Как найти угол между диагоналями геометрия

Прямоугольник – плоская четырёхугольная геометрическая фигура. Прямоугольник относится к
параллелограммам и обладает некоторыми свойствами:

  • Все внутренние углы фигуры прямые.
  • Противолежащие стороны попарно параллельны и равны.
  • Диагонали прямоугольника (отрезок, соединяющий вершины противоположных внутренних углов) равны.
    Точка пересечения делит их на равные отрезки.
  • Диагональ делит фигуру на 2 одинаковых прямоугольных треугольника.
  • Диагональ делит внутренний угол (90°) на 2 угла. Накрест лежащие углы при проведенном отрезке
    равны.
  • Острый угол между диагоналями прямоугольника через площадь
    и диагональ
  • Угол между диагоналями прямоугольника через угол между
    стороной и диагональю
  • Острый угол между диагоналями прямоугольника через ширину и
    диагональ
  • Острый угол между диагоналями прямоугольника через длину и
    диагональ
  • Острый угол между диагоналями прямоугольника через ширину и
    длину
  • Тупой угол между диагоналями прямоугольника через длину и
    диагональ
  • Тупой угол между диагоналями прямоугольника через ширину и
    диагональ
  • Тупой угол между диагоналями прямоугольника через длину и
    ширину

Острый угол между диагоналями прямоугольника через площадь и диагональ

Рис 1

Острый угол (a) между диагоналями, зная площадь (S) и длину диагонали (d) легко можно вычислить по
формуле:

sin a = (2 * S) / d²

где d — диагональ, S — площадь прямоугольника.

Цифр после
запятой:

Результат в:

Через синус находится значение угла. По этой формуле также можно найти тупой угол между диагоналями,
так как 2 данных угла являются смежными, а синусы смежных углов равны.

Пример. Дан прямоугольник, площадь которого равна 108 см², а диагональ – 15 см.
Нужно найти острый угол между диагоналями. Необходимые значения подставляем в формулу sin a = (2 * S) / d² = (2 * 108) / 225 = 0,96. По значению синуса
находится величина острого угла между диагоналями. В данном случае она равна 73,73°.

Угол между диагоналями прямоугольника через угол между стороной и диагональю

Рис 2

Величина нужного угла (α) в два раза больше угла (β) между стороной и диагональю по свойству углов
равнобедренного треугольника, так как диагонали при пересечении образуют 4 равнобедренных
треугольника. В равнобедренном треугольнике углы при основании (b) равны, а нужный угол является
смежным по отношению к углу при вершине (c), в таком случае c = 180 — α. Сумма углов
треугольника равна 180°. Несложно составить уравнение β+β+180-α=180, которое легко сокращается до
вида

β = 2 * α

где α — угол между стороной и диагональю.

Цифр после
запятой:

Результат в:

Пример. Пусть угол α = 15 (он может быть от 0 до 90º), тогда β = 2 * α = 2 * 15 = 30º

Острый угол между диагоналями прямоугольника через длину и ширину

Рис 5

Если в задаче неизвестна длина диагонали, не нужно тратить время на ее поиски. Можно быстро найти
острый угол между диагоналями при помощи длины и ширины прямоугольника по формуле:

α = 2 arctg b / a

где b — ширина прямоугольника, a — длина прямоугольника.

Цифр после
запятой:

Результат в:

Пример. Дан прямоугольник со сторонами 8 см и 6 см. Нужно построить диагонали и
найти острый угол между ними. Угол α = 2 arctg 6 / 8 = 2 arctg 0,75=73,73°.

Острый угол между диагоналями прямоугольника через ширину и диагональ

Рис 3

Значение нужного угла можно определить, зная длину диагонали и ширины (B) четырёхугольника, по
формуле:

α = 2 arcsin b / d

где b — ширина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. Рассмотрим применение формулы в конкретной задаче. Дан прямоугольник, ширина
которого равна 3 мм, а длина диагонали – 5 мм. Необходимо найти острый угол между
диагоналями. Применив данную формулу, находим значение нужного угла: a = 2 * arcsin 0,6 = 73,73°.

Острый угол между диагоналями прямоугольника через длину и диагональ

Рис 4

Если неизвестна ширина прямоугольника, но есть значение длины (a), можно также просто найти острый
угол между диагоналями. Формула почти идентична предыдущей:

α = 2 arccos a / d

где a — длина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. В прямоугольнике с длиной 8 см, в котором проведены диагонали длиной 10 см,
найти острый угол между диагоналями. Угол α = 2arccos 8 / 10 = 2arccos 0,8 = 73,73°.

Тупой угол между диагоналями прямоугольника через ширину и диагональ

Рис 7

Для того чтобы быстро вычислить значение данного угла при помощи известной ширины и диагонали
прямоугольника, нужно воспользоваться следующей формулой:

β = 2 arccos b / d

где b — ширина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. Известна ширина прямоугольника, она равна 8 мм. А длина диагонали равна 17
мм. Задача найти значение тупого угла между диагоналями.
Вставив данные в формулу, вы получите
правильный результат. Таким образом, β = 2 arccos 8 / 17 = 2 arccos 0,47 = 123,85°.

Тупой угол между диагоналями прямоугольника через длину и диагональ

Рис 6

Можно, конечно, применить предыдущую формулу и найти острый угол через длину и диагональ, а потом
вычесть значение из 180°. Но есть упрощенная формула для быстрой скорости решения: тупой угол между
диагоналями

β = 2 arcsin a / d

где a — длина прямоугольника, d — диагональ.

Цифр после
запятой:

Результат в:

Пример. Дан прямоугольник с длиной равной 20 см, в котором проведены диагонали
длиной 25 см. Чтобы найти нужную величину, подставляем значения в формулу: β = 2 arcsin 20 / 25 = 2 arcsin 0,8 = 106°.

Тупой угол между диагоналями прямоугольника через длину и ширину

Рис 8

Формула для определения тупого угла между диагоналями прямоугольника через известные значения длины и
ширины такова:

β = 2 arctg a / b

где a — длина прямоугольника, b — ширина прямоугольника.

Цифр после
запятой:

Результат в:

Пример. Дан прямоугольник со сторонами 15 см и 8 см. Вычислим значение тупого угла,
подставив данные в формулу: β = 2arctg 15 / 8 = 2 arctg 0,5= 123,85°.

Стоит отметить, что при использовании указанных в статье правил нужно владеть знаниями о
тригонометрических функциях. Для того чтобы быстро определять углы, образованные пересечением
диагоналей прямоугольника, поможет именно данный список формул, которые необходимо знать наизусть.
Если на решение задач по геометрии дается небольшой промежуток времени, к примеру, контрольная или
экзамен, лучше отложить сложные алгоритмы и воспользоваться упрощенными формулами.

Параллелограмм относится к выпуклым четырехугольным геометрическим фигурам. Его основные
отличительные признаки от других фигур: равные и попарно параллельные противоположные стороны,
равные противолежащие углы. Диагонали фигуры всегда делятся точкой пересечения на равные отрезки, а
также они делят параллелограмм на 2 одинаковых треугольника. Еще одним главным свойством
четырёхугольника является то, что сумма квадратов диагоналей равна двум суммам квадратов смежных
сторон параллелограмма.

Биссектрисы внутренних углов данного четырёхугольника всегда отсекают от него равнобедренный
треугольник, а также они равны между собой. Сумма углов параллелограмма равна 360°, как и у других
четырёхугольников.
К параллелограммам относятся: квадрат (четырёхугольник с равными сторонами и
равными прямыми внутренними углами), прямоугольники и ромбы (параллелограмм с равными сторонами).
Эти фигуры часто встречаются в школьной программе на уроках геометрии.

Для чего необходимо вычисление угла между диагоналями параллелограмма

  • Для нахождения сторон четырёхугольника (длины и ширины).
  • Для нахождения площади и периметра фигуры.
  • Для нахождения углов между стороной и диагональю.
  • Для нахождения длины диагонали.

Знание свойств геометрических фигур помогает справиться с задачей любой сложности. Постоянная
практика с использованием формул способствует быстрому запоминанию информации, помогает проработать
маршруты и теоремы, которые западают.

Прямоугольник часто встречается в решении задач по геометрии. Важно знать все его свойства и уметь
пользоваться правилами и теоремами для успешного нахождения результата. Упрощенные формулы и
несколько конкретных примеров помогут определить правильный алгоритм решения и быстро найти
ответ.

Как найти угол между диагоналями четырехугольника

Сразу скажу, что я не математик, я бы решала так:
Дано:
Четырёхугольник ‘ABCD’, имеющий две диагонали ‘AC’ и ‘BD’, пересекающиеся в точке ‘О’.
Известны все углы у его вершин `ABC`, `BCD`, `CDA`, `DAB` и ещё углы `OAD`, `OAB`, `OCB` и `OCD`.
Нужно найти:
Углы между диагоналями четырёхугольника: т.е., углы ‘АОВ’, ‘АОD’, ‘DOC’, ‘COB’.

Я думаю, что решение данных задач станет возможно, если добавить условие, что в данном четырехугольнике одна пара связанных углов равна между собой.

В таком случае, мой вариант части решения:

Подсказка:
читать дальше Т.к. все диагонали в данном четырехугольнике пересекаются, то мы имеем дело с выпуклым четырехугольником (в противном случае, все диагонали не смогли бы пересечься).
Согласно свойству связанных углов выпуклого четырёхугольника https://mathvox.ru/geometria/mnogougolniki/glava-2-chetirehugolniki-i-ih-svoistva/ugli-vipuklogo-chetirehugolnika-svoistvo-3/ «Если в выпуклом четырёхугольнике одна пара связанных углов равна,
(Например, угол ‘BCA’ = углу ‘BDA’),
то вторая пара связанных углов (‘ABD’ и ‘АСD’) также будут равны между собой.

Если посмотреть на задачу шире, то, углы между диагоналями четырёхугольника (АОВ’, ‘АОD’, ‘DOC’, ‘COB’) ОДНОВРЕМЕННО являются также углами треугольников (‘АОB’, ‘BOC’, ‘COD’, ‘DOA’).
Что мы знаем о треугольниках?
«Сумма ВСЕХ УГЛОВ любого вида треугольников равна 180 градусам».

Поиск угла ‘АОD’
Далее вычислим один из углов диагоналей четырехугольника (он же угол, входящий в состав одного из треугольников) на примере треугольника ‘АOD’:

Сумма всех углов треугольника ‘OAD’ =
угол ‘OAD’ + угол ‘ADO’ + угол ‘AOD’=180 градусов.

По условию задачи мы знаем:
1. Чему равен угол ‘OAD’ (согласно условию задачи).
Неизвестны углы ‘ADO’ и ‘AOD’.

2. Вычисляем угол ‘ADO’:
Снова расширяем своё видение.
Мы знаем:
1. Чему равен угол ‘CDA’ (согласно условию задачи), составной частью которого является угол ‘ADO’.
T. е., угол ‘CDA’ = угол ‘AOD’ + угол ‘ADO’.

2. Вычисляем значение угла ‘АDO’:
Угол ‘АDO’ = углу ‘BDA’.
Согласно свойству связанных углов выпуклого четырёхугольника:
угол ‘BDA’ = углу ‘BCA’, а угол ‘ВСА’ = углу «OCB’.
Т.о., угол ‘ADO’ = углу ‘OCB’ (значение угла ‘OCB’ мы знаем по условию задачи).

3. Угол ‘AOD’ = (угол ‘ОAD’ +угол ‘АDO’) — 180 градусов.
Поздравляем, первый угол ‘АОD’ — найден! .

Поиск угла ‘DOC’
Треугольник ‘DOC’ имеет углы: ‘ОСD’, ‘СDO’ и ‘DOC’.
Мы знаем:
1. Чему равен угол ‘ОСD’ (по условию задачи).

2. Вычислим чему равен угол ‘СDO’:
Угол ‘СDO’ входит в состав угла ‘CDA’, вместе с углом ‘АDO’.
Т.о., угол ‘СDO’ = угол ‘СDA’ — угол ‘АDO’.
3. Вычислим чему равен угол ‘DOC’:
Угол ‘DOC’ = (угол ‘OCD’ + угол ‘CDO’) — 180 градусов.
и т.д.

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Определение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Свойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Ромб – это параллелограмм, у которого все стороны равны.

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объекты яблони теплица сарай жилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объекты яблони теплица сарай жилой дом
Цифры 3 5 1 7

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазина Расход краски Масса краски в одной банке Стоимость одной банки краски Стоимость доставки заказа
1 0,25 кг/кв.м 6 кг 3000 руб. 500 руб.
2 0,4 кг/кв.м 5 кг 1900 руб. 800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Четырехугольники. Основные теоремы, формулы и свойства. Виртуальный справочник репетитра по математике

З десь ученики и репетиторы по математике и могут найти основные свойства и формулы площадей четырехугольников, изучаемых в школе по основной программе. Регулярно пользуюсь этими теоретическими сведениями на тематических и обзорных занятиях по геометрии (планиметрии), а также при подготовке к ЕГЭ по математкие. Все математические понятия и факты иллюстрированы с цветовыми выделениями главных особенностей изучаемого.

1) Площади четырехугольников

Площадь параллелограмма

произведение основания на высоту

пороизведение сторон на синус угла между ними

полупроизведение диагоналей на синус угла между ними

Площадь трапеции

произведение полусуммы оснований на высоту

произведение средней линии на высоту

полупроизведение диагоналей на синус угла между ними

Площадь произвольного четырехугольника


Площадь произвольного четырехугольника равна полупроизведению его диагоналей на синус угла между ними

2) Свойства параллелограмма

В параллелограмме:
противолежащие стороны и углы равны

диагонали пересекаются и в точке пересечения делятся пополам

3) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон, то есть

3) Cредняя линия в трапеции

Теорема о средней линии: Средняя линия трапеции параллельна основаниям и равна их полусумме.
То есть и

4) Средняя линия в равнобедренной трапеции

Средняя линия в равнобедренной трапеции равна отрезку нижнего основания, соединяющему вершину основания с снованием проведенной к ней высоты.

То есть

5) Теорема с сдвиге диагонали в трапеции

Теорема: Если в трапеции через вершину В, как показано на рисунке слева , провести отрезок параллельный одной из диагоналей, то окажутся верными следующие факты:

трапеция — равнобедренная равнобедренный

6) Четыре замечательные точки в трапеции

Теорема: В любой трапеции точка пересечения диагоналей, точка пеерсечения продолжений боковых сторон и середины оснований лежат на одной прямой.

То есть точки M, N, K и P лежат на одной прямой

Комментарий репетитора по математкие: Знаний этих свойств по четырехугольникам вполне достаточно для решения задачи С4 на ЕГЭ, то есть ничего сверх этих фактов по четырехугольникам абитуриент знать не обязан. Однако сильным ученикам для решения сложных задач части С или олимпиадных геометрических задач, а также для качественной подготовки к экзамену по математике в МГУ необходимо расширить список. Я бы не советовал репетиторам ограничиваться только задачами на применение этих свойств, так как составителями ЕГЭ по математике закладывается проверка сразу нескольких навыков работы с теорией. В течении всего времени подготовки к ЕГЭ репетитору по математкие необходимо отбирать тренировочные задачи на одновременное использование этих свойств с другими планиметрическими фактами внутри одной задачи, ибо на экзамене может встретиться многоходовая комбинация.

Колпаков Александр Николаевич. Репетитор по математике.

Александр, конечно, есть множество карманных справочников, НО! Было бы здорово сделать для репетиторов по математике скачиваемые материалы в каком-нибудь удобном формате, а также для проработки отдельно задачи к таким шпаргалкам опять же от простого к сложному.

Я выкладывал на каких-то страницах с карточками-памятками готовые теоретические материалы — файлы в формате word, по крайней мере для планиметрии точно. Просмотрите соответствующие разделы сайта. На них ведут ссылки с главной страницы. Задумываю выделить репетиторам по математике для скачивания материалов отдельный раздел сайта. Все упирается в мою занятость реальными учениками. Иначе бы уже давно реализовал все замыслы.

В этой хорошей подборке, на мой взгляд, не достает сведений по углам, например, два внутренних угла параллелограмма, связанных одной стороной в сумме дают 180 градусов.

Принципиально ли в формуле площади через диагонали брать именно меньший угол между ними? Или можно любой?

Александр, если не затруднит, очень хотелось бы получить файлик world на почту или тыкнуть ссылкой на нее. За ранее очень благодарен за титанический труд.

источники:

Четырехугольники

http://ankolpakov.ru/2010/10/11/chetyrexugolniki-osnovnye-teoremy-formuly-i-svojstva-virtualnyj-spravochnik-repetitra-po-matematike/


Свойства углов между диагоналями параллелограмма:

1. Противоположные углы равны

2. Косинус тупого угла, всегда имеет отрицательное значение:  cos β <0

Формулы параллелограмма

a, b — стороны параллелограмма

D большая диагональ

d меньшая диагональ

α — острый угол между диагоналями

β тупой угол между диагоналями

Формулы косинуса острого и тупого углов между диагоналями, через стороны и диагонали (по теореме косинусов):

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формула синуса острого и тупого углов через площадь (S) и диагонали:

Формулы углов между диагоналями параллелограмма

Формулы соотношения острого и тупого углов между диагоналями:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos и arcsin



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

Подробности

Опубликовано: 06 ноября 2011

Обновлено: 13 августа 2021

Как найти угол между диагоналям

Диагональ многоугольника — отрезок, который соединяет две не граничащие между собой вершины фигуры (т.е. несмежные вершины или не принадлежащие одной стороне многоугольника). В параллелограмме, зная длину диагоналей и длину сторон, можно рассчитать углы между диагоналями.

Как найти угол между диагоналям

Инструкция

Для удобства восприятия информации начертите на листе бумаги произвольный параллелограмм АВСD (параллелограмм – это четырехугольник, противоположные стороны которого попарно равны и параллельны). Соедините противоположные вершины отрезками. Полученные АС и ВD – диагонали. Обозначьте точку пересечения диагоналей буквой О. Необходимо найти углы ВОС (АОD) и СOD (АОВ).

Параллелограмм обладает целым рядом математических свойств:- диагонали точкой пересечения делятся пополам; — диагональ параллелограмма делит его на два равных треугольника;- сумма всех углов в параллелограмме равна 360 градусов;- сумма углов, прилежащих к одной стороне параллелограмма, равна 180 градусам;- сумма квадратов диагоналей равна двойной сумме квадратов его смежных сторон.

Чтобы найти углы между диагоналями, воспользуйтесь теоремой косинусов из теории элементарной геометрии (Евклидовой). Согласно теореме косинусов, квадрат стороны треугольника (A) можно получить, сложив квадраты двух его других сторон (B и C), и из полученной суммы вычесть двойное произведение этих сторон (B и C) на косинус угла между ними.

Применительно к треугольнику ВОС параллелограмма АВСD теорема косинусов будет выглядеть следующим образом:Квадрат ВС = квадрат ВО + квадрат ОС – 2*ВО*ОС*cos угла ВOCОтсюда соs угла BOC = (квадрат ВС –квадрат ВО – квадрат ОС) / (2*ВО*ОС)

Найдя значение угла ВОС (АОD) легко вычислить значение другого угла, заключенного между диагоналями – СОD (АОВ). Для этого из 180 градусов вычтите значение угла ВОС (АОD) – т.к. сумма смежных углов равна 180 градусам, а углы ВОС и СОD и углы АОD и АОВ – смежные.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Угол между диагоналями прямоугольника можно определить по формуле 2*arctg(a/b), где а и b — стороны прямоугольника. Формула справедлива для любого прямоугольника, но ни в коем случае не применима для параллелограммов.

система выбрала этот ответ лучшим

MrClo­us
[140]

9 лет назад 

Диагональ многоугольника — отрезок, который соединяет две не граничащие между собой вершины фигуры (т.е. несмежные вершины или не принадлежащие одной стороне многоугольника). В параллелограмме, зная длину диагоналей и длину сторон, можно рассчитать углы между диагоналями.

Юрий Воско­вец
[145]

9 лет назад 

Зная углы между диагоналями и одной из сторон (это через тригонометрические функции, зная размеры прямоугольника) и то, что сумма углов треугольника равна 180 градусов — вполне можно найти желаемый угол между диагоналями.

Знаете ответ?

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить ппр на ремонт оборудования образец
  • Ошибка в ндс в чеке как исправить
  • Как найти остракон на винограднике маркуса
  • Исправьте пунктуацию в предложениях поставьте тире или оставьте как есть перепечатав текст
  • Почему мышка работает наоборот как исправить

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии