Как найти угол при равноускоренном движении

Равноускоренное движение.

  • Зависимость скорости от времени.

  • Закон движения.

  • Прямолинейное равноускоренное движение.

  • Свободное падение.

  • Горизонтальный бросок.

  • Бросок под углом к горизонту.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.

Равноускоренное движение — это движение с постоянным вектором ускорения vec a. Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.

к оглавлению ▴

Зависимость скорости от времени.

При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.

Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:

frac{displaystyle dvec{v}}{displaystyle dt}=vec{a}. (1)

В нашем случае имеем vec a = const. Что надо продифференцировать, чтобы получить постоянный вектор vec a? Разумеется, функцию vec a t. Но не только: к ней можно добавить ещё произвольный постоянный вектор vec c (ведь производная постоянного вектора равна нулю). Таким образом,

vec{v}=vec{c} + vec{a}t. (2)

Каков смысл константы vec c? В начальный момент времени t=0 скорость равна своему начальному значению: vec v=vec v_{0}. Поэтому, полагая t=0 в формуле (2), получим:

vec v_{0}=vec c.

Итак, константа vec c — это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:

vec v=vec v_{0}+vec {a}t. (3)

В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей OX и OY прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:

v_{displaystyle x}=v{displaystyle 0x}+a_{displaystyle x}t, (4)

v_{displaystyle y}=v{displaystyle 0y}+a_{displaystyle y}t. (5)

Формула для третьей компоненты скорости,v_{displaystyle z} если она необходима, выглядит аналогично.)

к оглавлению ▴

Закон движения.

Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:

frac{displaystyle dvec{r}}{displaystyle dt}=vec{v}

Подставляем сюда выражение для скорости, даваемое формулой (3):

frac{displaystyle dvec{r}}{displaystyle dt}=vec v_{0}+vec {a}t (6)

Сейчас нам предстоит проинтегрировать равенство (6). Это несложно. Чтобы получить vec v_{0}, надо продифференцировать функцию vec v_{0}t. Чтобы получить vec {a} t, нужно продифференцировать vec {a} t^{2} /2. Не забудем добавить и произвольную константу vec c:

vec r=vec c+vec v_{0} t+frac{displaystyle vec a t^{2}}{displaystyle 2}.

Ясно, что vec c — это начальное значение vec r_{0} радиус-вектора vec r в момент времени t=0. В результате получаем искомый закон равноускоренного движения:

vec r=vec r_{0}+vec v_{0} t+frac{displaystyle vec a t^{2}}{displaystyle 2}. (7)

Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:

x=x_{0}+ v_{displaystyle 0x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2}. (8)

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}. (9)

z=z_{0}+ v_{displaystyle 0z} t+frac{displaystyle a_{displaystyle z} t^{2}}{displaystyle 2}. (10)

Формулы (8) (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.

Снова вернёмся к закону движения (7). Заметим, что vec r - vec r_{0}=vec s — перемещение тела. Тогда
получаем зависимость перемещения от времени:

vec s= vec v_{0} t+frac{displaystyle vec a t^{2}}{displaystyle 2}.

к оглавлению ▴

Прямолинейное равноускоренное движение.

Если равноускоренное движение является прямолинейным, то удобно выбрать координатную ось вдоль прямой, по которой движется тело. Пусть, например, это будет ось OX. Тогда для решения задач нам достаточно будет трёх формул:

v_{displaystyle x}=v_{displaystyle 0x}+a_{displaystyle x}t,

x=x_{0}+ v_{0 displaystyle x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2},

s_{x}= v_{0x} t+frac{displaystyle a_{x} t^{2}}{displaystyle 2},

где s_{x}= x-x_{0} — проекция перемещения на ось OX.

Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:

t=frac{displaystyle v_{displaystyle x}-displaystyle v_{displaystyle 0x}}{displaystyle a_{displaystyle x}}

и подставим в формулу для перемещения:

s_{x}= v_{0x} frac{displaystyle v_{displaystyle x}-displaystyle v_{displaystyle 0x}}{displaystyle a_{displaystyle x}}+frac{displaystyle a_{x}}{2} (frac{displaystyle v_{displaystyle x}-displaystyle v_{displaystyle 0x}}{displaystyle a_{displaystyle x}})^{2} .

После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:

s_{x}=frac{displaystyle v_{displaystyle x}^{displaystyle 2}-displaystyle v_{displaystyle 0x}^{displaystyle 2}}{displaystyle 2a_{displaystyle x}}.

Эта формула не содержит времени t и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.

к оглавлению ▴

Свободное падение.

Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.

Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения vec g, направленным вертикально вниз. Почти во всех задачах при расчётах полагают g=10 м/с^{2}.

Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.

Задача. Найти скорость приземления дождевой капли, если высота тучи h=2 км.

Решение. Направим ось OY вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой

s_{y}=frac{displaystyle v_{displaystyle y}^{displaystyle 2}-displaystyle v_{displaystyle 0y}^{displaystyle 2}}{displaystyle 2a_{displaystyle y}}.

Имеем: s_{y}=h, v_{y}=v — искомая скорость приземления, v_{0y}=0, a_{y}=g. Получаем: h^{2}=frac{v^{2}}{2g}, откуда v=sqrt{2gh}. Вычисляем: v=sqrt{2 cdot 10 cdot 2000}=200м/с. Это 720 км/ч, порядка скорости пули.

На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!

Задача. Тело брошено вертикально вверх со скоростью v_{0}=30 м/с. Найти его скорость через t=5c.

Решение. Направим ось OY вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

v_{displaystyle y}=v_{displaystyle 0y}+a_{displaystyle y}t.

Здесь v_{displaystyle 0y}=v_{0}, a_{y}=-g, так что v_{displaystyle y}=v_{displaystyle 0}-gt. Вычисляем: v_{displaystyle y}=30-10 cdot 5=-20м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.

Задача. С балкона, находящегося на высоте h=15м, бросили вертикально вверх камень со скоростью v_{0}=10 м/с. Через какое время камень упадёт на землю?

Решение. Направим ось OY вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}.

Имеем: y=0, y_{0} = h, v_{0y}=v_{0}, a_{y}=-g, так что 0=h+v_{0}t-frac{displaystyle g t^{2}}{displaystyle 2}=15+10t-5t^{2}, или t^{2}-2t-3=0. Решая квадратное уравнение, получим t=3 c.

к оглавлению ▴

Горизонтальный бросок.

Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.

Предположим, что тело брошено горизонтально со скоростью v_{0} с высоты h. Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.

Выберем систему координат OXY так, как показано на рис. 1.

Рис. 1. Горизонтальный бросок

Используем формулы:

x=x_{0}+ v_{displaystyle 0x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2}

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}

В нашем случае x_{0} = 0, v_{0x}=v_{0}, a_{x}=0, y_{0} = h, v_{0y}=0, a_{y}=-g . Получаем:

x=v_{0}t, y=h-frac{displaystyle g t^{2}}{displaystyle 2}. (11)

Время полёта T найдём из условия, что в момент падения координата тела y обращается в нуль:

y(T)=0Rightarrow h-frac{displaystyle gT^{displaystyle 2}}{displaystyle 2}=0Rightarrow T=sqrt{frac{displaystyle 2h}{displaystyle g}}.

Дальность полёта L — это значение координаты x в момент времени T:

L=x(T)=v_{0}T=v_{0} sqrt{frac{displaystyle 2h}{displaystyle g}}.

Уравнение траектории получим, исключая время из уравнений (11). Выражаем t из первого уравнения и подставляем во второе:

t=frac{displaystyle x}{displaystyle v_{displaystyle 0}}Rightarrow y=h-frac{displaystyle g}{displaystyle 2}(frac{displaystyle x}{displaystyle v_{displaystyle 0}})^{displaystyle 2}=displaystyle h-frac{displaystyle gx^{displaystyle 2}}{displaystyle 2v^{displaystyle 2}_{displaystyle 0}}.

Получили зависимость y от x, которая является уравнением параболы. Следовательно, тело летит по параболе.

к оглавлению ▴

Бросок под углом к горизонту.

Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.

Предположим, что тело брошено с поверхности Земли со скоростью v_{0} , направленной под углом alpha к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.

Выберем систему координат OXY так, как показано на рис. 2.

Рис. 2. Бросок под углом к горизонту

Начинаем с уравнений:

x=x_{0}+ v_{displaystyle 0x} t+frac{displaystyle a_{displaystyle x} t^{2}}{displaystyle 2},

y=y_{0}+ v_{displaystyle 0y} t+frac{displaystyle a_{displaystyle y} t^{2}}{displaystyle 2}.

В нашем случае x_{0} =y_{0}=0, v_{0x}=v_{0}cos alpha, v_{0y}=v_{0}sin alpha , a_{x}=0, a_{y}=-g. Получаем:

x=(v_{0}cos alpha )t, y=(v_{0}sin alpha)t- frac{displaystyle g t^{2}}{displaystyle 2}.

Дальше действуем так же, как и в случае горизонтального броска. В результате приходим к соотношениям:

T=frac{displaystyle 2v_{displaystyle 0}sinalpha }{displaystyle g},

L=frac{displaystyle v_{displaystyle 0}^{displaystyle 2}sin2alpha }{displaystyle g},

y=x tgalpha -frac{displaystyle gx^{displaystyle 2}}{displaystyle 2v^{displaystyle 2}_{0}cos^{displaystyle 2}alpha }.

(Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость y от x снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой:

H=frac{displaystyle v_{displaystyle 0}^{displaystyle 2}sin^{2} alpha }{displaystyle 2g}.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Равноускоренное движение.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

Прямолинейное равноускоренное движение — это прямолинейное движение, при котором скорость тела изменяется (увеличивается или уменьшается) на одну и ту же величину за равные промежутки времени.

Ускорение — физическая величина, характеризующая быстроту изменения скорости тела. То есть, показывает, на какую величину изменяется скорость за единицу времени.

Примеры равноускоренного движения:

  • разгон самолета перед взлетом;
  • падающая с крыши сосулька;
  • торможение лыжника на горном склоне;
  • разгоняющийся на склоне сноубордист;
  • свободное падение в результате прыжка с парашютом;
  • камень брошенный под углом к горизонту;

Равномерное прямолинейное движение является частным случаем равноускоренного движения, при котором ускорение равно нулю.

Равноускоренное движение: формулы

Формула для скорости при равноускоренном движении:

Vк=Vн+at

где: Vк — конечная скорость тела,
Vн — начальная скорость тела,
a=const — ускорение (a>0 при ускорении, a<0 при замедлении)
t — время.

Формула для ускорения при равноускоренном движении:

a=(Vк-Vн)/t

Во время движения тела ускорение остается постоянным.

Задача 1

Кирилл ехал на велосипеде со скоростью 6 м/с, затем начал разгоняться на горке. Чему будет равна его скорость через 10 секунд, если ускорение равно 0,5 м/с?
Решение. Vн=6м/с, ускорение a=0,5м/с, время разгона t=10 секунд.
Получаем: Vн= 6 + 0,5 · 10 = 11 м/с.
Ответ: за 10с Кирилл разгонится до скорости 11 м/с.

Формула расстояния при равноускоренном движении

  • Если известны  время, скорость начальная и скорость конечная

S = t*(Vн+ Vк)/2 

  • Если известны время, скорость начальная и ускорение

S = Vнt + at2/2 = t*(Vн + at/2)

где: S — путь, пройденный за время t,
Vн — начальная скорость,
Vк — конечная скорость,
a — ускорение тела,
t — время.

В случае равноускоренного движения с неизвестным временем движения, но с заданными начальной и конечной скоростями пройденный путь можно найти с помощью следующей формулы:

2аS = Vк2−Vн2 

где S — путь, пройденный за время t ,
V0 — начальная скорость,
V — скорость в момент времени t,
a — ускорение тела.

Задача 2

Таксист получил заказ и начал движение с ускорением 0,1 м/с2. На каком расстоянии от начала движения его скорость станет равной 15м/с?
Решение. Так как таксист начал движение, начальная скорость равна нулю (Vн=0), Vк=15м/с, ускорение a=0,1м/с2.
Получаем: ​
S = 15^2 — 0^2 =1125 м.
Ответ: на расстоянии 1 125 м от начала движения скорость такси станет равной 15 м/с.

Перемещение при равноускоренном движении

Важно напомнить разницу между путем и перемещением тела.

  • Путьдлина траектории. Если тело движется в любом направлении, то его путь увеличивается. Путь — всегда положительное значение.
  • Перемещениевектор, соединяющий начальное и конечное положение тела. Проекция перемещения может принимать отрицательное значение.

Например, если путник прошел в одну сторону расстояние S1, а обратно — S2, то: путь тела равен S1 + S2, а перемещение равно S1 − S2. В некоторых задачах путь и перемещение могут совпадать, но не всегда.

Равноускоренное движение: графически

График зависимости ускорения от времени:
Во время движения тела ускорение остается постоянным.

Взаимосвязь скорости, времени и расстояния:
На рисунке показан график,  в котором скорость равномерно увеличивается.
С помощью графика скорости можно определить ускорение тела как тангенс угла наклона графика к оси времени.

Из графика скорости получим формулу пути при равноускоренном движении тела.

Пройденный телом путь при равноускоренном движении численно равен площади фигуры под графиком зависимости скорости от времени. Вычислим площадь трапеции как сумму площадей прямоугольника Vнt и треугольника at2/2. Получим: S = Vнt + at2/2.

Математически зависимость координаты от времени при равноускоренном движении представляет собой квадратичную функцию, ее график — парабола.

Задача 3

Лыжник подъехал со скоростью 3 м/с к спуску длиной 36 м и съехал с него за несколько секунд, при этом его конечная скорость составила 15 м/с. Определите местонахождение лыжника спустя 2с после начала движения из начала координат.

Дано:
Vн = 3 м/с, начальная координата (t) равна нулю,
Vк = 15м/с, 
a —  скорость лыжника увеличивается, поэтому ускорение — положительное число,
S = 36м — путь с горы,
t — 2с.

Решение:
Найдем ускорение из формулы пути при равноускоренном движении: 2аS = Vк2−Vн2 
Получим:  а = (Vк2−Vн2 )/2S = (225-9)/(2*36) = 3 м/с2.
Составим уравнение движения лыжника исходя из формулы: S = Vнt + at2/2.
Получаем: x(t) =  3t + 1,5t2 
По уравнению определим координату лыжника в момент времени t = 2с:
Получаем: x(2) =  3*2 + 1,5*22 =6+6=12 м.

Ответ: через 2 с после начала движения координата лыжника будет равна 12 м.

Для того, чтобы проверить правильность решения задач на равноускоренное движение, воспользуйтесь калькулятором равноускоренного движения.

Для того, чтобы перевести единицы измерения, воспользуйтесь конвертерами единиц измерения:

  • Конвертер единиц измерения расстояния (длины)
  • Конвертер единиц измерения скорости
  • Конвертер единиц измерения времени

Определение

Равноускоренным движением называется движение при котором скорость за одинаковое время изменяется на одно и то же значение. В физике это самый простой вид движения с ускорением.

К примерам движения тела с постоянным ускорением можно отнести падение камня с обрыва, полёт гранаты, после выстрела из гранатомёта, скатывание санок с горы. Равномерное движение можно считать частным случаем равноускоренного, при котором ускорение всегда остаётся равным нулю.

Давайте подробно рассмотрим движение тела под действием постоянного поля силы тяжести вблизи земли. Пусть оно будет брошено под углом к горизонту. Это одновременно и равномерное и равноускоренное движение. Равномерное – по горизонтали (оси X), равноускоренное – по вертикали (оси Y). Сопротивлением воздуха, влиянием на движение вращения Земли и другими подобными факторами пренебрегаем.

Равноускоренное движение 1

В каждой точке пути на тело действует постоянное ускорение g. Оно не меняется ни по величине, ни по направлению.

Основные формулы равноускоренного движения и график равноускоренного движения

Формула

Скорость при равноускоренном движении тела вычисляется с помощью выражения:

[v=v0+at];

[v0 – text { начальная скорость тела; }]

[a=const – text { —ускорение; }]

Равноускоренное движение 2

Ускорение здесь определяется, как угол наклона графика скорости. Посмотрите на треугольник ABC.

a=(v-v0)/t=BC/AC.

Чем больше угол β, тем более наклонно выглядит график ускорения по отношению к оси времени. Следовательно, тем большее значение имеет ускорение тела.

Для первого из графиков положим V0=-2м/с. a=0,5м/с².

Для второго графика положим V0=3м/с. a=(-1/3)м/с².

зависимости равноускоренного движения

Указанный график позволяет понять многие зависимости равноускоренного движения и вычислить его основные параметры при проецировании на направление движения. Сначала нужно выделить на графике крохотный отрезок времени Δt. Будем считать его настолько коротким, что движение на нём можно принять за равномерное со значением скорости равным скорости в середине указанного временного промежутка. Тогда, перемещение Δs за Δt можно принять равным Δs=vΔt. Заштрихованная область на первом из графиков.

Разделим всё время движения тела на такие бесконечно короткие промежутки Δt. Перемещение s за указанное время t будет равняться площади трапеции обозначаемой ODEF.

S=(|OD|+|EF|/2)*OF|= [(v+v0)/2]*t =[2v0+(v-v0)]*t/2;

Как известно, v-v0=at, исходя из этого окончательная формула равноускоренного движения выглядит следующим образом:

S=v0*t+at²/2

Чтобы узнать, какой будет координата тела в любое время его движения, к начальной координате следует ещё вписать перемещение. Изменение координаты в зависимости от времени есть закон равноускоренного движения по оси Y:

Y=y0+v0*t+at²/2.

зависимости равноускоренного движения 2

Нет времени решать самому?

Наши эксперты помогут!

Закон равноускоренного движения

Формула

[Y=y0+v0*t+at²/2];

Из него видна зависимость равноускоренного движения от начального положения и начальной скорости тела. Если то и другое равно нулю, график равноускоренного движения приобретает вид параболы, пересекающей начало координат и обращённой своими ветвями вниз. Само движение при этом будет происходить по прямой вертикальной линии. Выражение станет законом равноускоренного прямолинейного движения.

S=at²/2

Это самый простой класс равноускоренного движения. Вектор скорости тела в нём всегда направлен по оси Y, меняет только свой знак. С формулами равноускоренного прямолинейного движения работать легче всего, поэтому при решении задач нужно стараться выбрать систему отсчёта именно таким образом.

 Подставляя разные начальные значения скорости и координаты, меняя знак ускорения, можно получить самые разные значения. Вы спросите –«Зачем менять знак ускорения? Оно ведь всегда постоянно и направлено точно вниз.» При решении задач, чтобы найти равноускоренное движение, часто бывает удобно изменить направление оси Y, вместе с этим меняется и знак ускорения, оно становится положительным.

Как найти равноускоренное движение тела, если неизвестно время

Часто возникает задача нахождения координаты тела при заданной начальной скорости движения тела, конечной скорости его движения и ускорении, но не заданном времени. Как быть в этой ситуации.

Рассмотрим уравнения:

v=v0+at;

S=v0*t+at²/2

Как систему уравнений. Для её решения, нужно исключить переменную t.

Сначала находим t из первого уравнения

t=(v-v0)/a

Затем подставляем его в выражение для перемещения. В результате получаем уравнение равноускоренного движения, не содержащее время.

s=[v²- (v0)²]/2a

Из данного выражения уже достаточно легко вычислить скорость. Она равна:

V=√(v0)²-2as   

При v0=0 s=v²/2a и v=√2as

Равноускоренное движение: формулы, примеры

Равноускоренное движение

Равноускоренное движение — это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение — частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

Здесь v 0 — начальная скорость тела, a = c o n s t — ускорение.

Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.

​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v — v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = — 2 м с ; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с ; a = — 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v — v 0 ) 2 t .

Мы знаем, что v — v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения — нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 — v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Ускорение при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

  • Равноускоренное прямолинейное движение — движение по прямой линии с постоянным ускорением ( a =const).
  • Ускорение — векторная физическая величина, показывающая изменение скорости тела за 1 с. Обозначается как a .
  • Единица измерения ускорения — метр в секунду в квадрате (м/с 2 ).
  • Акселерометр — прибор для измерения ускорения.

Формула ускорения

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

v — скорость тела в данный момент времени, v 0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Проекция ускорения

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

  • Если вектор ускорения направлен в сторону оси ОХ, то его проекция положительна.
  • Если вектор ускорения направлен в сторону, противоположную направлению оси ОХ, его проекция отрицательная.

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают ( а ↑↑ v ).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу ( а ↑↓ v ).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

  • Если график лежит выше оси времени , движение равноускоренное (направление вектора ускорения совпадает с направлением оси ОХ). На рисунке выше тело 1 движется равноускорено.
  • Если график лежит ниже оси времени , движение равнозамедленное (вектор ускорения направлен противоположно оси ОХ). На рисунке выше тело 2 движется равнозамедлено.

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

В момент времени t1 = 1с ускорение a = 2 м/с 2 . В момент времени t2 = 3 ускорение a = 0 м/с 2 .

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу, связывающую известные из условия задачи величины.
  3. Выразить из формулы искомую величину.
  4. Вычислить искомую величину, подставив в формулу исходные данные.

Решение

Запишем исходные данные:

  • Начальная скорость v0 = 5 м/с.
  • Конечная скорость v = 15 м/с.
  • Пройденный путь s = 40 м.

Формула, которая связывает ускорение тела с пройденным путем:

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Подставим известные данные и вычислим ускорение автомобиля:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задани я и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?

Алгоритм решения

  1. Охарактеризовать движение тела на участке графика, обозначенном в условии задачи.
  2. Вычислить ускорение движение тела на этом участке.
  3. Выбрать график, который соответствует графику зависимости от времени проекции ускорения тела.

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

  • t1 = 6 с. Этой точке соответствует скорость v1 = 0 м/с.
  • t2 = 10 с. Этой точке соответствует скорость v2 = –10 м/с.

Используем для вычислений следующую формулу:

Подставим в нее известные данные и сделаем вычисления:

Этому значению соответствует график «г».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Записать формулу ускорения.
  2. Записать формулу для вычисления модуля ускорения.
  3. Выбрать любые 2 точки графика.
  4. Определить для этих точек значения времени и проекции скорости (получить исходные данные).
  5. Подставить данные формулу и вычислить ускорение.

Решение

Записываем формулу ускорения:

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Выбираем любые 2 точки графика. Пусть это будут:

  • t1 = 1 с. Этой точке соответствует скорость v1 = 15 м/с.
  • t2 = 2 с. Этой точке соответствует скорость v2 = 5 м/с.

Подставляем данные формулу и вычисляем модуль ускорения:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Равноускоренное движение.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.

Равноускоренное движение — это движение с постоянным вектором ускорения . Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.

Зависимость скорости от времени.

При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.

Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:

В нашем случае имеем . Что надо продифференцировать, чтобы получить постоянный вектор ? Разумеется, функцию . Но не только: к ней можно добавить ещё произвольный постоянный вектор (ведь производная постоянного вектора равна нулю). Таким образом,

Каков смысл константы ? В начальный момент времени скорость равна своему начальному значению: . Поэтому, полагая в формуле (2) , получим:

Итак, константа — это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:

В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей и прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:

Формула для третьей компоненты скорости, если она необходима, выглядит аналогично.)

Закон движения.

Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:

Подставляем сюда выражение для скорости, даваемое формулой (3) :

Сейчас нам предстоит проинтегрировать равенство (6) . Это несложно. Чтобы получить , надо продифференцировать функцию . Чтобы получить , нужно продифференцировать . Не забудем добавить и произвольную константу :

Ясно, что — это начальное значение радиус-вектора в момент времени . В результате получаем искомый закон равноускоренного движения:

Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:

Формулы (8) — (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.

Снова вернёмся к закону движения (7) . Заметим, что — перемещение тела. Тогда
получаем зависимость перемещения от времени:

Прямолинейное равноускоренное движение.

Если равноускоренное движение является прямолинейным, то удобно выбрать координатную ось вдоль прямой, по которой движется тело. Пусть, например, это будет ось . Тогда для решения задач нам достаточно будет трёх формул:

где — проекция перемещения на ось .

Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:

и подставим в формулу для перемещения:

После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:

Эта формула не содержит времени и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.

Свободное падение.

Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.

Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения , направленным вертикально вниз. Почти во всех задачах при расчётах полагают м/с .

Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.

Задача. Найти скорость приземления дождевой капли, если высота тучи км.

Решение. Направим ось вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой

Имеем: — искомая скорость приземления, . Получаем: , откуда . Вычисляем: м/с. Это 720 км/ч, порядка скорости пули.

На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!

Задача. Тело брошено вертикально вверх со скоростью м/с. Найти его скорость через c.

Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

Здесь , так что . Вычисляем: м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.

Задача. С балкона, находящегося на высоте м, бросили вертикально вверх камень со скоростью м/с. Через какое время камень упадёт на землю?

Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

Имеем: так что , или . Решая квадратное уравнение, получим c.

Горизонтальный бросок.

Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.

Предположим, что тело брошено горизонтально со скоростью с высоты . Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.

Выберем систему координат так, как показано на рис. 1 .

Рис. 1. Горизонтальный бросок

В нашем случае . Получаем:

Время полёта найдём из условия, что в момент падения координата тела обращается в нуль:

Дальность полёта — это значение координаты в момент времени :

Уравнение траектории получим, исключая время из уравнений (11) . Выражаем из первого уравнения и подставляем во второе:

Получили зависимость от , которая является уравнением параболы. Следовательно, тело летит по параболе.

Бросок под углом к горизонту.

Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.

Предположим, что тело брошено с поверхности Земли со скоростью , направленной под углом к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.

Выберем систему координат так, как показано на рис. 2 .

Рис. 2. Бросок под углом к горизонту

Начинаем с уравнений:

В нашем случае . Получаем:

Дальше действуем так же, как и в случае горизонтального броска. В результате приходим к соотношениям:

(Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость от снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой:

источники:

Ускорение при равноускоренном прямолинейном движении

http://ege-study.ru/ru/ege/materialy/fizika/ravnouskorennoe-dvizhenie/

Равноускоренное движение, теория и онлайн калькуляторы

Равноускоренное движение

Прямолинейное равнопеременное движение

Определение

Равнопеременным движением материальной точки называют движение, при котором его мгновенная скорость ($overline{v}$) —
это линейная функция времени:

[overline{v}={overline{v}}_0+overline{a}tleft(1right),]

где ${overline{v}}_0=const$ — начальная скорость точки (Под начальной скоростью понимают скорость точки в момент начала наблюдения. Этот момент времени может не совпадать с началом движения); $overline{a}=const$ — ускорение точки; $t$ — время.

Определим смысл величины $a$ в формуле (1). Из определения среднего ускорения ($leftlangle arightrangle $):

[leftlangle overline{a}rightrangle =frac{{overline{v}}_2-{overline{v}}_1}{t_2-t_1}=frac{{overline{v}}_0+{overline{a}t}_2-{overline{v}}_0-{overline{a}t}_1}{t_2-t_1}=frac{overline{a}(t_2-t_1)}{t_2-t_1}=overline{a}left(2right).]

Мгновенное ускорение при равнопеременном движении совпадает со средним ускорением. Поэтому равнопеременным движением называют движение с постоянным ускорением.

Если направления вектора ускорения и скорости при равнопеременном движении совпадают, то такое движение называют равноускоренным. Скорость материальной точки в таком движении увеличивается за равные промежутки времени на одну и ту же величину.

График скорости при равноускоренном движении

Для построения графика скорости на оси абсцисс отложим значения времени, на оси ординат — соответствующие им значения мгновенной скорости. Линия, которая соединяет полученные точки будет графиком скорости. Графиком скорости при равноускоренном движении является прямая, которая отсекает на оси ординат величину начальной скорости (рис.1). Тангенс угла наклона прямой равен модулю ускорения:

[tg alpha =frac{v_2-v_1}{t_2-t_1}=aleft(3right).]

При равноускоренном движении график скорости образует острый угол с осью абсцисс ($alpha <frac{pi }{2}$).

Равноускоренное движение, рисунок 1

Путь, перемещение и средняя скорость при равноускоренном движении

Координата материальной точки движущейся с постоянным ускорением, является квадратичной функцией времени. Пусть точка движется по оси X, тогда при равноускоренном движении:

[x=x_0+v_0t+frac{at^2}{2};;x-x_0=frac{v^2-v^2_0}{2a}left(4right),]

где $x_0$ — координата точки при $t=0 $с.

Путь, пройденный точкой при равноускоренном движении равен:

[s=s_0+v_0t+frac{at^2}{2}left(5right),]

$s_0$ — путь, пройденный точкой до начала отсчета времени.

График пройденного пути — парабола.

Перемещение ($overline{s}$) материальной точки при равноускоренном движении определяет формула:

[overline{s}={overline{s}}_0+{overline{v}}_0t+frac{overline{a}t^2}{2}left(6right),]

где ${overline{s}}_0$ при $t=0$ c.

Модуль средней скорости при равнопеременном движении материальной точки равен:

[leftlangle vrightrangle =frac{v_1+v_2}{2}left(7right).]

Примеры задач с решением

Пример 1

Задание. На рис.2 изображены графики $v_x(t)$ двух прямолинейных движений. Сравните для этих движений 1) модули ускорений; 2) пути, которые пройдены точкой за время $tau $ от начала первого движения.

Равноускоренное движение, пример 1

Решение. 1) На графике представлены функции $v(t)$ для двух равноускоренных движений, так как мы видим, что скорость изображена прямой линией, отображающей линейную связь скорости и времени. Угол наклона прямой по отношению к оси абсцисс острый, следовательно, движения равноускоренные. Угла наклона равные, значит, равны и их тангенсы, а мы знаем, что:

[a=tg alpha left(1.1right).]

Получаем, что:

[a_1=a_2.]

2) Путь пройденный точкой равен:

[s=intlimits^{t_2}_{t_1}{vleft(tright)dt}left(1.2right).]

Выражение (1.2) означает, что путь материальной точки численно равен площади криволинейной трапеции, которая ограничена внизу осью абсцисс, справа и слева значением мгновенной скорости в моменты времени $t_1$ и $t_2$, вверху графиком скорости. В нашей задаче для сравнения пути следует сравнить площади треугольников OAC и DBC. Очевидно, что:

[S_{OAC}>S_{DBC}to s_1>s_2.]

Ответ. 1) $a_1=a_2.$ 2) $s_1>s_2$

   

Пример 2

Задание. На рис. 3 (а,б) даны графики двух прямолинейных равноускоренных движений. Сравните 1) конечные скорости этих движений; 2) ускорения. Начальная скорость обоих движений равна нулю.

Равноускоренное движение, пример 2

Решение. Рассмотрим рисунок 3 (а). Конечная скорость движения при равноускоренном движении для первого графика из рис. 3 (а) равна: $v_1left(t=9cright)=4 frac{м}{с}$ . Скорость с ускорением при равноускоренном движении по прямой равна:

[v=v_0+at=at left(2.1right),]

где $v_0=0frac{м}{с}$ по условию задачи. Из (2.1) ускорение точки равно:

[a=frac{v}{t}left(2.2right).]

Рассмотрим конечный момент времени ($t=9$с);$ v=4 frac{м}{с}$ :

[a_1=frac{4}{9} left(frac{м}{с^2}right).]

Рассмотрим рис. 3 (б). Координата материальной точки связана со временем при равноускоренном движении как:

[x=x_0+v_0t+frac{at^2}{2}left(2.3right).]

где из рис.3 (б) видно, что $x_0=0 м;;$ по условию задачи $v_0=0 frac{м}{с}$, тогда выражение (2.3) преобразуется к виду:

[x=frac{at^2}{2}left(2.4right).]

Выразим ускорение точки:

[a=frac{2x}{t^2}left(2.5right).]

Их графика имеем, что $xleft(t=3right)=6$, следовательно:

[a_2=frac{2cdot 6}{3^2}=frac{4}{3}left(frac{м}{с^2}right).]

Найдем скорость материальной точки для графика рис. 3(б), используя формулу (2.1):

[v_2=a_2t_2=frac{4}{3}cdot 3=4left(frac{м}{с}right).]

Ответ. 1) Конечные скорости движений равны. 2) $a_1$ меньше $a_2$

   

Читать дальше: сила натяжения нити.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти инвесторов или партнеров
  • Как составить вопросы на английском языке с what
  • Гта 5 как найти девочку
  • Как исправить ошибку 1070
  • Как составить программу хассп

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии