427876097
131° 0.7547095802 -0.6560590290
132° 0.7431448255 -0.6691306064
133° 0.7313537016 -0.6819983601
134° 0.7193398003 -0.6946583705
135° 0.7071067812 -0.7071067812
136° 0.6946583705 -0.7193398003
137° 0.6819983601 -0.7313537016
138° 0.6691306064 -0.7431448255
139° 0.6560590290 -0.7547095802
140° 0.6427876097 -0.7660444431
141° 0.6293203910 -0.7771459615
142° 0.6156614753 -0.7880107536
143° 0.6018150232 -0.7986355100
144° 0.5877852523 -0.8090169944
145° 0.5735764364 -0.8191520443
146° 0.5591929035 -0.8290375726
147° 0.5446390350 -0.8386705679
148° 0.5299192642 -0.8480480962
149° 0.5150380749 -0.8571673007
150° 0.5 -0.8660254038
151° 0.4848096202 -0.8746197071
152° 0.4694715628 -0.8829475929
153° 0.4539904997 -0.8910065242
154° 0.4383711468 -0.8987940463
155° 0.4226182617 -0.9063077870
156° 0.4067366431 -0.9135454576
157° 0.3907311285 -0.9205048535
158° 0.3746065934 -0.9271838546
159° 0.3583679495 -0.9335804265
160° 0.3420201433 -0.9396926208
161° 0.3255681545 -0.9455185756
162° 0.3090169944 -0.9510565163
163° 0.2923717047 -0.9563047560
164° 0.2756373558 -0.9612616959
165° 0.2588190451 -0.9659258263
166° 0.2419218956 -0.9702957263
167° 0.2249510543 -0.9743700648
168° 0.2079116908 -0.9781476007
169° 0.1908089954 -0.9816271834
170° 0.1736481777 -0.9848077530
171° 0.1564344650 -0.9876883406
172° 0.1391731010 -0.9902680687
173° 0.1218693434 -0.9925461516
174° 0.1045284633 -0.9945218954
175° 0.0871557427 -0.9961946981
176° 0.0697564737 -0.9975640503
177° 0.0523359562 -0.9986295348
178° 0.0348994967 -0.9993908270
179° 0.0174524064 -0.9998476952
180° -1
181° -0.0174524064 -0.9998476952
182° -0.0348994967 -0.9993908270
183° -0.0523359562 -0.9986295348
184° -0.0697564737 -0.9975640503
185° -0.0871557427 -0.9961946981
186° -0.1045284633 -0.9945218954
187° -0.1218693434 -0.9925461516
188° -0.1391731010 -0.9902680687
189° -0.1564344650 -0.9876883406
190° -0.1736481777 -0.9848077530
191° -0.1908089954 -0.9816271834
192° -0.2079116908 -0.9781476007
193° -0.2249510543 -0.9743700648
194° -0.2419218956 -0.9702957263
195° -0.2588190451 -0.9659258263
196° -0.2756373558 -0.9612616959
197° -0.2923717047 -0.9563047560
198° -0.3090169944 -0.9510565163
199° -0.3255681545 -0.9455185756
200° -0.3420201433 -0.9396926208
201° -0.3583679495 -0.9335804265
202° -0.3746065934 -0.9271838546
203° -0.3907311285 -0.9205048535
204° -0.4067366431 -0.9135454576
205° -0.4226182617 -0.9063077870
206° -0.4383711468 -0.8987940463
207° -0.4539904997 -0.8910065242
208° -0.4694715628 -0.8829475929
209° -0.4848096202 -0.8746197071
210° -0.5 -0.8660254038
211° -0.5150380749 -0.8571673007
212° -0.5299192642 -0.8480480962
213° -0.5446390350 -0.8386705679
214° -0.5591929035 -0.8290375726
215° -0.5735764364 -0.8191520443
216° -0.5877852523 -0.8090169944
217° -0.6018150232 -0.7986355100
218° -0.6156614753 -0.7880107536
219° -0.6293203910 -0.7771459615
220° -0.6427876097 -0.7660444431
221° -0.6560590290 -0.7547095802
222° -0.6691306064 -0.7431448255
223° -0.6819983601 -0.7313537016
224° -0.6946583705 -0.7193398003
225° -0.7071067812 -0.7071067812
226° -0.7193398003 -0.6946583705
227° -0.7313537016 -0.6819983601
228° -0.7431448255 -0.6691306064
229° -0.7547095802 -0.6560590290
230° -0.7660444431 -0.6427876097
231° -0.7771459615 -0.6293203910
232° -0.7880107536 -0.6156614753
233° -0.7986355100 -0.6018150232
234° -0.8090169944 -0.5877852523
235° -0.8191520443 -0.5735764364
236° -0.8290375726 -0.5591929035
237° -0.8386705679 -0.5446390350
238° -0.8480480962 -0.5299192642
239° -0.8571673007 -0.5150380749
240° -0.8660254038 -0.5
241° -0.8746197071 -0.4848096202
242° -0.8829475929 -0.4694715628
243° -0.8910065242 -0.4539904997
244° -0.8987940463 -0.4383711468
245° -0.9063077870 -0.4226182617
246° -0.9135454576 -0.4067366431
247° -0.9205048535 -0.3907311285
248° -0.9271838546 -0.3746065934
249° -0.9335804265 -0.3583679495
250° -0.9396926208 -0.3420201433
251° -0.9455185756 -0.3255681545
252° -0.9510565163 -0.3090169944
253° -0.9563047560 -0.2923717047
254° -0.9612616959 -0.2756373558
255° -0.9659258263 -0.2588190451
256° -0.9702957263 -0.2419218956
257° -0.9743700648 -0.2249510543
258° -0.9781476007 -0.2079116908
259° -0.9816271834 -0.1908089954
260° -0.9848077530 -0.1736481777
261° -0.9876883406 -0.1564344650
262° -0.9902680687 -0.1391731010
263° -0.9925461516 -0.1218693434
264° -0.9945218954 -0.1045284633
265° -0.9961946981 -0.0871557427
266° -0.9975640503 -0.0697564737
267° -0.9986295348 -0.0523359562
268° -0.9993908270 -0.0348994967
269° -0.9998476952 -0.0174524064
270° -1.
271° -0.9998476952 0.0174524064
272° -0.9993908270 0.0348994967
273° -0.9986295348 0.0523359562
274° -0.9975640503 0.0697564737
275° -0.9961946981 0.0871557427
276° -0.9945218954 0.1045284633
277° -0.9925461516 0.1218693434
278° -0.9902680687 0.1391731010
279° -0.9876883406 0.1564344650
280° -0.9848077530 0.1736481777
281° -0.9816271834 0.1908089954
282° -0.9781476007 0.2079116908
283° -0.9743700648 0.2249510543
284° -0.9702957263 0.2419218956
285° -0.9659258263 0.2588190451
286° -0.9612616959 0.2756373558
287° -0.9563047560 0.2923717047
288° -0.9510565163 0.3090169944
289° -0.9455185756 0.3255681545
290° -0.9396926208 0.3420201433
291° -0.9335804265 0.3583679495
292° -0.9271838546 0.3746065934
293° -0.9205048535 0.3907311285
294° -0.9135454576 0.4067366431
295° -0.9063077870 0.4226182617
296° -0.8987940463 0.4383711468
297° -0.8910065242 0.4539904997
298° -0.8829475929 0.4694715628
299° -0.8746197071 0.4848096202
300° -0.8660254038 0.5
301° -0.8571673007 0.5150380749
302° -0.8480480962 0.5299192642
303° -0.8386705679 0.5446390350
304° -0.8290375726 0.5591929035
305° -0.8191520443 0.5735764364
306° -0.8090169944 0.5877852523
307° -0.7986355100 0.6018150232
308° -0.7880107536 0.6156614753
309° -0.7771459615 0.6293203910
310° -0.7660444431 0.6427876097
311° -0.7547095802 0.6560590290
312° -0.7431448255 0.6691306064
313° -0.7313537016 0.6819983601
314° -0.7193398003 0.6946583705
315° -0.7071067812 0.7071067812
316° -0.6946583705 0.7193398003
317° -0.6819983601 0.7313537016
318° -0.6691306064 0.7431448255
319° -0.6560590290 0.7547095802
320° -0.6427876097 0.7660444431
321° -0.6293203910 0.7771459615
322° -0.6156614753 0.7880107536
323° -0.6018150232 0.7986355100
324° -0.5877852523 0.8090169944
325° -0.5735764364 0.8191520443
326° -0.5591929035 0.8290375726
327° -0.5446390350 0.8386705679
328° -0.5299192642 0.8480480962
329° -0.5150380749 0.8571673007
330° -0.5 0.8660254038
331° -0.4848096202 0.8746197071
332° -0.4694715628 0.8829475929
333° -0.4539904997 0.8910065242
334° -0.4383711468 0.8987940463
335° -0.4226182617 0.9063077870
336° -0.4067366431 0.9135454576
337° -0.3907311285 0.9205048535
338° -0.3746065934 0.9271838546
339° -0.3583679495 0.9335804265
340° -0.3420201433 0.9396926208
341° -0.3255681545 0.9455185756
342° -0.3090169944 0.9510565163
343° -0.2923717047 0.9563047560
344° -0.2756373558 0.9612616959
345° -0.2588190451 0.9659258263
346° -0.2419218956 0.9702957263
347° -0.2249510543 0.9743700648
348° -0.2079116908 0.9781476007
349° -0.1908089954 0.9816271834
350° -0.1736481777 0.9848077530
351° -0.1564344650 0.9876883406
352° -0.1391731010 0.9902680687
353° -0.1218693434 0.9925461516
354° -0.1045284633 0.9945218954
355° -0.0871557427 0.9961946981
356° -0.0697564737 0.9975640503
357° -0.0523359562 0.9986295348
358° -0.0348994967 0.9993908270
359° -0.0174524064 0.9998476952
360° 1

Как найти синус определенного угла в градусах? Нужна сама формула, а не таблица Брадиса

Во-первых, переведите угол из градусов в радианы по формуле x = alpha * pi / 180 а потом воспользуйтесь разложением в ряд Тейлора. С достаточно хорощей степенью точности можно ограничиться формулой sin(x) = x — x^3 / 3

такой формулы нет. только брадис или инженерный калькулятор ой!

Константин! Sin x = x — x^3/6

Синус угла A минут B = (3.14/180) + B * (3.14/(180*60))) Так будет точнее. В некоторых случаях минуты (B) равны нулю, тогда остается только первая часть. В интернете есть готовые калькуляторы, например: <a rel=»nofollow» href=»http:///bradis/tablica-sinusov/» target=»_blank»>http:///bradis/tablica-sinusov/</a> или что-нибудь подобное

Видео

Навигация по записям

Предыдущая статьяРешение слау при помощи обратной матрицы – Решение систем линейных алгебраических уравнений с помощью обратной матрицы.

Следующая статья Тесты по математике с 1 11 класс – Тест по математике 1 — 11 классы

Теги

Треугольник – это форма многоугольника, которая имеет три угла, образованных тремя сторонами. Каждая
из трех точек, в которых пересекаются стороны треугольника, называется его вершиной и образует
определенный угол. Стороны треугольника иногда еще называют линейными длинами, а углы – угловыми.
Сторону, противоположную определенному углу, обозначают той же буквой, что характеризует угол как
прилегающий. Стороны обозначаются латинскими буквами a, b, c, а углы – греческими α, β, γ. Зная
определенные параметры треугольника, можно найти его стороны и углы. При этом можно использовать как
линейные формулы, так и обращаться к различным теоремам, например, теореме синусов и косинусов.

  • Угол треугольника через три стороны
  • Угол прямоугольного треугольника через две стороны
  • Угол треугольника через высоту и катет
  • Угол при основании равнобедренного треугольника через
    биссектрису и боковую сторону
  • Угол при основании равнобедренного треугольника через
    биссектрису и основание
  • Угол между боковыми сторонами равнобедренного треугольника
    через биссектрису и боковую сторону
  • Острый угол прямоугольного треугольника через катет и
    площадь
  • Острый угол между боковыми сторонами равнобедренного
    треугольника через площадь и боковую сторону

Угол треугольника через три стороны

Рис 1

Для того, чтобы найти угол по трем сторонам, нужно вычислить косинус определенного угла. Согласно
теореме косинусов, «квадрат длины стороны треугольника равен сумме квадратов двух других длин его
сторон, минус удвоенное произведение этих длин сторон на косинус угла между ними». Если взять за
предмет вычисления угол β, соответственно, получаем формулу: a² = b² + c² — 2 · b · c · cos (β).
Из полученного равенства можно вычислить

cos(α) = (a² + c² — b²) / 2ac
cos(β) = (a² + b² — c²) /
2ab
cos(γ) = (b² + c² — a²) / 2cb

где a, b, c — стороны треугольника.

Цифр после
запятой:

Результат в:

Пример. Пусть a = 3, b = 7, c = 6. Cos (β) = (7² + 6² — 3²) : (2 · 7 · 6) = 19/21.
Зная косинус, нужно воспользоваться таблицей Брадиса и по ней найти угол. По таблице Брадиса, если
Cos (β) = 19/21, то β = 58,4°.

Угол прямоугольного треугольника через две стороны

Рис 2

Если известен катет и гипотенуза, угол вычисляется через синус. Если известны катеты и нужно найти
один из острых углов, то можно сделать это через вычисление тангенса.

sin(α) = cos (β) = a / c
sin(β) = cos (α) = b / c
tg(α) = ctg(β) = a
/ b
tg(β) = ctg(α) = b / a

где a, b — катеты, c — гипотенуза.

Цифр после запятой:

Результат в:

Пример. В прямоугольном треугольнике есть два катета a = 12, b = 9 и гипотенуза c =
15. Если известны катеты и нужно найти один из острых углов, то можно сделать это через вычисление
тангенса: tg(α) = a / b, то есть tg(α) = 12 / 9. По таблице Брадиса, угол
α = 53, 13°. Если известен катет и гипотенуза, угол вычисляется через синус sin(α) = a / c = 12 / 15 = 0,8. В
этом случае по таблице Брадиса для синусов и косинусов, значение угла – 36, 87°.

Острый угол прямоугольного треугольника через катет и площадь

Рис 7

Для того, чтобы вычислить размер острого угла, нужно образовать обратную формулу от площади
прямоугольного треугольника, которая вычисляется через катет и острый угол. Выглядит она следующим
образом: S = (a² * tg β) / 2. Из этих показателей известный площадь S и катет a. Отсюда формула для
нахождения угла будет следующая:

tg(α) = a² / 2S

где a — катет, S — площадь прямоугольного треугольника.

Цифр после
запятой:

Результат в:

Пример. Пусть S = 34, a = 8. Получается следующее уравнение: tg(α) = a² / 2S = 8² + 2 * 34 = 132.
Таким образом выходит, что по таблице Брадиса, угол с таким тангенсом равен 43°.

Угол треугольника через высоту и катет

Рис 3

В некоторых прямоугольных треугольниках, в основании которых один острый угол, а второй 90°, один из
катетов (вертикальная прямая, образующая прямой угол) называется также высотой и обозначается как h.
Второй катет a остается со своим обычным названием.

sin α = h / a

где h — высота, a — катет.

Цифр после запятой:

Результат в:

Пример. Если высота h = 8, а катет a = 10, то угол α находится по формуле sin α = h / a = 8 / 10 = 0.8 то по таблице Брадиса составляет 53°

Угол при основании равнобедренного треугольника через биссектрису и основание

Рис 5

Равнобедренный треугольник ABC с основанием AC имеет биссектрису L (она же CK, делящая основание AC
на два отрезка AK и KB). Также биссектриса L делит угол BCA (он же γ) пополам (каждый из этих
половинок угла γ обозначается как x). То есть γ = 2х. Угол BAC (он же α) = BCA (он же γ), то есть α
= γ. При этом биссектриса L (она же CK) образовала в равнобедренном треугольнике ABC новый
равнобедренный треугольник AKC, в котором AK – это основание, а углы KAC и AKC равны между собой и
равны значению угла γ. Учитывая то, что угол γ равен 2х (то есть двум половинкам угла), то для
треугольника AKC, чтобы вычислить углы при основании, формула будет следующая:

tg α = L / (a/2)

где L — биссектриса, a — основание.

Цифр после
запятой:

Результат в:

Пример. Пусть биссектриса L равна 15, основание а равно 45, подставив в формулу
получим tg α = L / (a/2) = 15 / (45/2) = 33.69º

Угол при основании равнобедренного треугольника через биссектрису и боковую сторону

Рис 4

Допустим, что у равнобедренного треугольника ABC углы при основании A (α) и C (γ) равны. Также AB =
BC. Биссектриса L берет начало из вершины А и пересекается с основанием АС, образуя точку
пересечения K, поэтому биссектрису L также можно называть АK. L разделила угол А пополам и основание
поделила на два отрезка: BK и KC. Образовался угол AKC = α (внешний угол для треугольника ABK).
Согласно свойствам внешнего угла:

sin α = L / b

где L — биссектриса, b — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Пусть биссектриса L равна 15, боковая сторона b равна 30, подставив в
формулу получим sin α = L / b = 15/30 = 30º.

Угол между боковыми сторонами равнобедренного треугольника через биссектрису и боковую сторону

Рис 6

В равнобедренном треугольнике угол ABC (он же β) – это вершина треугольника. Стороны AB и BC равны, и
углы у основания BAC (α) и BCA (γ) тоже равны между собой. Биссектриса L берет начало из вершины B и
пересекается с основанием AC в точке K. Биссектриса BK разделила угол β пополам. Кроме того,
биссектриса разделила треугольник ABC на два прямоугольных треугольника ABK и CBK, так как углы BKA
и BKC – прямые и оба по 90°. Так как треугольники ABK и CBK зеркально одинаковые, для определения
угла β можно взять любой из них. В свою очередь биссектриса BK разделила угол β пополам, например,
на два равных угла х. Оба треугольника, образовавшихся внутри равнобедренного из-за биссектрисы,
прямоугольные, поэтому, чтобы вычислить угол β (он же 2х), нужно взять за правило вычисление угла
через высоту (она в данном случая является также биссектрисой) и катет (это отрезок AK или KC,
которые также равны между собой, так как биссектриса и основание равнобедренного треугольника также
поделила пополам).

2cos(β) = L / b

где L — биссектриса, b — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. В треугольнике BKC известна биссектриса L = 47 см и боковая сторона b = 64
см. Подставив значения в формулу получим: 2cos(β) = L / b = 47 / 64 = 85.49º

Острый угол между боковыми сторонами равнобедренного треугольника через площадь и боковую
сторону

Рис 8

Формула площади равнобедренного треугольника S = 1/2 * bh, где b – это
основание треугольника, а h – это медиана, которая разделила равнобедренный треугольника на два
прямоугольных. Формула для нахождения угла между боковыми сторонами через площадь и боковую сторону
будет следующая:

sin(α) = 2S / b²

где b — боковая сторона равнобедренного треугольника, S — площадь.

Цифр после
запятой:

Результат в:

Пример. Если площадь равна 48, а сторона 10, то угол между боковыми сторонами можно
вычислить следующим образом: sin(α) = 2S / b² = 2 * 48 / 10² = 73.7º

Вне зависимости от условия задачи, известно, что сумма всех углов треугольника составляет 180°.
Поэтому, элементарно вычислить один из углов можно, когда известны два других. Но для вычисления
углов могут быть использованы и другие показатели. Например, для того, чтобы находить стороны и углы
треугольников, в них можно проводить дополнительные меридианы, биссектрисы, чертить окружности и
использовать эти фигуры как дополнительные вводные, через которые по формулам находятся
неизвестные.

Углы очень удобно вычислять через синусы, косинусы, тангенсы и котангенсы, после чего сопоставлять
данные с таблицей Брадиса, в которой эти величины можно сконвертировать в градусы.

Содержание:

Пусть в прямоугольном треугольнике гипотенуза равна с, один из острых углов равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определения синуса, косинуса, тангенса и котангенса острого угла

Определение. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Определение. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример:

Угол К в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияравен 90° (рис. 7).
Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для угла N катет МК — противолежащий, а катет NK — прилежащий (см. рис. 7, с. 11). Поэтому согласно определениям получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Можно заметить, что синус острого угла а прямоугольного треугольника и косинус другого острого угла этого треугольника, содержащего Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равны, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Так же Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
А теперь выполните Тест 1 и Тест 2.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значение синуса острого угла, а также косинуса, тангенса и котангенса зависит только от величины угла и не зависит от размеров и расположения прямоугольного треугольника с указанным острым углом.
Это следует из того, что прямоугольные треугольники с равным острым углом подобны, а у подобных треугольников соответствующие стороны пропорциональны. Так, в Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 8) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°

Рассмотрим прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 9). Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то АВ = 2. По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 9), то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Рассмотрим равнобедренный прямоугольный треугольник АВС, у которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 10). По теореме Пифагора 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Составим таблицу значений синусов, косинусов, тангенсов и котангенсов для углов 30°, 45° и 60°.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение значений тригонометрических функций

Значения синуса, косинуса, тангенса и котангенса данного угла можно приближенно находить при помощи специальных тригонометрических таблиц* либо калькулятора.

Например, с помощью калькулятора, компьютера или мобильного телефона (смартфона) находим: sin45° = 0,707106… . Приближенное значение тригонометрических функций при решении задач будем брать с округлением до четырех знаков после запятой: sin45° = 0,7071.
Итак, точное значение sin 45° равно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения . а приближенное — 0,7071.
Таблицы и калькулятор также позволяют находить величину острого угла по значению синуса, косинуса или тангенса. Например, найдем острый угол, синус которого равен 0,4175. Выбрав на компьютере вид калькулятора «инженерный», далее «градусы», нужно ввести последовательно Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. На экране появится ответ: 24,676… . Округлим его до десятых долей градуса и получим 24,7°. Учитывая, что 1° содержит 60 угловых минут, получим: 0,7° = 0,7 • 60′ = 42′. Искомый угол, синус которого 0,4175, приближенно равен 24°42′.
А теперь выполните Тест 3.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тригонометрические функции острого угла

Синус, косинус, тангенс и котангенс являются функциями угла, так как каждому острому углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответствует единственное значение синуса, косинуса, тангенса и котангенса. Они называются тригонометрическими функциями и записываются так: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Поскольку в прямоугольном треугольнике катет меньше гипотенузы, то для острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливо: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения следовательно синус и косинус острого угла положительны и меньше 1.
Тангенс и котангенс острого угла могут принимать любое положительное значение. Например, tg85° ~ 11,4.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

С увеличением острого угла синус и тангенс возрастают, а косинус и котангенс убывают (рис. 11), то есть если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (cm. c. 28, задачу 2*). Это гарантирует, что синус (косинус, тангенс и котангенс) острого угла определяют этот угол однозначно.

Пример №1

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, катет ВС равен 8 см, гипотенуза АВ равна 17 см. Найти косинус угла А (рис. 12).

Решение:

По теореме Пифагора найдем катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см). Косинус острого угла прямоугольного треугольника равен от ношению прилежащего катета к гипотенузе. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №2

Гипотенуза АВ прямоугольного треугольника АВС равна 20 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 13). Найти площадь треугольника.

Решение:

Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения ВС = 4 • 4 = 16(см), Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 96 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №3

При помощи циркуля и линейки построить угол, синус которого равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Идея решения. Построим прямоугольный треугольник с катетом, равным 4 единицы, и ги­потенузой, равной 5 единиц. Синус угла, противолежащего указанному катету, будет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение. 1) Строим прямой угол С (рис. 14), для чего проводим произвольную прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения отмечаем на ней точку С и строим прямую Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проходящую через точку С перпендикулярно прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (вспомните по рисунку алгоритм построения). 2) На прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от точки С откладываем последова­тельно четыре равных отрезка. Получаем отрезок ВС, который содержит 4 единицы. 3) Строим окружность с центром в точке В радиусом, равным пяти единицам. В пересечении этой окружности и прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получаем точку А.
Угол ВАС — искомый.

Доказательство:

Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгоритм решения прямоугольного треугольника

Под решением прямоугольного треугольника понимают нахождение его неизвестных сторон и углов по некоторым элементам, определяющим этот треугольник. Рассмотрим три задачи:

  1. нахождение катета по гипотенузе и острому углу;
  2. нахождение катета по другому катету и острому углу;
  3. нахождение гипотенузы по катету и острому углу.

Пример №4

Гипотенуза прямоугольного треугольника равна 6, острый угол равен 32° (рис. 23). Найти катет, прилежащий к данному углу. Ответ округлить до 0,1.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Примем длину искомого катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 5,1.

Пример №5

Катет прямоугольного треугольника равен 2,5, а прилежащий к нему угол равен 68° (рис. 24). Найти другой катет. Ответ округлить до 0,1.
 

Решение:

Примем длину неизвестного катета за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 6,2.

Пример №6

Катет прямоугольного треугольника равен 4,2, противолежа­щий ему угол равен 29° (рис. 25). Найти гипотенузу треугольника. Ответ округлить до 0,1.

Решение:

Примем длину гипотенузы за Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 8,7.

Правила решения прямоугольного треугольника

Преобразуем формулы синуса, косинуса, тангенса и котангенса и запишем результаты для треугольника на рисунке 26:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Удобно пользоваться следующими правилами:

  • Катет равен гипотенузе, умноженной на синус противолежащего или на косинус прилежащего угла (рис. 27, а).
  • Гипотенуза равна катету, деленному на синус противолежащего или на косинус прилежащего угла (рис. 27, б).
  • Катет равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к первому катету угла (рис. 27, в).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №7

В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 28).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Полезно запомнить!
Если в прямоугольном треугольнике с углом 30° (или 60°) дан меньший катет а, то больший
катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
 (рис. 29, а). А если дан больший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то меньший катет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 29, б).
Если в прямоугольном треугольнике с углом 45° дан катет а,

то гипотенуза Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 30, а), а если дана гипотенуза с, то ка­тет Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 30, б).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №8

В прямоугольном треугольнике АВС известно: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота, проведенная к гипотенузе (рис. 31). Найти проекцию НВ катета ВС на гипотенузу.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Заметим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №9

В равнобедренной трапеции ABCD меньшее основание ВС равно 7, боковая сторона АВ равна 10, sinA = 0,8. Найти площадь трапеции.

Решение:

Площадь трапеции находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияНайдем большее основание и высоту трапеции. Проведем в трапеции высоты ВН и СК (рис. 32). Так как НВСК — прямоугольник (все углы — прямые), то НК = ВС = 7. Из равенства прямоугольных треугольников АНВ и DKC (по катету и гипотенузе) АН = KD. Из прямоугольного треугольника АНВ находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда АН = 6 (пифагорова тройка 6, 8, 10). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 104.

Тригонометрические формулы

Используя формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениягде Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — катеты, с — гипотенуза прямоугольного треугольника, можно по­лучить формулы, связывающие значения тригонометрических функций острого угла.

1. Основное тригонометрическое тождество

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

По теореме Пифагора Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

Так как синус и косинус острого угла а положительны, то

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Выражение тангенса и котангенса через синус и косинус

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

a)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения б)Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие:

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Проверим справедливость основного тригонометрического тождества.
Верно ли, например, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Да, это верно, так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Основная задача

ДаноСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый угол.

Найти: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. Используем основное тригонометрическое тождество: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как косинус острого угла больше нуля, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Изобразим прямоугольный треугольник с катетом 5 и гипотенузой 13 (рис. 41). Синус угла, противолежащего данному катету, равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поэтому этот угол равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора другой катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 3. Пусть катет, противолежащий углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен 5х, тогда гипотенуза равна Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Пифагора прилежащий катет равен Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияОтсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №10

В параллелограмме ABCD (рис. 42) сторона ВС = 50 см, высота ВК = 30 см, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Найти периметр параллелограмма.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Из треугольника АВК находим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияИз основного тригонометрического тождества следует: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (так как угол А — острый, то sinA > 0). Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(см ) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Ответ: 168 см.

Пример №11

Доказать, что при увеличении угла от 0° до 90°:

а) синус угла увеличивается от 0 до 1, а косинус — уменьшается от 1 до 0;

б) тангенс угла увеличивается от О до бесконечности.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

а) Рассмотрим прямоугольные треугольники с гипотенузой, равной 1. Для этого опишем радиусом ОМ, равным 1, четверть окружности — ду­гу МК (рис. 43). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Опустим из точки А перпендикуляр АВ на ОМ. Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При повороте радиуса ОМ вокруг центра О против часовой стрелки, начиная от ОМ и заканчивая ОК, угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0° до 90° (образуя указанные на чертеже углы: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д.). Величина катета АВ, противолежащего углу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения будет увеличиваться от 0 до 1. А величина катета ОВ, наоборот, будет уменьшаться от 1 до 0. Таким образом, при увеличении угла от 0° до 90° его синус увеличивается от 0 до 1, а косинус уменьшается от 1 до 0.
Из формулы Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения также следует (учитывая положительность синуса и косинуса острого угла), что с увеличением синуса от 0 до 1 косинус уменьшается от 1 до 0. 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения 

б) Для определения изменения тангенса угла удобно рассматривать треугольники, у которых при­лежащий катет не изменяется и остается равным 1, а противолежащий катет изменяется. Рассмотрим прямоугольный треугольник АОМ, у которого отре­зок ОМ = 1, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 44). По определению Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения станем изменять, перемещая точку А по прямой MN, начиная от точки М и проходя через точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и т. д. При этом угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и его тангенс начнут возрастать. Таким образом, когда угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения при движении точки А вверх будет стремиться к углу КОМ, равному 90°, то тангенс этого угла будет неограниченно возрастать.
К такому же выводу можно прийти, рассматривая формулу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения При увеличении угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения от 0° до 90° числитель дроби будет увеличиваться от 0 до 1, а знаменатель — уменьшаться от 1 до 0, значит, вся дробь будет увеличиваться от 0 до бесконечности. Таким образом, при увеличении угла от 0° до 90° его тангенс увеличивается от 0 до бес­конечности.

Пример №12

В основании прямоугольного параллелепипеда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения лежит квадрат, диагональ которого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см. Диагональ Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения боковой грани составляет с ребром основания Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 46). Найдите объем параллелепипеда.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Объем прямоугольного параллелепипеда находится по формуле Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, где а, b и с — его измерения. Так как ABCD — квадрат, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения находим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Искомый объем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения.
Ответ: 576 см3.

Синус, косинус, тангенс и котангенс тупого угла

1. Определение значений Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а от 0° до 180°

Ранее мы дали определения синуса, косинуса, тангенса и котангенса острого угла через отношение сторон прямоугольного треугольника. Сделаем теперь это для углов от 0° до 180°.

Рассмотрим полуокружность с центром в начале координат и радиусом, равным 1 (рис. 48). От положительной полуоси Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения против часовой стрелки отложим острый угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения сторона которого пересекает полуокружность в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Из прямоугольного треугольника OMN, где ОМ = 1, ON = х, MN = у, получаем: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то есть синус, косинус,

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

тангенс и котангенс острого угла а выражаются через координаты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Точно так же определяются значения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения для любого угла а из промежутка Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, синусом угла а называется ордината Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения косинусом — абсцисса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тангенсом — отношение ординаты к абсциссе Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения  а котангенсом — отношение абсциссы к ординате Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения точки М единичной полуокружности.

Например, для тупого Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 48), где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Для любого положения точки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения на единичной полуокружности верно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (докажите самостоятельно). Поэтому для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно основное тригонометрическое тождество Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Также верны тождества: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Нахождение синуса, косинуса, тангенса и котангенса тупых углов

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 49). Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по гипотенузе и острому углу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТочки Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения имеют координаты: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято есть для углов от 0° до 180° справедливы равенства: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
 

Синус тупого угла равен синусу смежного с ним острого угла.
Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».

 

Пример 1. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Разделив почленно равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияна равенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения а затем наоборот, получим равенства:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Можно пользоваться следующим правилом:
Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».

Пример 2. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Указанные формулы и правила позволяют находить значения триго­нометрических функций тупого угла через значения тригонометрических функций острого угла, который дополняет данный тупой угол до 180°: синусы углов, дополняющих друг друга до 180°, равны между собой, а косинусы, тангенсы и котангенсы — противоположны. Так как синус, косинус, тангенс и котангенс острого угла по­ложительные, то синус тупого угла положительный, а косинус, тангенс и котангенс — отрицательные.

Значения тригонометрических функций для углов 0°, 90°, 180°

Если луч ОМ совпадет с лучом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 50), то будем считать, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда:

а) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияне определено, так как деление на нуль невозможно; 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениязначение Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно; в) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения значе­ние Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения не определено, так как деление на нуль невозможно.
Поскольку проекции радиуса, равного 1, на оси координат меньше либо равны 1, то для углов Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения справедливы неравенства: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №13

Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — тупой угол.

Решение:

Способ 1. Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Поскольку угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — тупой, то его косинус отрицательный. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТогдаСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2. Синус острого угла Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения смежного с данным тупым углом Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения равен также Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Построим прямоугольный треугольник со сторонами 3, 4 и 5 (рис. 52). В нем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияТак как косинусы смежных углов противоположны, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Аналогично, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ:Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Формулы площади треугольника и площади параллелограмма

Тригонометрические функции позволяют получить формулы для вычисления площади треугольника и площади параллелограмма. Сформулируем их в виде двух теорем.

Теорема. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть в треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — высота (рис. 56, а).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Из  прямоугольного треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если угол Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения тупой (рис. 56, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— острый. Из прямоугольно­го треугольника АКС следует, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — прямоугольный с катетами Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Учитывая, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Теорема доказана.

Теорема. Площадь параллелограмма равна произведению двух его соседних сторон на синус угла между ними, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Используя рисунок 57, докажите эту теорему самостоятельно.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Замечание. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то параллелограмм является прямоугольником. Его площадь Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Таким образом, формула площади прямоугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения — частный случай формулы площади параллелограмма Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Известно, что слово «синус» в переводе с латинского имеет множество значений: изгиб, дуга, пазуха, бухта, впадина, залив, хорда, забота и нежная любовь. При помощи Интернета выясните:

а) какое из значений подходит к математическому понятию «синуса»;

б) какие из значений относятся к медицине и почему насморк врачи иногда называют синуситом.

Пример №14

Дан параллелограмм ABCD, площадь которого 40 см2, а периметр 36 см. Найти стороны параллелограмма, если его угол D равен 150° (рис. 58).
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Полупериметр параллелограмма ра­вен 18 см. Если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениясм, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Тогда

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
По условию Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Составим и решим уравнение: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— корни.
Если CD = 8 см, то AD = 10 см, если CD = 10 см, то AD = 8 см.
Ответ: 8 см, 10 см.

Пример №15

Доказать, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними, т.е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Пусть диагонали Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения четырехугольника ABCD (рис. 59) пересекаются в точке О, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Докажем, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Обозначим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Заме­тим, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениякак вертикальные, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения по свойству смежных углов. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По фор­муле площади треугольника Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения у получим:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Утверждение доказано

Среднее пропорциональное (среднее геометрическое) в прямоугольном треугольнике

Если для положительных чисел Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения выполняется пропорция Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решениято число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется средним пропорциональным чисел а и с (между чис­лами а и с). Из указанной пропорции Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения В такой форме записи число Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения еще называют средним геометрическим чисел а и с.
 

Пример №16

Число 4 является средним пропорциональным, или средним геометрическим чисел 2 и 8, так как = Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения или Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

В прямоугольном треугольнике АВС, где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, проведем высоту СК (рис. 61). Отрезок АК является проекцией катета АС на гипотенузу, а отрезок ВК — проекцией катета ВС на гипотенузу. Катеты, гипотенуза, высота и проекции катетов на гипотенузу связаны отношениями, которые мы сформулируем в виде следующей теоремы.

Теорема (о среднем пропорциональном в прямоугольном треугольнике).

а) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (см. рис. 61).

б) Катет есть среднее пропорциональное между гипотенузой и проек­цией этого катета на гипотенузу, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

а)3аметим, что если Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(эти углы дополняют Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения до 90°) (рис. 62). Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

б) Из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, из Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Аналогично доказывается, что Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Теорема доказана.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Обозначив катеты Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения гипотенузу с, высо­ту Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения проекции катетов на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(рис. 63), получим следующие формулы: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №17

Найти площадь прямоугольного треугольника, если проекции катетов на гипотенузу равны 2 см и 8 см.

Решение:

Пусть СН — высота прямоугольного треугольника АВС  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения АН = 2 см — проекция катета АС на гипотенузу, НВ = 8 см —

проекция катета СВ на гипотенузу (рис. 64). Так как высота СН есть среднее геометрическое между проекциями катетов на гипотенузу, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 20 см2.

Пример №18

В прямоугольном треугольнике АВС из вершины прямого угла С проведена высота Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, АК = 12 см (рис. 65). Найти гипотенузу АВ.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см, тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения см.
Катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Поэтому Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения По теореме Виета (обратной) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияПо смыслу задачи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Значит, КВ = 3 см, АВ = 15 см.
Ответ: 15 см.

Пример №19

При помощи циркуля и линейки построить отрезок, равный среднему геометрическому отрезков т и п .

Решение:

Пусть даны отрезки т и п . Необходимо построить отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Построение.
1) На произвольной прямой откладываем данные отрезки: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2) На отрезке АВ как на диаметре строим полуокружность, для чего находим середину О отрезка АВ, откуда ОА — радиус данной окружности.

3) Из точки К восстанавливаем перпендикуляр к прямой АВ до пересечения с полуокружностью в точке М (рис. 66).
Отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— среднее пропорциональное отрезков Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения— прямой как вписанный угол, опирающийся на диаметр. В прямоугольном треугольнике АМВ высота МК является средним пропорциональным проекций катетов AM и МВ на гипотенузу Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Повторение*
В 8-м классе мы доказали следующую теорему:

Теорема (о касательной и секущей). Если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной, соединяющего данную точку и точку касания, равен произведению отрезков се­ кущей, соединяющих данную точку и точки пересечения секущей с окружностью, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 70).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Как видим, отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения является средним пропорциональным между отрезками Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения секущей. Глядя на рисунок 70, вспомните идею доказательства теоремы.

Теорема о площадях треугольников с общим (равным) углом

Площади треугольников, имеющих общий угол (или равный угол), относятся как произведения сторон, заключающих этот угол (рис. 75),
т.е.
Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Следствие: Верно:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №20

Площадь треугольника АВС равна 16, АК : КС = 3 :1 , AM : МВ = 1 :2 (рис. 76). Найти Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1. По следствию из теоремы о площадях треугольников с общим углом получаем:

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2.  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 4.

Теорема Менелая

Если дан треугольник АВС и прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает стороны ВС, АВ и продолжение стороны АС в точках Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения соответственно (рис. 79), тоСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Доказательство:

Проведем отрезок Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияи Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения(по двум углам), то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Перемножив почленно указанные пропорции, получим

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияоткуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Замечание. При составлении произведения трех отношений теоремы Менелая можно начинать с любой из шести точек (трех вершин треугольника и трех точек пересечения прямой Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения с прямыми, содержащими стороны треугольника) и двигаться по контуру либо по часовой, либо против часовой стрелки. При этом вершины треугольника и точки пересечения должны чередоваться.

Пример №21

В треугольнике АВС на сторонах АВ и АС взяты соответственно точки М и К, такие, что AM : МВ = 2 :1 , АК : КС = 3 :2 . Отрезки СМ и ВК пересекаются в точке О. Найти ВО : ОК.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

Способ 1 (теорема Менелая). Рассмотрим Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 80). Прямая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения пересекает две его стороны АВ и ВК соответственно в точках М и О и продолжение тре­тьей стороны АК в точке С. По теореме Менелая Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Способ 2 (теорема Фалеса обобщенная). Проведем Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (рис. 81). По теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда АЕ — три части, ЕМ — две части, AM — пять частей, откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Но Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Для Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
по теореме Фалеса Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

 Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Пример №22

Дан равнобедренный треугольник АВС (АВ = ВС), площадь которого равна 80. Точка К делит высоту ВН в отношении 1 : 3, считая от основания. Прямая АК пересекает сторону ВС в точке М. Найти площадь четырехугольника НКМС (рис. 82).

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Решение:

1) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения (ВН — высота и медиана треугольника АВС).

2) Применим теорему Менелая к треугольнику НВС.
Прямая AM пересекает его стороны ВН и ВС соответственно в точках К и М и продолжение стороны НС в точке Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Тогда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияСоотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Откуда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4) Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Ответ: 22.

Неравенство Коши

Среднее арифметическое двух неотрицательных чисел больше либо равно их среднему геометрическому, т. е.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Например, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Действительно, Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Алгебраическое доказательство указанного неравенства таково. Рассмотрим разность левой и правой частей неравенства Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Получим: Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Так как Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решенияпри всех допустимых Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Следовательно, неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения верно.
Неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения где Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения называется неравенством Коши по имени известного французского математика и часто используется при решении олимпиадных задач.

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Приведем геометрическое доказательство указанного неравенства. Изобразим окружность с диаметром АВ и центром в точке О (рис. 87). На диаметре возьмем точку К (для определенности левее центра О). Пусть Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения Из точки К вос­становим перпендикуляр КС, где точка С принад­лежит окружности. Проведем радиус ОС. Так как вписанный угол, опирающийся на диаметр, прямой, то Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения прямоугольный, СК — его высота, проведенная к гипотенузе. По теореме о среднем пропорциональном в прямоугольном треугольнике Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. Но радиус ОС равен половине диаметра АВ, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения. В Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения катет меньше гипотенузы, т. е. Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения так как катет меньше гипотенузы. Отсюда Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения
Равенство левой и правой частей неравенства достигается, когда точ­ка К совпадает с точкой О и Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения становится равнобедренным и прямоугольным. Поэтому справедливо неравенство Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решеният. е Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

ЗАПОМИНАЕМ

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

2. Значения тригонометрических функций углов 30 45°, 60°: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

3. Тригонометрические формулы (тождества): 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

Примеры:  Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

4. Формулы площади треугольника и параллелограмма: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

5. Среднее пропорциональное в прямоугольном треугольнике: 

Соотношения в прямоугольном треугольнике - определение и вычисление с формулами и примерами решения

  • Сумма углов треугольника
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Угол — определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти индекс дела
  • Как составить план онлайн тренировок
  • Как составить отчет по ожидаемым
  • Трещины на фасаде как исправить
  • Что делать как найти индекс

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии