Окружность. Центральный и вписанный угол
Центральный угол — это угол, вершина которого находится в центре окружности.
Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.
На рисунке — центральные и вписанные углы, а также их важнейшие свойства.
Итак, величина центрального угла равна угловой величине дуги, на которую он опирается.
Значит, центральный угол величиной в градусов будет опираться на дугу, равную , то есть круга. Центральный угол, равный , опирается на дугу в градусов, то есть на шестую часть круга.
Величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.
Также для решения задач нам понадобится понятие «хорда».
Равные центральные углы опираются на равные хорды.
1 . Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.
Вписанный угол, опирающийся на диаметр, — прямой.
2 . Центральный угол на больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.
Пусть центральный угол равен , а вписанный угол, опирающийся на ту же дугу, равен .
Мы знаем, что .
Отсюда ,
.
Ты нашел то, что искал? Поделись с друзьями!
3 . Радиус окружности равен . Найдите величину тупого вписанного угла, опирающегося на хорду, равную . Ответ дайте в градусах.
Пусть хорда равна . Тупой вписанный угол, опирающийся на эту хорду, обозначим .
В треугольнике стороны и равны , сторона равна . Нам уже встречались такие треугольники. Очевидно, что треугольник — прямоугольный и равнобедренный, то есть угол равен .
Тогда дуга равна , а дуга равна .
Вписанный угол опирается на дугу и равен половине угловой величины этой дуги, то есть .
4 . Хорда делит окружность на две части, градусные величины которых относятся как . Под каким углом видна эта хорда из точки , принадлежащей меньшей дуге окружности? Ответ дайте в градусах.
Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки ?»
Представьте, что вы сидите в точке и вам необходимо видеть всё, что происходит на хорде . Так, как будто хорда — это экран в кинотеатре
Очевидно, что найти нужно угол .
Сумма двух дуг, на которые хорда делит окружность, равна , то есть
Отсюда , и тогда вписанный угол опирается на дугу, равную .
Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол равен .
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение окружности
- Отрезки в окружности
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности .
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности .
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Длина дуги окружности , на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
Углы, связанные с окружностью
Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Теоремы о вписанных и центральных углах
Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.
Фигура | Рисунок | Теорема |
Вписанный угол | ||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же дугу равны. | |
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды | |
Вписанный угол | Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды | |
Вписанный угол | Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр | |
Окружность, описанная около прямоугольного треугольника |
Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.
Теоремы об углах, образованных хордами, касательными и секущими
Вписанный угол |
Окружность, описанная около прямоугольного треугольника |
Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами
Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами | |||
Угол, образованный секущими, которые пересекаются вне круга | |||
Угол, образованный касательной и хордой, проходящей через точку касания | |||
Угол, образованный касательной и секущей | |||
Угол, образованный двумя касательными к окружности |
Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.
Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами
Угол, образованный пересекающимися хордами хордами |
Формула: |
Угол, образованный секущими секущими , которые пересекаются вне круга |
Формула: |
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный касательной и хордой хордой , проходящей через точку касания |
Формула: |
Угол, образованный касательной и секущей касательной и секущей |
Формула: |
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный двумя касательными касательными к окружности |
Формулы: |
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами Доказательства теорем об углах, связанных с окружностьюТеорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5). Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана. Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6). В этом случае справедливы равенства и теорема 1 в этом случае доказана. Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7). В этом случае справедливы равенства что и завершает доказательство теоремы 1. Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 8. Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 9. Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами. Доказательство . Рассмотрим рисунок 10. Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства что и требовалось доказать Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 11. Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства что и требовалось доказать. Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 12. Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство источники: http://www.resolventa.ru/spr/planimetry/cangle.htm |
Решаем задачи по геометрии: углы в окружностях
Основные теоремы
Определение 1. Угловой величиной дуги называется отношение длины этой дуги к длине окружности, умноженное на 2π.
Теорема 1. Величина центрального угла равна угловой величине дуги, на которую он опирается.
Теорема 2. Величина вписанного угла равна половине угловой величины дуги, на которую он опирается.
Следствие. Вписанные углы, опирающиеся на одну и ту же дугу или на равные дуги одной окружности, равны.
Теорема 3. Угол между касательной и хордой, выходящими из одной точки окружности, измеряется половиной угловой величины дуги, заключенной внутри этого угла (рис. 1).
Теорема 4. Угол, вершина которого расположена вне круга, измеряется полуразностью угловых величин дуг окружности этого круга, заключенных внутри угла (рис. 2).
Теорема 5. Угол, вершина которого расположена внутри круга, измеряется полусуммой угловых величин дуг, которые высекают из окружности круга стороны угла и их продолжения (рис. 3).
Теорема 6. Сумма противоположных углов четырехугольника, вписанного в окружность, равна π, и наоборот, если сумма противоположных углов выпуклого четырехугольника равна π, то вокруг этого четырехугольника можно описать окружность.
Теорема 7. Произведения длин отрезков двух пересекающихся хорд равны (см. рис. 3).
Теорема 8. Произведение длины отрезка секущей на длину ее внешней части есть величина постоянная, и она равна квадрату длины касательной, проведенной к окружности из той же точки (рис. 4).
Доказательства некоторых теорем
Доказательство теоремы 4. Рассмотрим сначала случай, когда лучи, образующие данный угол, пересекают окружность каждый в двух различных точках (рис. 5).
Обозначим через O вершину угла, а точки пересечения лучей и окружности через A, B, C и D (A между O и B, C между O и D). Тогда
Первое равенство верно, так как в треугольнике OBC внешний угол BCD равен сумме двух внутренних углов, с ним не смежных.
Пусть теперь один из лучей (например, OA) касается окружности в точке A, а другой пересекает ее в точках B и C; B между O и C (рис. 6).
Тогда
И наконец, пусть оба луча OA и OB касаются окружности в точках A и B (рис. 7).
Тогда треугольник OAB является равнобедренным, и
где дуга ACB — большая из дуг окружности, заключенных между точками A и B.
Доказательство теоремы 5. Пусть хорды AB и CD окружности пересекаются в точке O (рис. 8). Так как в треугольнике OBD внешний угол AOD равен сумме двух внутренних углов, с ним не смежных, то
Доказательство теоремы 8. Докажем сначала первую часть теоремы. Пусть OB и OD — две секущие к окружности, а OA и OC — соответственно их внешние части. Так как углы ABC и ADC равны (как вписанные, опирающиеся на одну и ту же дугу), то треугольники AOD и BOC подобны (по двум углам). Следовательно,
Пусть теперь OK — касательная к окружности, а OB — секущая (OA ее внешняя часть) (рис. 9).
Так как угол OKA равен половине угловой величины дуги KA (как угол между касательной и хордой), а угол KBA равен половине угловой величины дуги KA (как вписанный, опирающийся на эту дугу), то ∠OKA = ∠KBA, и треугольник OKA подобен треугольнику KOB (по двум углам). Имеем:
Решения задач
Задача 1. Правильный треугольник ABC со стороной, равной 3, вписан в окружность. Точка D лежит на окружности, причем длина хорды AD равна (рис. 10). Найти длины хорд BD и CD.
Решение.
Легко видеть, что радиус окружности, описанной около правильного треугольника со стороной a, равен
начит, радиус данной окружности равен . Пусть O — центр данной окружности. В треугольнике AOD все стороны равны. Поэтому ∠DAO = 60°. Кроме того, так как треугольник ABC — правильный, то ∠OAC = 30°.
Значит, ∠DAC = 90°, и треугольник DAC — прямоугольный. Следовательно, CD — диаметр окружности, и Значит, и треугольник BCD прямоугольный, откуда по теореме Пифагора находим, что
Ясно, что при переобозначении точек B и C получим, что
Ответ: и
Задача 2. Окружность радиуса R проходит через вершины A и B треугольника ABC и касается прямой AC в точке A (рис. 11). Найти площадь треугольника ABC, зная, что ∠ABC = β, ∠CAB = α.
Решение. Угол α между касательной AC и хордой AB, выходящими из точки A окружности, равен половине угловой величины дуги AB и, значит, равен любому вписанному углу, опирающемуся на ту же дугу. Поэтому мы можем применить теорему синусов: AB = 2Rsin α.
Рассмотрим треугольник ABC, к которому также применим теорему синусов:
Следовательно,
Ответ:
Задача 3. Вокруг треугольника ABC описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке E (рис. 12). Известно, что AB + AD = DE, угол BAD равен 60° и AE = 6. Найти площадь треугольника ABC.
Решение. Пусть AB = x, AD = y, тогда, согласно условию задачи, DE = x + y. Так как в окружности произведения отрезков двух пересекающихся хорд равны, имеем:
AD∙DE = BD∙DC ⇔
Применим к треугольнику ABD теорему косинусов:
BD2 = AB2 + AD2 – 2AB∙AD∙cos ∠BAD ⇔
⇔ ⇔ x2 = 2xy ⇔ x = 2y.
Условие AE = 6 дает равенство x + 2y = 6. Подставляя в него x = 2y, находим: x = 3. Искомая площадь равна
Ответ:
Задача 4. На стороне AC остроугольного треугольника ABC взята точка D так, что AD = 1,
DC = 2 и BD является высотой треугольника ABC. Окружность радиуса 2, проходящая через точки A и D, касается в точке D окружности, описанной около треугольника BDC (рис. 13). Найти площадь треугольника ABC.
Решение. Треугольник BCD — прямоугольный, поэтому центр описанной около него окружности есть середина M стороны BC. Пусть O — центр окружности радиуса 2, проходящей через A и D. Так как данные окружности касаются, то точки O, D, M лежат на одной прямой. А из равенства углов ADO и CDM, в силу равнобедренности треугольников ADO и CDM, следует подобие этих треугольников. Значит, DM = 4 и BC = 2 DM = 8.Применив теорему Пифагора к треугольнику BCD, получим, что Следовательно,
Ответ:
Задача 5. Дан треугольник ABC, в котором
BC = 5. Окружность проходит через вершины B и C и пересекает сторону AC в точке K так, что
CK = 3, KA = 1. Известно, что косинус угла ACB равен (рис. 14). Найти отношение радиуса данной окружности к радиусу окружности, вписанной в треугольник ABK.
Решение. Применим к треугольнику ABC теорему косинусов:
AB2 = BC2 + AC2 – 2BC∙AC∙cos ∠ACB = 9 ⇒
⇒ AB = 3.
Следовательно, треугольник ABC — прямоугольный (так как его стороны равны 3, 4, 5). Треугольник ABK также прямоугольный, применив к нему теорему Пифагора, получим, что Значит, радиус вписанной в треугольник ABK окружности равен
Статья опубликована при
поддержке учебного центра «НП МАЭБ» в Санкт-Петербурге. Организация работы службы охраны труда и производственной безопасности, обучение профессионалов в этой области. Программы пожарно-технического минимума для руководителей и специалистов, стропальщики, лифтеры, машинисты подъемника, рабочие по работе с баллонами со сжиженными углеводородными газами и др. Узнать подробнее о центре, цены, контакты и оставить заявку Вы сможете на сайте, который располагается по адресу: http://www.maeb.ru/.
Окружность, данная в условии задачи, описана около треугольника BCK. По теореме синусов ее радиус равен
Тогда искомое отношение равно
Ответ:
Задача 6. В треугольнике ABC известны стороны AB = 6, BC = 4, AC = 8. Биссектриса угла C
пересекает сторону AB в точке D. Через точки A, D, C проведена окружность, пересекающая сторону BC в точке E (рис. 15). Найти площадь треугольника ADE.
Решение. Биссектриса CD угла ACB делит сторону AB на отрезки, пропорциональные прилежащим сторонам, поэтому AD = 4 и BD = 2. Далее, углы DAE и DCE равны, как опирающиеся на одну и ту же дугу, и аналогично равны углы AED и ACD. Но ∠ACD = ∠DCE, поэтому все четыре названных угла равны. Следовательно, треугольник ADE — равнобедренный и DE = 4.
Найдем синус угла ADE. Так как четырехугольник ADEC вписан в окружность, то
∠ADE + ∠ACE = 180°, sin ∠ADE = sin ∠ACE.
Применим к треугольнику ABC теорему косинусов:
Значит,
Ответ:
Задача 7. Вокруг треугольника ABC со сторонами AC = 20 и углом B, равным 45°, описана окружность. Через точку C проведена касательная к окружности, пересекающая продолжение стороны AB за точку A в точке D (рис. 16). Найти площадь треугольника BCD.
Решение. Угол ABC равен половине угловой величины дуги AC, как вписанный угол, опирающийся на эту дугу. Угол ACD также равен половине угловой величины дуги AC, как угол между касательной и хордой. Следовательно, эти углы равны, и треугольники DBC и DCA подобны по двум углам. Площади этих треугольников относятся как квадрат коэффициента подобия. Найдем этот коэффициент, он равен BC : AC. Пусть BC = 10x, тогда, применив к треугольнику ABC теорему косинусов, получим:
Значит,
Поэтому
С другой стороны, легко вычислить
Значит,
Ответ:
Задача 8. В окружность радиуса 17 вписан четырехугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности (рис. 17). Найти длины сторон четырехугольника.
Решение. Обозначим исходный четырехугольник через ABCD таким образом, чтобы точка B лежала на меньшей дуге AC, а точка A лежала на меньшей дуге BD. Пусть O — центр окружности, OQ и OP — перпендикуляры, опущенные из центра окружности на хорды AC и BD соответственно, M — точка пересечения
AC и BD. Тогда AQ = QC, BP = PD, OQMP — прямоугольник со сторонами OQ = PM = 8 и
OP = QM = 9. Применим к треугольнику COQ теорему Пифагора:
Аналогично из треугольника ODP получим, что
Значит,
Находим стороны четырехугольника ABCD, пользуясь теоремой Пифагора:
Ответ:
Задача 9. Пятиугольник ABCDE вписан в окружность единичного радиуса (рис. 18).
Известно, что и BC = CD. Чему равна площадь пятиугольника?
Решение. Пусть O — центр данной окружности. Так как стороны треугольника AOB равны 1, 1 и то этот треугольник прямоугольный, и угол AOB равен
. Поскольку угол ABE равен
, то угол AOE также равен
, и BE — диаметр окружности. Угол EBD равен
следовательно, угол EOD равен
а так как BC = CD, то
Итак, пятиугольник ABCDE состоит из двух прямоугольных и трех равносторонних треугольников. Его площадь равна
Ответ:
Задача 10. Выпуклый четырехугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K (рис. 19). Найти длину отрезка KC, если BC = 4, а AK = 6.
Решение. Так как AC — биссектриса угла BAD, то угол BAC равен углу CAD. С другой стороны, углы CAD и CBD равны (как вписанные, опирающиеся на одну и ту же дугу). Значит, угол BAC равен углу CBK. Следовательно, треугольник ABC подобен треугольнику BCK (по двум углам). Имеем:
Ответ: 2.
Задачи для самостоятельного решения
С-1. В треугольнике ABC имеем: AB = 20,
AC = 24. Известно, что вершина C, центр вписанного в треугольник ABC круга и точка пересечения биссектрисы угла A со стороной BC лежат на окружности, центр которой находится на стороне AC. Найдите радиус описанной около треугольника ABC окружности.
С-2. Дан прямоугольный треугольник ABC
с прямым углом при вершине C. Угол CAB равен α.
Биссектриса угла ABC пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.
С-3. На плоскости даны две пересекающиеся окружности. Первая имеет центр в точке O1 и радиус, равный 4, вторая — центр в точке O2 и радиус, равный Отрезок O1O2 пересекает обе окружности, а угол KO1O2 равен 30° (где K — одна из точек пересечения окружностей). Вершина A равностороннего треугольника ABC является точкой пересечения второй окружности и отрезка O1O2, а сторона BC — хордой первой окружности, перпендикулярной к прямой O1O2. Найдите площадь треугольника ABC, если известно, что AB < 4.
С-4. В окружность вписан четырехугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке E. Прямая, проходящая через точку E и перпендикулярная к AB, пересекает сторону CD в точке M. Докажите, что EM — медиана треугольника CED, и найдите ее длину, если AD = 8, AB = 4 и ∠CDB = α.
С-5. Трапеция ABCD вписана в окружность (BC C AD). На дуге CD взята точка E и соединена со всеми вершинами трапеции. Кроме того, известно, что ∠CED = 120° и ∠ABE – ∠BAE = α. Для треугольника ABE найдите отношение периметра к радиусу вписанной окружности.
С-6. В треугольнике ABC известно, что BC = 4. Кроме того центр окружности, проведенной через середины сторон треугольника, лежит на биссектрисе угла C. Найдите AC.
С-7. В треугольнике ABC на сторонах AB и AC выбраны соответственно точки B1 и C1 таким образом, что AB1 : AB = 1 : 3 и AC1 : AC = 1 : 2. Через точки A, B1 и C1 проведена окружность. Через точку B1 проведена прямая, пересекающая отрезок AC1 в точке D, а окружность — в точке E.
Найдите площадь треугольника B1C1E, если
AC1 = 4, AD = 1, DE = 2, а площадь треугольника ABC равна 12.
С-8. Диагонали четырехугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причем ∠DME = 80°, ∠ABD = 60°, ∠CBD = 70°. Где находится точка M: на диагонали или на ее продолжении? Ответ обоснуйте.
С-9. Через центр окружности, описанной около треугольника ABC, проведены прямые, перпендикулярные сторонам AC и BC. Эти прямые пересекают высоту CH треугольника или ее продолжение в точках P и Q. Известно, что CP = p, CQ = q. Найдите радиус окружности, описанной около треугольника ABC.
С-10. На стороне AB треугольника ABC как на диаметре построена окружность, пересекающая стороны AC и BC в точках D и E соответственно. Прямая DE делит площадь треугольника ABC пополам и образует с прямой AB угол 15°. Найдите углы треугольника ABC.
С-11. Окружность касается сторон угла с вершиной O в точках A и B. На этой окружности внутри треугольника AOB взята точка C. Расстояния от точки C до прямых OA и OB равны соответственно a и b. Найдите расстояние от точки C до хорды AB.
С-12. В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Вокруг треугольника ECB описана окружность, а касательная к этой окружности, проведенная в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что AF = a,
AD = b. Найдите EF.
С-13. В четырехугольнике ABCD диагонали AC и BD перпендикулярны и пересекаются в точке P. Длина отрезка, соединяющего вершину C с точкой M, являющейся серединой отрезка AD, равна Расстояние от точки P до отрезка BC равно
и AP = 1. Найдите длину отрезка AD, если известно, что вокруг четырехугольника ABCD можно описать окружность.
С-14. В окружности проведены диаметр MN и хорда AB, параллельная диаметру MN. Касательная к окружности в точке M пересекает прямые NA и NB соответственно в точках P и Q. Известно, что MP = p, MQ = q. Найдите MN.
С-15. Через вершины A и B треугольника ABC проведена окружность, пересекающая стороны BC и AC в точках D и E соответственно. Площадь треугольника CDE в 7 раз меньше площади четырехугольника ABDE. Найдите DE и радиус окружности, если AB = 4 и ∠C = 45°.
С-16. Через точку L окружности проведена касательная и хорда LM длины 5. Хорда MN параллельна касательной и равна 6. Найдите радиус окружности.
С-17. Диагонали вписанного в окружность четырехугольника ABCD пересекаются в точке E, причем BD = 6 и AD∙CE = DC∙AE. Найдите площадь четырехугольника ABCD.
С-18. В треугольнике ABC известно, что длина AB равна 3, Хорда KN окружности, описанной около треугольника ABC, пересекает отрезки AC и BC в точках M и L соответственно. При этом ∠ABC = ∠CML, площадь четырехугольника ABLM равна 2, а длина LM равна 1. Найдите высоту треугольника KNC, опущенную из вершины C, и его площадь.
С-19. В треугольнике ABC точка D лежит на стороне BC, прямая AD пересекается с биссектрисой угла ACB в точке O. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC : AB = 3 : 2, а величина угла DAC в три раза больше величины угла DAB. Найдите косинус угла ACB.
С-20. Окружность, вписанная в равнобедренный треугольник ABC, касается основания AC в точке D и боковой стороны AB в точке E. Точка F — середина стороны AB, а точка G — точка пересечения окружности и отрезка FD, отличная от D. Касательная к данной окружности, проходящая через точку G, пересекает сторону AB в точке H. Найдите угол BCA, если известно, что FH : HE = 2 : 3.
С-21. На отрезке AB взята точка C и на отрезках AB и CB как на диаметрах построены окружности. Хорда AM большей окружности касается меньшей окружности в точке D. Прямая BD пересекает большую окружность в точке N. Известно, что ∠DAB = a, AB = 2R. Найдите площадь четырехугольника ABMN.
С-22. В треугольнике ABC биссектрисы AD и BL пересекаются в точке F. Величина угла LFA равна 60°.
1) Найдите величину угла ACB.
2) Вычислите площадь треугольника ABC, если ∠CLD = 45° и AB = 2.
С-23. Две окружности пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AD, если AB = 15, AC = 20 и AE = 24.
С-24. В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причем точка K
лежит на основании AD. В каком отношении прямая LN делит сторону AB, а прямая MK — сторону BC? Найдите отношение MN : KL, если LM : KN = 3 : 7.
Ответы:
Садовничий Ю.
Вписанный и центральный угол окружности — коротко о главном
Центр окружности – такая точка, расстояния от которой до всех точек окружности одинаковые.
Радиус – отрезок, соединяющий центр и точку на окружности.
Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов – одинаковая.
Иногда для краткости радиусом называют именно длину отрезка «центр – точка на окружности», а не сам отрезок.
А вот что получится, если соединить две точки на окружности? Тоже отрезок? Так вот, этот отрезок называется «хорда».
Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда ( displaystyle AB) стягивает дугу ( displaystyle AB).
А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».
Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,
Радиус равен половине диаметра.
Кроме хорд бывают еще и секущие.
Вспомнили самое простое?
А теперь – названия для углов.
Центральный угол – угол между двумя радиусами.
Естественно, не правда ли? Стороны угла выходят из центра – значит, угол – центральный.
А теперь – вписанный угол.
Вписанный угол – угол между двумя хордами, которые пересекаются в точке на окружности.
При этом говорят, что вписанный угол ( displaystyle ABC) опирается на дугу (или на хорду) ( displaystyle AC).
Вот здесь иногда возникают сложности. Обрати внимание – НЕ ЛЮБОЙ угол внутри окружности – вписанный, а только такой, у которого вершина «сидит» на самой окружности.
Смотри на картинку:
Измерение дуг и углов окружности
Длина окружности. Дуги и углы измеряются в градусах и радианах.
Сперва о градусах
Для углов проблем нет – нужно научиться измерять дугу в градусах.
Градусная мера (величина дуги) – это величина (в градусах) соответствующего центрального угла
Что здесь значит слово «соответствующего»? Смотрим внимательно:
Видишь две дуги ( displaystyle AB) и два центральных угла?
Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше ( displaystyle 180{}^circ )), а меньшей дуге соответствует меньший угол.
Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.
А теперь о радианах
Что же это за зверь такой «радиан»?
Представь себе: радианы – это способ измерения угла … в радиусах!
Угол величиной ( displaystyle 1) радиан – такой центральный угол, длина дуги которого равна радиусу окружности.
Тогда возникает вопрос – а сколько же радиан в развёрнутом угле?
Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?
Этим вопросом задавались учёные ещё в Древней Греции.
И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде ( displaystyle 1,text{ }2,text{ }3,frac{7}{5},frac{2}{239}) и т.п.
И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в ( displaystyle 2,5) раза или в ( displaystyle sqrt{17}) раз больше радиуса!
Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву ( displaystyle pi ).
Итак, ( displaystyle pi ) – это число, выражающее отношение длины полуокружности к радиусу.
Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём ( displaystyle pi ) радиан. Именно оттого, что половина окружности в ( displaystyle pi ) раз больше радиуса.
Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число ( displaystyle pi ), получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы – нам достаточно двух знаков после занятой, мы привыкли, что
( displaystyle pi approx 3,14)
Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна ( displaystyle 6,28), а точно эту длину просто невозможно записать «человеческим» числом – нужна буква ( displaystyle pi ).
И тогда эта длина окружности окажется равной ( displaystyle 2pi ). И конечно, длина окружности радиуса ( displaystyle R) равна ( displaystyle 2pi R).
Вернёмся к радианам.
Мы выяснили уже, что в развёрнутом угле содержится ( displaystyle pi ) радиан.
Исходя из этого, можно пересчитать любые углы «в градусах» на углы «в радианах». Для этого нужно просто решить пропорцию! Давай попробуем. Возьмём угол в ( displaystyle 30{}^circ ).
Что имеем:
( displaystyle 180{}^circ -pi ) рад.
( displaystyle 30{}^circ — x) рад.
Значит, ( displaystyle x=frac{30{}^circ text{ }!!pi!!text{ }}{180{}^circ }=frac{text{ }!!pi!!text{ }}{6})рад., то есть ( displaystyle 30{}^circ =frac{pi }{6})рад. Таким же образом получается табличка с наиболее популярными углами.
( displaystyle 30{}^circ) | ( displaystyle frac{pi }{6}) |
( displaystyle 45{}^circ) | ( displaystyle frac{pi }{4}) |
( displaystyle 90{}^circ) | ( displaystyle frac{pi }{2}) |
( displaystyle 180{}^circ) | ( displaystyle pi ) |
( displaystyle 270{}^circ) | ( displaystyle frac{3pi }{2}) |
( displaystyle 360{}^circ) | ( displaystyle 2pi ) |
Итак, осознай и не бойся: если ты видишь букву или выражение ( displaystyle frac{7pi }{2}) и т.п., то речь идёт об угле и, по сути, запись через букву ( displaystyle pi) всегда выражает, какую часть от развёрнутого угла составляет тот угол, о котором идёт речь.
А для убедительности ещё раз взгляни на табличку:
( displaystyle 30{}^circ) | ( displaystyle frac{pi }{6}) | ( displaystyle frac{1}{6}) от ( displaystyle 180{}^circ ), то есть от ( displaystyle pi ) |
( displaystyle 45{}^circ) | ( displaystyle frac{pi }{4}) | ( displaystyle frac{1}{4}) от ( displaystyle 180{}^circ ), то есть от ( displaystyle pi ) |
( displaystyle 90{}^circ) | ( displaystyle frac{pi }{2}) | ( displaystyle frac{1}{2}) от ( displaystyle 180{}^circ ), то есть от ( displaystyle pi ) |
( displaystyle 180{}^circ) | ( displaystyle pi ) | это и есть ( displaystyle pi ) |
( displaystyle 270{}^circ) | ( displaystyle frac{3pi }{2}) | ( displaystyle 270{}^circ ) в ( displaystyle 1,5) раза больше, чем ( displaystyle 180{}^circ ) |
( displaystyle 360{}^circ) | ( displaystyle 2pi ) | А это ( displaystyle 2) раза по ( displaystyle 180{}^circ ), то есть ( displaystyle 2pi ) |
План урока:
Центральный угол и градусная мера дуги
Вписанный угол
Углы между хордами и секущими
Теорема о произведении отрезков хорд
Задачи на квадратной решетке
Центральный угол и градусная мера дуги
Любые две точки на окружности разбивают ее на две дуги. Чтобы отличать эти дуги, на каждой из них ставят точку, которую и указывают в обозначении дуги:
Здесь красным цветом показана⋃АСВ, а синим – ⋃ADB. Однако иногда для простоты указывают только концы дуги, то есть используют обозначение ⋃AВ. Это делается тогда, когда ясно, о какой дуге окружности идет речь. Обычно всегда подразумевается та дуга, которая меньше.
Можно заметить, что дуги отличаются по размеру, поэтому возникает потребность их измерения. Для этого используют такое понятие, как градусная мера дуги.
Для ее определения необходимо соединить концы дуги с центром окруж-ти. В результате получаются радиусы, которые пересекаются в центре окружности. Угол между ними именуется центральным углом окруж-ти.
Для каждой дуги можно построить единственный центральный угол, поэтому логично измерять дугу с помощью такого угла. Правда, обратное неверно. На рисунке видно, что центральному углу ∠АОВ соответствует сразу две дуги: ⋃АСВ и ⋃АDB:
Поэтому условно считают, градусная мера той из двух дуг, которая меньше, как раз и равна центральному углу:
Дуги, также как отрезки или углы, можно складывать или вычитать. Например, пусть есть две дуги, ⋃AВ и ⋃ВС, чьи градусные меры составляют 40° и 30°.
Как найти ⋃АС? Ей соответствует центральный угол ∠АОС, который в свою очередь равен сумме ∠АОВ и ∠ВОС:
Диаметр делит окруж-ть на две равные друг другу дуги, которые называются полуокружностями. При этом диаметр окружности можно рассматривать как угол между двумя радиусами, равный 180°. Получается, что градусная мера полуокружности составляет 180°:
Вместе две полуокружности образуют полную окруж-ть. Получается, что градусная мера всей окруж-ти составляет 180° + 180° = 360°.
Этот факт известен и из жизни – когда кто-то делает полный оборот вокруг своей оси, говорят, что он повернулся на 360°. Теперь мы можем вернуться к случаю, когда две точки делят окруж-ть на две неравные друг другу дуги. Градусная мера меньшей из них будет равна величине соответствующего центрального угла (обозначим его как α). В сумме две дуги должны дать 360°. Значит, градусная мера большей дуги будет составлять 360° – α:
Задание. Точки А, В, С и D лежат на одной окруж-ти. Известно, что ⋃АСВ составляет 107°. Какова величина ⋃ADB?
Решение. Вместе дуги ⋃АСВ и ⋃АDВ образуют полную окруж-ть, поэтому их сумма равна 360°. Это позволяет составить уравнение и найти из него ⋃АDB:
Задание. Найдите величину ∠АОС на рисунке, если известны ⋃AВ и ⋃ВС:
Решение. Сначала найдем ⋃АС, учтя, что все три дуги, показанные на рисунке, в сумме составляют 360°:
Для доказательства построим две одинаковые хорды AВ и СD в окруж-ти и соединим их концы с центром:
В результате получились ∆АОВ и ∆ОСD. У них равны все три стороны, значит, сами эти треугольники равны. Тогда
∠COD = ∠AOB
Но эти углы – центральные для дуг ⋃AВ и ⋃CD. Получается, что у этих дуг одинаковы их градусные меры, поэтому они также равны, ч. т. д.
Примечание. Всякая хорда окружности разбивает ее на две дуги – большую и меньшую. В данном правиле говорится именно равенстве меньших дуг.
Задание. На окруж-ти отмечены точки А, В и С так, что хорды AВ, ВС и АС равны. Найдите угол между радиусами окружности АО и ВО.
Решение.
Дуги ⋃AВ, ⋃ВС и ⋃АС стянуты равными хордами AВ, ВС и АС. Значит, они одинаковы. Но в сумме эти три дуги образуют окруж-ть величиной в 360°. Значит, каждая из этих дуг втрое меньше:
⋃AВ = ⋃BC = ⋃AC = 360°:3 = 120°
∠АОВ – центральный для ⋃AВ, значит, он равен ее градусной мере, то есть он составляет 120°.
Ответ: 120°.
Вписанный угол
В окруж-ти можно построить ещё один угол, который именуют вписанным углом. Его отличие от центрального заключается в том, что его вершина лежит на окруж-ти, а не в ее центре. Сторонами же вписанного угла являются хорды окруж-ти.
Здесь дуга ⋃ВС находится внутри угла, а ее концы лежат на его сторонах. В таких случаях говорят, что ∠ВАС опирается на дугу ВС. Оказывается, что между величиной вписанного угла и дугой, на которую он опирается, есть взаимосвязь.
Обозначим вписанный угол ∠СAВ буквой α. Так как радиусы АО и ОС одинаковы, то ∆АОС – равнобедренный, и тогда углы при его основании будут одинаковы:
∠OCA = ∠OAC = α
∠СОВ – внешний для ∆АОС. Напомним, что такой угол равен сумме тех 2 углов треуг-ка, которые с ним не смежны. В частности, в данном случае можно записать
∠СОВ = ∠OCA = ∠OAC = α + α = 2α
Но этот же угол – центральный, и его величина равна ⋃ВС:
⋃BC = 2α
Получается, что дуга вдвое больше вписанного угла.
Далее рассмотрим случай, когда диаметр, проведенный из вершины вписанного угла, делит его на две части:
В этом случае вписанный угол ∠СAВ можно представить как сумму углов ∠САD (обозначен как α)и ∠ВАD (обозначен как β). Мы уже доказали, что дуги, на которые опираются эти углы, вдвое больше самих углов:
Осталось рассмотреть третий случай, при котором обе стороны вписанного угла ∠ВАС лежат по одну сторону от диаметра:
Если здесь обозначить ∠САD как α, а ∠ВАD как β, то интересующий нас ∠СAВ можно представить как их разность:
Итак, во всех трех возможных случаях вписанный угол оказывается вдвое меньше дуги, на которую он опирается.
Задание. Найдите ∠ВАС на рисунке:
Задание. Найдите вписанный ∠AВС, сели прилегающие к нему дуги ⋃AВ и ⋃ВС равны 100° и 128°.
Решение. В сумме дуги ⋃АС, ⋃ВС и ⋃AВ образуют окруж-ть, поэтому их сумма составляет 360°. Тогда можно найти ⋃АС:
Задание. Найдите дугу ⋃SM на рисунке:
Решение. Сначала найдем дугу ⋃MN, она вдвое больше соответствующего ей вписанного угла:
⋃NM = 2*∠NSM = 2*35° = 70°
Заметим, что ⋃SN– это полуокружность, то есть она составляет 180°. При этом ⋃SM и ⋃MN вместе как раз образуют эту полуокружность, то есть их сумма также составляет 180°. Значит, ⋃МS можно найти, вычтя из полуокружности ⋃MN:
⋃MS = ⋃SN — ⋃MN = 180° — 70° = 110°
Ответ: 110°.
Заметим, что для одной дуги можно построить несколько вписанных углов. Каждый из них будет равен половине дуги, то есть все эти углы окажутся одинаковыми.
Задание. Найдите ∠АСD на рисунке:
Решение. Так как ∠ACD и ∠ABD опираются на одну дугу ⋃AD, то они должны быть одинаковыми:
∠ACD = ∠ABD = 63°
Ответ: 63°.
Задание. Докажите, что две дуги, находящиеся между двумя параллельными секущими окруж-ти, равны друг другу.
Решение.
Нам надо доказать, что ⋃AВ и ⋃CD равны, если АС||BD. Проведем секущую ВС:
∠СВD и ∠АСВ равны, ведь они накрест лежащие. Получается, что ⋃AВ и ⋃CD являются основаниями равных вписанных углов. Отсюда вытекает, что эти дуги должны быть равными.
Напомним, что диаметр разбивает окруж-ть на две дуги по 180°. Отсюда можно сделать вывод – любой угол, опирающийся на полуокружность, должен составлять 180°:2 = 90°:
Задание. Диаметр окруж-ти AВ равен 17. Хорда ВС имеет длину 8. Какова длина хорды АС?
Решение.
Так как ∠АСВ опирается на диаметр AВ, то он прямой. Значит, и ∆АСВ – прямоугольный, причем диаметр AВ в нем – гипотенуза. Неизвестный катет можно найти по теореме Пифагора:
Задание. Окруж-ть разбита на две дуги, ⋃AВС и ⋃СDA. Известно, что ∠AВС = 72°. Найдите ∠ADC.
Решение.
Зная ∠AВС, мы легко найдем дугу ⋃ADC, она вдвое больше опирающегося на нее вписанного угла:
Углы между хордами и секущими
До этого мы рассматривали простые углы в окруж-ти, вершины которых лежали либо на самой окруж-ти, либо в ее центре. Однако иногда хорды и секущие пересекаются в другой точке, либо внутри, либо вне окруж-ти. Рассмотрим подобные задачи.
Более прост случай, когда необходимо найти угол между двумя пересекающимися хордами. Пусть хорды при пересечении образовали дуги ⋃AВ и ⋃СD величиной α и β. Каков угол между ними?
Проведем ещё одну хорду АD. В результате получим вписанные ∠САD и ∠ADB, которые будут равны половинам от соответствующих дуг, то есть α/2 и β/2. Интересующий нас ∠СPD оказывается внешним для ∆APD, и потому равен сумме двух углов в ∆APD (тех, которые с ним не смежны), то есть он составляет величину α/2 + β/2:
Величину α/2 + β/2 можно записать и иначе, вынеся множитель 1/2 за скобки:
α/2 + β/2 = (α + β)/2
Эту величину можно назвать полусуммой дуг, на которые опирается интересующий нас угол.
Задание. Найдите ∠МКВ на рисунке:
Решение. Интересующий нас угол опирается на хорды величиной 38° и 42°. Значит, он равен половине от их суммы:
∠MKB = (42° + 38°)/2 = 80°/2 = 40°
Ответ: 40°.
В более сложном случае необходимо найти угол между секущими, которые пересекаются вне окруж-ти. При этом известны дуги, образованные этими секущими:
Снова проведем хорду АD, чтобы у нас получились два вписанных угла, ∠ADB и ∠СAD, которые соответственно будут иметь величину β/2 и α/2:
Теперь уже ∠САD оказывается внешним для ∆ADK, а потому он является суммой двух других углов:
В итоге получили, что угол между секущими составляет половину от разности дуг, которые они отсекают от окруж-ти.
Задание. Найдите на рисунке величину∠К, если ⋃AВ и ⋃СD соответственно равны 42° и 130°:
Решение. В этой задаче просто используем доказанную теорему об углах между секущими. Искомый угол составляет половину от разности дуг, заключенных между секущими:
∠K = (130° — 42°):2 = 88°/2 = 44°
Ответ: 44°.
Теорема о произведении отрезков хорд
Можно заметить, что при пересечении двух хорд образуется пара подобных треугольников. Пусть хорды ADи ВС пересекаются в точке K. Добавим хорды AВ и СD и получим ∆AВК и ∆КСD:
На дугу ⋃BD опираются вписанные углы∠А и ∠С, значит, они одинаковы. Также на одну дугу АС опираются ∠D и∠В, поэтому и они одинаково. Равенство двух углов уже означает, что треугольники подобны по первому признаку подобия (дополнительно можно заметить, что ∠АКВ и ∠СКD равны как вертикальные углы).
Из подобия ∆AВК и ∆СКD вытекает пропорция между их сторонами:
Перемножив члены пропорции крест накрест, получим соотношение:
AK*KD = CK*BK
В результате нам удалось доказать следующее утверждение:
Задание. Хорды AВ и CD пересекаются в точке М. Известны, что АМ = 9, МВ = 3, МС = 2. Какова длина отрезка МD?
Решение.
Хорда AВ разбивается на отрезки АМ и МВ, а хорда CD – на отрезки СМ и МD. Произведения этих отрезков одинаковы:
AM*MB = CM*MD
Подставим в это равенство известные величины
Рассмотрим ещё одну геометрическую конструкцию. Пусть из некоторой точки А к окруж-ти проведена как касательная к окружности АК, так и секущая, пересекающая окруж-ть в точках В и С:
Какие здесь есть взаимосвязи между углами и длинами отрезков? Для начала проведем хорды ВК и СК, а также радиусы ОК и ОВ. Обозначим буквой α угол ∠ВСК. Он вписанный, поэтому дуга, на которую он опирается (это ⋃ВК), вдвое больше и равна 2α. Тогда и центральный угол ∠ВОК также составляет 2α:
Теперь исследуем ∆ВОК. Он равнобедренный (ВО и ОК – одинаковые радиусы), поэтому углы при его основании совпадают:
Итак, углы при основании ∆ОВК, в частности ∠ОКВ, равны 90° – α. Заметим, что ∠ОКА – прямой, так как образован радиусом ОК и касательной АК, при этом он состоит из двух углов, ∠АКВ и ∠ВКО. Это позволяет найти ∠АКВ:
В результате мы получили важный промежуточный результат – угол между касательной и хордой, проведенной из точки касания, вдвое меньше образующейся при этом дуги.
Вернемся к картинке с секущей. Изначально как α мы обозначили ∠ВСК, но в результате получили, что и ∠АКВ = α.
Рассмотрим ∆AВК и ∆САК. У них есть общий∠А, а также одинаковые ∠AКВ и ∠ВСК, которые отмечены буквой α. Значит, ∆AВК и ∆САК подобны, поэтому мы имеем право записать пропорцию между его сторонами:
Здесь отрезок АС можно назвать секущей, а AВ – ее внешней частью. Тогда выведенное отношение можно сформулировать так:
Решение. Сначала находим длину всей секущей, пользуясь доказанной теоремой:
Решение. Проведем из точки А ещё и касательную АК к окруж-ти:
Величину квадрата касательной АК можно найти, используя секущую АС. Сначала вычислим длину АС:
Ответ: 3,8.
Задачи на квадратной решетке
Рассмотрим несколько несложных задач, часто встречающихся на экзаменах.
Задание. Найдите ∠AВС на рисунке:
Решение. Здесь следует заметить, что расстояние между А и С составляет 8 клеток, при этом в окруж-ть как раз можно вписать квадрат со стороной 8.
Такой квадрат разобьет окруж-ть на 4 дуги, причем так как эти дуги опираются на хорды одинаковой длины, то они и сами равны. Вся окруж-ть составляет 360°, значит, каждая из этих дуг составляет 360°:4 = 90°. ∠AВС – вписанный, то есть он составляет половину дуги, на которую он опирается, а это⋃АС, равная 90°. Тогда
∠ABC = 90°:2 = 45°
Ответ: 45°.
Задание. Найдите ∠AВС, используя рисунок:
Решение. Используя рассуждения из предыдущей задачи, легко определить, что∠А составляет 45°.При этом ∆AВС – равнобедренный, и ВС – его основание. Это следует хотя бы из того факта, что высота АН делит сторону ВН пополам.
Углы∠В и ∠С одинаковы, так как лежат при основании равнобедренного треуг-ка. Найдем их, используя тот факт, что все 3 угла в ∆AВС составляют в сумме 180°:
Задание. Вычислите ∠AВС:
Решение. Снова в окруж-ть можно вписать квадрат со стороной 8 клеток. Из этого следует что ⋃АВС составляет 90° (показана фиолетовым цветом):
Но ∠АВС опирается на синюю дугу. Так как вместе фиолетовая и синяя дуга составляют окружность, равную 360°, то синяя дуга должна быть равна 360° – 90° = 270°. ∠АВС как вписанный будет вдвое меньше, то есть он равен 270°:2 = 135°.
Ответ: 135°.
Задание. Чему равен ∠AВС на рисунке?
Решение.
Если вписать в окруж-ть квадрат то он разобьет окруж-ти на дуги по 90°. В свою очередь точка А является серединой такой дуги, то есть она разбивает ее на две дуги по 45°.
∠AВС как вписанный будет вдвое меньше, то есть он равен 22,5°.
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности.
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности.
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается. ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается. ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
M N – диаметр.
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
∪ A B = ∪ C D = α
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
l = 2 π R
Длина дуги окружности, на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.