Как найти угол, если известен его тангенс
Тангенс угла — это число, которое определяется соотношением противолежащего и прилежащего к этому углу катетов в треугольнике. Зная только это соотношение можно выяснить величину угла, например, воспользовавшись тригонометрической функцией, обратной тангенсу — арктангенсом.
Инструкция
Если у вас есть под рукой таблицы Брадиса в бумажном или электронном виде, то определение угла сведется к поиску значения в таблице тангенсов. Ему будет сопоставлена величина угла — то есть то, что и требуется найти.
Если таблиц нет, то придется вычислять значение арктангенса. Можно использовать для этого, например, стандартный калькулятор из состава ОС Windows. Раскройте главное меню, щелкнув кнопку «Пуск» или нажав клавишу WIN, перейдите в раздел «Все программы», затем в подраздел «Стандартные» и выберите пункт «Калькулятор». Это же можно сделать через диалог запуска программ — нажмите сочетание клавиш WIN + R или выберите в главном меню строку «Выполнить», наберите команду calc и нажмите клавишу Enter или щелкните кнопку «OK» .
Переключите калькулятор в режим, который позволяет вычислять тригонометрические функции. Для этого раскройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от версии используемой операционной системы).
Введите известное значение тангенса. Это можно сделать как с клавиатуры, так и щелкая нужные кнопки интерфейса калькулятора.
Убедитесь, что в поле «Градусы» стоит отметка, чтобы получить результат вычисления именно в градусах, а не в радианах или градах.
Поставьте отметку в чекбоксе с надписью Inv — этим вы инвертируете значения вычисляемых функций, обозначенные на кнопках калькулятора.
Щелкните кнопку с надписью tg (тангенс) и калькулятор вычислит значение функции обратной тангенсу — арктангенс. Оно и будет являться искомым углом.
Все это же можно проделать и с использованием онлайн-калькуляторов тригонометрических функций. Найти такие сервисы в интернете достаточно легко с помощью поисковых систем. Да и некоторые из поисковиков (например, Google) сами имеют встроенные калькуляторы.
Видео по теме
Источники:
- как найти тангенс угла по клеточкам
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Как перевести тангенс в градусы?
Итак, мы знаем все стороны прямоугольного треугольника. => мы знаем тангенс любого угла (отношение противолежащего катета к прилежащему) . Теперь вопрос. Зная Тангенс угла, как его перевести в Градусы? Надо это делать математически! Т. е. Таблица Брадиса не подходит.
По тангенсу угла можно найти величину угла. Для этого надо вычислить арктангенс тангенса, получится величина угла в радианах, потом ее можно перевести в градусы, умножив на 180 и разделив на пи.
ты же сам сказал отношение вот и дели
получишь радианы а там и не далеко к градусам
ты что в школе головой об парту стучался
Есть формула для арктангенса
градусы вычесть по таблице брадиса. ей еще пользоваться надо уметь
по другому никак
долго не мог найти ответ, но в итоге нашёл.
и решил тут написать вдруг кто тоже будет искать
нужно умножить на 180 и поделить на ПИ
тоесть сторону А делим на сторону Б
получаем тангенс в радианах
далее полученное значение умножаем на 180 и делим на 3.14
в итоге получаем градусы
Как найти угол имея цифровое значение синуса, косинуса, тангенса?
Как найти угол имея цифровое значение синуса, косинуса, тангенса,котангенса? например есть значение sin a=0,3452 какой угол этому соответствует?
Функции: синус (sin), косинус (cos), тангенс (tg), котангенс (ctg), называются тригонометрическими. Они выражают зависимости длин сторон от углов треугольника при гипотенузе. Определяются отношением какой-либо из сторон треугольника к другой. То есть, показывают, насколько одна сторона больше другой. Это отношение может быть характерно только для строго определенного угла. Выражаются тригонометрические функции в безразмерных единицах.
Если известно значение какой-либо тригонометрической функции (в данном случае, синуса — sin), а требуется найти соответствующий ему угол в градусах, то нужно:
- найти обратную тригонометрическую функцию, так называемую «arc»: arcsin, arccos, arctg, arcctg.. Эти функции находятся: по таблицам Брадиса, в которых для каждого угла приведены свои — строго определенные значения тригонометрических функций (таблицами Брадиса пользовались в «докомпьютерный век»), с помощью «инженерных» калькуляторов или компьютерными программами, в частности — Excel. Для того, чтобы определить значение угла по таблицам Брадиса, нужно водить пальцем по их строкам (с тысячами значений), где найти нужную величину (то ли 5, то ли 6 знаков после запятой). И увидеть соответствующее ему значение угла. Так что, с помощью Excel это делается несравненно быстрее и точнее.
- Однако функции arc показывают значение в радианах. Искомый угол равен 0,35245 радиан. Если нужно в градусах, то следуют применить еще и формулу перевода радиан в градусы.
Определение значения arcsin угла (в радианах) и значения в градусах — с помощью функций Excel
Итак, ответ получен:
Синусу угла альфа со значением 0,3452 соответствует угол 20,194 градуса.
Данному значению синуса соответствует угол- немногим более 20 градусов, это- по таблице, а если есть значение гипотенузы, то- по отношению- можно найти катет и другие элементы треугольника и- возможно- все улы, здесь- главное- зацепка- кончик ниточки, чтобы размотать весь клубочек,( а имея в
хозяйстве инженерный калькулятор, можно сразу- по функции найти угол с точностью до н- ого знака после запятой. )
Можно без компьютера, без калькулятора, без таблиц Брадиса найти этот угол. Для этого нужен такой инструмент, как транспортир. Можно воспользоваться угломером. Если есть чертежный прибор, который еще называют кульман, то и им. Но сначала высисляют катет и гипотенузу. Чем больше длина, тем точгее. Допустим, гипотенуза 100 мм, тогда противолежащий катет будет равен 100*0,3452=34,52мм. Берем клетчатую бумагу, по вертикали откладываем 35 мм от горизонтальной линии вверх. Из верхней точки циркулем с разведенными ножками на 100 мм делаем засечку на глризонтальной линии. Соединяем три точки линиями и измеряем угол.
Если честно, то в повседневной жизни не припомню, чтобы приходилось определять углы по синусу или тагенсу. Вот строить углы приходится постоянно. Например, нужно обрезать плинтуса под углом 45 градусов. Никакой транспортир или угломер не нужен. На заводе плинтус обрезан под прямым углом, тогда просто отмеряешь два одинаковых катета и проводишь гипотенузу, угол получантся сам собой. Так же легко строить углы 30 и 60 градусов, так как гипотенуза равна двум противолежащим катетам.
Еще углы можно измерять смартфоном илитпланшетом, если в нем установлено приложение по измерению углов, очень удобная штука, не надо покупать строительный уровень.
Таблица тангенсов
Тангенс, как отношение катетов в прямоугольном треугольнике, представляет собой функцию которая выглядит как дуга окружности внутри данного треугольника с центром в вершине угла и прилежащим катетом в качестве радиуса.
Значение тангенса показывает не только раскрытие угла α , но и насколько один катет больше другого. При тангенсе угла α , равном 1 , катеты равны друг другу и треугольник считается равнобедренным. Значения всех тангенсов и соответствующих им углов можно найти в таблице, приведенной ниже.
Как найти угол, если известен его тангенс
Тангенс угла — это число, которое определяется соотношением противолежащего и прилежащего к этому углу катетов в треугольнике. Зная только это соотношение можно выяснить величину угла, например, воспользовавшись тригонометрической функцией, обратной тангенсу — арктангенсом.
Если у вас есть под рукой таблицы Брадиса в бумажном или электронном виде, то определение угла сведется к поиску значения в таблице тангенсов. Ему будет сопоставлена величина угла — то есть то, что и требуется найти.
Если таблиц нет, то придется вычислять значение арктангенса. Можно использовать для этого, например, стандартный калькулятор из состава ОС Windows. Раскройте главное меню, щелкнув кнопку «Пуск» или нажав клавишу WIN, перейдите в раздел «Все программы», затем в подраздел «Стандартные» и выберите пункт «Калькулятор». Это же можно сделать через диалог запуска программ — нажмите сочетание клавиш WIN + R или выберите в главном меню строку «Выполнить», наберите команду calc и нажмите клавишу Enter или щелкните кнопку «OK» .
Переключите калькулятор в режим, который позволяет вычислять тригонометрические функции. Для этого раскройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от версии используемой операционной системы).
Введите известное значение тангенса. Это можно сделать как с клавиатуры, так и щелкая нужные кнопки интерфейса калькулятора.
Убедитесь, что в поле «Градусы» стоит отметка, чтобы получить результат вычисления именно в градусах, а не в радианах или градах.
Поставьте отметку в чекбоксе с надписью Inv — этим вы инвертируете значения вычисляемых функций, обозначенные на кнопках калькулятора.
Щелкните кнопку с надписью tg (тангенс) и калькулятор вычислит значение функции обратной тангенсу — арктангенс. Оно и будет являться искомым углом.
Все это же можно проделать и с использованием онлайн-калькуляторов тригонометрических функций. Найти такие сервисы в интернете достаточно легко с помощью поисковых систем. Да и некоторые из поисковиков (например, Google) сами имеют встроенные калькуляторы.
В прямоугольном треугольнике один из углов равен 90°, соответственно два других угла дают в сумме тоже 90°. Поэтому зная один из острых углов, можно определить и второй:
α=90°-β
Используя отношения синусов, косинусов, тангенсов и котангенсов можно найти угол в прямоугольном треугольнике, зная любые две стороны:
Зная два катета:
Зная катет и гипотенузу: или
Укажите размеры:
Результат:
Решение:
Ссылка на страницу с результатом:
# Теория
Прямоугольный треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние, при этом один из углов прямой (равен 90°).
β
α
a
b
c
Тангенс угла tg(α) — это тригонометрическая функция выражающая отношение противолежащего катета a к прилежащему катету b.
Формула тангенса
tg alpha = dfrac{a}{b}
- tg α — тангенс угла α
- a — противолежащий катет
- b — прилежащий катет
Арктангенс — это обратная тригонометрическая функция. Арктангенсом числа x называется такое значение угла α, выраженное в радианах, для которого tg α = x. Вычислить арктангенс, означает найти угол α, тангенс которого равен числу x.
Углы треугольника
Сумма углов треугольника всегда равна 180 градусов:
angle alpha + angle beta + angle gamma = 180°
Так как у прямоугольного треугольника один из углов равен 90°, то сумма двух других углов равна 90°.
Поэтому, если известен один из острых углов треугольника, второй угол можно посчитать по формуле:
angle alpha = 90° — angle beta
angle beta = 90° — angle alpha
Острый угол — угол, значение которого меньше 90°.
У прямоугольного треугольника один угол прямой, а два других угла — острые.
Похожие калькуляторы:
Войдите чтобы писать комментарии