Как найти точки разрыва асимптоты

Асимптоты графика функции

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

как найти асимптоты функции

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

асимптоты функции

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три… и бесконечно много. У каждой функции по разному.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ — это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ infty $, тогда наклонной асимптоты нет. А если $ k = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Примеры решений

Пример 1
Найти все асимптоты графика функции $$ f(x) = frac{5x}{3x+2} $$
Решение

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2 neq 0; 3x neq -2; x neq -frac{2}{3} $. Получили точку разрыва $ x = -frac{2}{3} $. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -frac{2}{3} $.

$$ limlimits_{{x rightarrow -frac{2}{3}}} frac{5x}{3x+2} = (-frac{10}{infty}) = -infty $$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

$$ k = limlimits_{x rightarrow infty} frac{f(x)}{x} =limlimits_{x rightarrow infty} frac{5}{3x+2}=frac{5}{infty}=0 $$

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

$$ b = limlimits_{x rightarrow infty} [f(x)-kx] = limlimits_{x rightarrow infty} frac{5x}{3x+2} = frac{infty}{infty} =frac{5}{3} $$

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = frac{5}{3} $ — горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y = frac{5}{3} $$
Пример 2
Найти все асимптоты графика функции $ f(x) = frac{1}{1-x} $
Решение

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x neq 0; x neq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ limlimits_{x rightarrow 1} frac{1}{1-x} = frac{1}{0} = infty $$

Приступим к поиску наклонных асимптот.

$$ k = limlimits_{x rightarrow infty}frac{f(x)}{x}=limlimits_{x rightarrow infty}frac{1}{x(1-x)} = frac{1}{infty}=0 $$

$$ b =limlimits_{x rightarrow infty}[f(x)-kx]=limlimits_{x rightarrow infty}frac{1}{1-x} = frac{1}{infty}=0 $$

Итого, $ y=0 $ — горизонтальная асимптота.

Ответ
$$ y=0 $$
Пример 3
Найти все асимптоты графика функции $ f(x) = frac{x^3}{3x^2+5} $
Решение

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

$$ k = limlimits_{x rightarrow infty} frac{f(x)}{x} =limlimits_{x rightarrow infty}frac{x^2}{3x^2+5} =limlimits_{x rightarrow infty} frac{2x}{6x} = frac{1}{3} $$

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$$ b =limlimits_{x rightarrow infty} [f(x)-kx] =limlimits_{x rightarrow infty} [frac{x^3}{3x^2+5}-frac{x}{3}] =limlimits_{x rightarrow infty} -frac{5x}{3(3x^2+5)}= $$ $$ = -frac{5}{3}limlimits_{x rightarrow infty} frac{x}{3x^2+5} =-frac{5}{3}limlimits_{x rightarrow infty} frac{1}{6x} =-frac{5}{3}frac{1}{infty} = 0 $$

$ y =frac{1}{3}x $ — наклонная асимптота к функции с углом наклона одна третья.

Ответ
$$ y =frac{1}{3}x $$
Пример 4
Найти асимптоты $ f(x) = xe^{-x} $
Решение

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$$ k=limlimits_{x rightarrow infty} frac{1}{e^x} = frac{1}{infty} = 0 $$

$$ b=limlimits_{x rightarrow infty} frac{x}{e^x} =limlimits_{x rightarrow infty} frac{1}{e^x} = frac{1}{infty} = 0 $$

$ y = 0 $ — горизонтальная асимптота

Ответ
$$ y = 0 $$

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Если
функция f(x) не является непрерывной
в точкеx = a, то говорят, чтоf(x)
имеетразрывв этой
точке. На рисунке 1 схематически изображены
графики четырех функций, две из которых
непрерывны приx = a, а две имеют
разрыв.Непрерывна приx = a.Имеет разрыв приx = a Непрерывна приx = a.Имеет разрыв приx = a. Все точки
разрыва функции разделяются наточки
разрыва первого и второго рода
.
Говорят, что функцияf(x) имеетточку разрыва первого
рода
приx = a, если в это точке
: 1.Существуют левосторонний предели
правосторонний предел;
2.Эти односторонние пределы конечны.
При этом возможно следующие два случая:
1.Левосторонний предел и правосторонний
предел равны друг другу:Такая точка называетсяточкой
устранимого разрыва
. 2.Левосторонний
предел и правосторонний предел не равны
друг другу:

Такая точка называетсяточкой
конечного разрыва
. Модуль разности
значений односторонних пределовназываетсяскачком функции.
Функцияf(x) имеетточку
разрыва второго рода
приx = a,
если по крайней мере один из односторонних
пределов не существует или равен
бесконечности.

Асимптоты
графика функций

при
исследовании графика функции на
бесконечность, т.е. при x+
и x-,
а так же вблизи точек разрыва часто
оказывается, что график сколь угодно
близко приближается к той или иной
прямой, т.е. асимптоте.Прямая
х=х0 – вертикальная асимптота графика
функции y=f(x),
если хотя бы один из пределов
илиравен
.
Нахождение вертикальных асимптот: 1)
точки разрыва и граничные точки на
области определения 2) вычисляем
односторонний предел при х стремящимся
к этим точкам.Прямая
y=a
– горизонтальная асимптота графика
y=f(x),
при х,
если
.Прямая y=kx+b
называется наклонной асимптотой к
графику y=f(x)
при х,
если саму функцию y=f(x)
можно представить в виде f(x)=kx+b+(x),
где
.Схема нахождения:
вычисляем
,
если этот предел не существует или равен
бесконечности, то функция не имеет
наклонной асимптоты. Вычисляем,
если его нет или он бесконечен, то
асимптоты нет.

17. Комплексные числа.

Комплексным
числом
будем называть упорядоченную пару
действительных чисел,
записанную в форме
,
где
новый объект («мнимая единица»),
для которого при вычислениях полагаем.
Первая компонента комплексного числа,
действительное число,
называется действительной частью числа,
это обозначается так:;
вторая компонента, действительное число,
называется мнимой частью числа:.Опр.. Два комплексных числаиравны тогда и только тогда, когда равны
их действительные и мнимые части:.
Множество комплексных чисел неупорядочено,
т.е. для комплексных чисел не вводятся
отношения «больше» или «меньше».
Геометрически комплексное числоизображается как точка с координатамина плоскости. Плоскость, на которой
изображаются комплексные числа,
называется комплексной плоскостью.Опр.. Суммой двух комплексных чиселиназывается комплексное число,
определяемое соотношением,
т.е.,.
Это означает, что геометрически
комплексные числа складываются как
векторы на плоскости, покоординатно.Опр.Произведением двух комплексных
чиселиназывается комплексное число,
определяемое соотношением,
т.е..Для двух комплексных чисел с нулевой
мнимой частьюиполучим,,
т.е. для множества комплексных чисел с
нулевой мнимой частью операции сложения
и умножения не выводят за пределы этого
множества. Отождествим каждое такое
число с действительным числом,
равным действительной части комплексного
числа, т.е. будем считать, что.
Теперь действительные числа — подмножество
множества комплексных чисел.
Далее, числа с нулевой действительной
частью, т.е. числа вида,
называютсямнимыми числами. Мнимое
число с единичной мнимой частью будем
записывать просто как:;
квадрат этого числа, по определению
умножения, равен,
что обосновывает данное вопр.9.1.1свойство «мнимой единицы». Легко
убедиться, что операция сложения
на множестве комплексных чиселимеет свойства, аналогичным аксиомамI.1-I.4, которым
удовлетворяет операция сложения
действительных чисел (см. раздел 3.1.
Аксиомы действительных чисел
):I.1.
;I.2.
;I.3. Существует такой
элемент,
чтодля.
Этот элемент — число.I.4. Для каждого элементасуществует такой элемент,
что.
Этот элемент — число.
Сумма чиселиназывается разностью чисели:.
Прежде, чем определить операцию деления
комплексных чисел, введём понятия
сопряжённого числа и модуля комплексного
числа.Опр.. Числоназывается числом, сопряжённым к числу.
Часто сопряжённое число обозначается
также символом.Опр.Действительное числоназывается модулем комплексного числа.
Найдём произведение сопряжённых чисел:.
Таким образом,— всегда неотрицательное действительное
число, причём.
Для нахождения частного комплексных
чиселдомножим числитель и знаменатель на
число, сопряжённое знаменателю:.Для операции умножения справедливы
свойстваII.1.
;II.2.
;II.3. Произведение числана любое числоравно;II.4. Для каждого числасуществует такое число,
что,;
Операции сложения и умножения подчиняется
закону дистрибутивности:III.1.
.
Операция сопряжения имеет следующие
свойства:IV..

Примеры
выполнения арифметических действий с
комплексными числами: пусть
,.
Тогда;;

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Асимптоты кривой

Прямая линия называется асимптотой кривой y=f(x), если расстояние точки кривой до этой прямой стремится к нулю при стремлении точки к бесконечности.

Назначение сервиса. Данный сервис предназначен для нахождения асимптот к графику функции в онлайн режиме. Решение оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции

Примеры

x^2/(x+2)

cos2(2x+π)(cos(2*x+pi))^2

x+(x-1)^(2/3)

Классификация асимптот

  1. Вертикальные асимптоты.
  2. Горизонтальные асимптоты.
  3. Наклонные асимптоты.

Вертикальные асимптоты

Уравнение любой вертикальной прямой, то есть прямой, параллельной оси OY, имеет вид x=a.

Вертикальные асимптоты

Если прямая x=a является вертикальной асимптотой графика функции y=f(x), то очевидно, что хотя бы один из односторонних пределов или равен бесконечности (+∞ или -∞).

Все функции с бесконечными разрывами (разрывы второго рода) имеют вертикальные асимптоты.

Пример 1. Найти уравнение вертикальных асимптот графика функции .

Решение. Видим, что y→∞, если x→1, точнее , , то есть прямая x=1 является вертикальной асимптотой, причем двусторонней.

Горизонтальные асимптоты

Горизонтальные асимптоты

Всякая горизонтальная прямая имеет уравнение y=A.

Если прямая y=A является горизонтальной асимптотой кривой y=f(x), то .

Пример 2. Найти горизонтальные асимптоты кривой .

Решение. Найдем , то есть y→0 при x→+∞ и при x→-∞, значит прямая y=0 – горизонтальная асимптота данной кривой.

Наклонные асимптоты

Уравнения наклонных асимптот обычно ищут в виде y=kx+b. По определению асимптоты или (1)

Разделим обе части этого равенства на x:
, откуда

(2)

Теперь из (1):

(3)

Для существования наклонных асимптот необходимо существование пределов (2) и (3). Если хотя бы один из них не существует, то наклонных асимптот нет. Пределы (2) и (3) нужно находить отдельно при x→+∞ и при x→-∞, так как пределы могут быть разными (функция имеет две разные асимптоты).

Пример 4. Найти наклонные асимптоты графика функции .

Решение. По формуле (2) найдем .

Теперь найдем . Получаем уравнение наклонной асимптоты y=x+1.

Пример 5. Найти асимптоты кривой y=(x-1)2(x+3).

Решение. Вертикальных и горизонтальных асимптот нет, так как y→∞ при x→∞. Ищем наклонные:

.

Таким образом, кривая асимптот не имеет.

Пример 6. Найти асимптоты кривой .

Решение. Поскольку y→∞ при x→0 и при x→4, то прямые x=0 и x=4 являются вертикальными асимптотами. Так как , то y=2 – горизонтальная асимптота. Выясним вопрос о существовании наклонных асимптот: , следовательно, кривая наклонных асимптот не имеет (искать “b” не имеет смысла, так как горизонтальные асимптоты уже найдены).

Пример 7. Построить все виды асимптот к функции

Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:



Находим коэффициент k:



Находим коэффициент b:



Получаем уравнение наклонной асимптоты: y = -x

Найдем вертикальные асимптоты. Для этого определим точки разрыва:





Находим переделы в точке





— является вертикальной асимптотой.

Находим переделы в точке





— является вертикальной асимптотой.

  1. Понятие асимптоты
  2. Вертикальная асимптота
  3. Горизонтальная асимптота
  4. Наклонная асимптота
  5. Алгоритм исследования асимптотического поведения функции
  6. Примеры

п.1. Понятие асимптоты

Асимптота прямая, расстояние от которой до точки кривой стремится к нулю при удалении точки вдоль ветви кривой на бесконечность.

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:

п.2. Вертикальная асимптота

Вертикальная асимптота кривой (y=f(x)) имеет вид: (x=a)
где (a) — точка разрыва 2-го рода функции (f(x)), для которой хотя бы один односторонний предел существует и равен бесконечности.

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции (y=frac{1}{(x-1)(x+3)})
ОДЗ: (xne left{-3;1right})
(left{x_0=-3, x_1=1right}notin D) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем (x_0=-3). Найдем односторонние пределы: begin{gather*} lim_{xrightarrow -3 -0}frac{1}{(x-1)(x+3)}=frac{1}{(-3-0-1)(-3-0+3)}=frac{1}{-4cdot(-0)}=+infty\ lim_{xrightarrow -3 +0}frac{1}{(x-1)(x+3)}=frac{1}{(-3+0-1)(-3+0+3)}=frac{1}{-4cdot(+0)}=-infty end{gather*} Односторонние пределы не равны и бесконечны.
Точка (x_0=-3) — точка разрыва 2-го рода.
Исследуем (x_1=1). Найдем односторонние пределы: begin{gather*} lim_{xrightarrow 1 -0}frac{1}{(x-1)(x+3)}=frac{1}{(1-0-1)(1-0+3)}=frac{1}{-0cdot 4}=-infty\ lim_{xrightarrow 1 +0}frac{1}{(x-1)(x+3)}=frac{1}{(1+0-1)(1+0+3)}=frac{1}{+0cdot 4}=+infty end{gather*} Односторонние пределы не равны и бесконечны.
Точка (x_1=1) — точка разрыва 2-го рода.
Вывод: у функции (y=frac{1}{(x-1)(x+3)}) две точки разрыва 2-го рода (left{x_0=-3, x_1=1right}), соответственно – две вертикальные асимптоты с уравнениями (x=-3) и (x=1).

п.3. Горизонтальная асимптота

Горизонтальная асимптота кривой (y=f(x)) имеет вид: (y=b)
где (b) — конечный предел функции (f(x)) на бесконечности: (b=lim{xrightarrow pminfty}f(x), bneinfty)

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции (y=frac{1}{(x-1)(x+3)})
Ищем предел функции на минус бесконечности: begin{gather*} lim_{xrightarrow -infty}frac{1}{(x-1)(x+3)}=frac{1}{(-infty)(-infty)}=+0 end{gather*} На минус бесконечности функция имеет конечный предел (b=0) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: begin{gather*} lim_{xrightarrow +infty}frac{1}{(x-1)(x+3)}=frac{1}{(+infty)(+infty)}=+0 end{gather*} На плюс бесконечности функция имеет тот же конечный предел (b=0) и также стремится к нему сверху.
Вывод: у функции (y=frac{1}{(x-1)(x+3)}) одна горизонтальная асимптота (y=0). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции (y=frac{1}{(x-1)(x+3)}): Горизонтальная асимптота

п.4. Наклонная асимптота

Наклонная асимптота кривой (y=f(x)) имеет вид: (y=kx+b) begin{gather*} k=lim_{xrightarrow pminfty}frac{f(x)}{x}, kne 0, kneinfty\ b=lim_{xrightarrow pminfty}(f(x)=kx) end{gather*}

Число наклонных асимптот не может быть больше двух.

Например:
Исследуем наличие наклонных асимптот у функции (y=frac{x^2+3}{x-1})
Найдем угловой коэффициент: begin{gather*} k_1=lim_{xrightarrow -infty}frac{y}{x}=lim_{xrightarrow -infty}frac{x^2+3}{x(x-1)}= lim_{xrightarrow -infty}frac{x^2+3}{x^2-x}=left[frac{infty}{infty}right]= lim_{xrightarrow -infty}frac{x^2left(1+frac{3}{x^2}right)}{x^2left(1-frac 1xright)}=\ =lim_{xrightarrow -infty}frac{1+frac{3}{x^2}}{1-frac1x}=frac{1+0}{1-0}=1\ k_2=lim_{xrightarrow +infty}frac{y}{x}=lim_{xrightarrow +infty}frac{x^2+3}{x(x-1)}=k_1=1 end{gather*} На плюс и минус бесконечности отношение функции к аргументу имеет один и тот же конечный предел (k=1).
Найдем свободный член: begin{gather*} b=lim_{xrightarrow pminfty}(y-kx)=lim_{xrightarrow pminfty}left(frac{x^2+3}{x-1}-1cdot xright)= lim_{xrightarrow pminfty}left(frac{x^2+3-x(x-1)}{x-1}right)=\ =lim_{xrightarrow pminfty}frac{x+3}{x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow pminfty}frac{xleft(1+frac3xright)}{xleft(1-frac1xright)}=frac{1+0}{1-0}=1 end{gather*} Вывод: у функции (y=frac{x^2+3}{x-1}) одна наклонная асимптота (y=x+1). Функция стремится к асимптоте на плюс и минус бесконечности.

Чтобы построить график асимптотического поведения, заметим, что у функции (y=frac{x^2+3}{x-1}), очевидно, есть вертикальная асимптота x=1. При этом: begin{gather*} lim_{xrightarrow -1-0}frac{x^2+3}{x-1}=-infty, lim_{xrightarrow -1+0}frac{x^2+3}{x-1}=+infty end{gather*}

График асимптотического поведения функции (y=frac{x^2+3}{x-1}): Наклонная асимптота

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция (y=f(x))
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) ( y=frac{4x}{x^2-1} )
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin{gather*} lim_{xrightarrow -1-0}frac{4x}{(x+1)(x-1)}=frac{4(-1-0)}{(-1-0+1)(-1-0-1)}=frac{-4}{-0cdot(-2)}=-infty\ lim_{xrightarrow -1+0}frac{4x}{(x+1)(x-1)}=frac{4(-1+0)}{(-1+0+1)(-1+0-1)}=frac{-4}{+0cdot(-2)}=+infty end{gather*} Точка (x=-1) — точка разрыва 2-го рода
Односторонние пределы в точке (x=1) begin{gather*} lim_{xrightarrow -1-0}frac{4x}{(x+1)(x-1)}=frac{4(1-0)}{(1-0+1)(1-0-1)}=frac{4}{2cdot(-0)}=-infty\ lim_{xrightarrow -1+0}frac{4x}{(x+1)(x-1)}=frac{4(1+0)}{(1+0+1)(1+0-1)}=frac{4}{2cdot(+0)}=+infty end{gather*} Точка (x=1) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты (x=pm 1)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}frac{4x}{x^2-1}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{x^2cdot frac4x}{x^2(1-frac{1}{x^2})}=lim_{xrightarrow -infty}frac{frac4x}{1-frac{1}{x^2}}=frac{-0}{1}=-0\ b_2=lim_{xrightarrow +infty}frac{4x}{x^2-1}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{frac4x}{1-frac{1}{x^2}}=frac{+0}{1}=+0 end{gather*} Функция имеет одну горизонтальную асимптоту (y=0). На минус бесконечности функция стремится к асимптоте снизу, не плюс бесконечности – сверху.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k=lim_{xrightarrow pminfty}frac{4x}{x(x^2-1)}=lim_{xrightarrow pminfty}frac{4}{x^2-1}=frac{4}{infty}=0 end{gather*} Наклонных асимптот нет.

График асимптотического поведения функции (y=frac{4x}{x^2-1})
Пример 1а

б) ( y=e^{frac{1}{x+3}} )
1) Вертикальные асимптоты
Точка, подозрительная на разрыв: (x=-3)
Односторонние пределы: begin{gather*} lim_{xrightarrow -3-0}e^{frac{1}{x+3}}=e^{frac{1}{-3-0)+3}}=e^{frac{1}{-0}}=e^infty=0\ lim_{xrightarrow -3+0}e^{frac{1}{x+3}}=e^{frac{1}{-3+0)+3}}=e^{frac{1}{+0}}=e^{+infty}=+infty end{gather*} Точка (x=-3) — точка разрыва 2-го рода
Функция имеет одну вертикальную асимптоту (x=2)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}e^{frac{1}{x+3}}=e^0=1\ b_2=lim_{xrightarrow +infty}e^{frac{1}{x+3}}=e^0=1\ b=b_1=b_2=1 end{gather*} Функция имеет одну горизонтальную асимптоту (y=1). Функция стремится к этой асимптоте на минус и плюс бесконечности.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k_1=lim_{xrightarrow -infty}frac{e^{frac{1}{x+3}}}{x}=frac{e^0}{-infty}=0\ k_2=lim_{xrightarrow +infty}frac{e^{frac{1}{x+3}}}{x}=frac{e^0}{+infty}=0 end{gather*} Наклонных асимптот нет.

График асимптотического поведения функции (y=e^{frac{1}{x+3}})
Пример 1б

в) ( y=frac{x^3+x^2+x+1}{x^2-1} )
Заметим, что ( frac{x^3+x^2+x+1}{x^2-1}=frac{x^2(x+1)+(x+1)}{(x+1)(x-1)}=frac{(x^2)(x+1)}{(x+1)(x-1)}=frac{x^2+1}{x-1} ) $$ y=frac{x^3+x^2+x+1}{x^2-1}Leftrightarrow begin{cases} y=frac{x^2+1}{x-1}\ xne -1 end{cases} $$ График исходной функции совпадает с графиком функции (y=frac{x^2+1}{x-1}), из которого необходимо выколоть точку c абсциссой (x=-1).

1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin{gather*} lim_{xrightarrow -1-0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow -1-0}frac{x^2+1}{x-1}=frac{2}{-2}=-1\ lim_{xrightarrow -1+0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow -1-0}frac{x^2+1}{x-1}=frac{2}{-2}=-1 end{gather*} Точка (x=-1) — точка разрыва 1-го рода, устранимый разрыв («выколотая» точка).
Односторонние пределы в точке (x=1) begin{gather*} lim_{xrightarrow 1-0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow 1-0}frac{x^2+1}{x-1}=frac{2}{1-0-1}=frac{2}{-0}=-infty\ lim_{xrightarrow 1-0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow 1-0}frac{x^2+1}{x-1}=frac{2}{1+0-1}=frac{2}{+0}=+infty end{gather*} Точка (x=1) — точка разрыва 2-го рода
Функция имеет одну вертикальную асимптоту (x=1)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}frac{x^2+1}{x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(frac1x-frac{1}{x^2}right)}=frac{1+0}{-0-0}=-infty\ b_2=lim_{xrightarrow +infty}frac{x^2+1}{x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(frac1x-frac{1}{x^2}right)}=frac{1+0}{0-0}=+infty end{gather*} Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k_1=lim_{xrightarrow -infty}frac{x^2+1}{x(x-1)}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(1-frac1xright)}=frac{1+0}{1-0}=1\ k_2=lim_{xrightarrow +infty}frac{x^2+1}{x(x-1)}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(1-frac1xright)}=frac{1+0}{1-0}=1\ k=k_1=k_2=1 end{gather*} У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin{gather*} b=lim_{xrightarrow infty}(y-kx)= lim_{xrightarrow infty}left(frac{x^2+1}{x-1}-2right)= lim_{xrightarrow infty}frac{x^2+1-x^2+x}{x-1}= lim_{xrightarrow infty}frac{x+1}{x-1}=left[frac{infty}{infty}right]=\ =lim_{xrightarrow infty}frac{xleft(1+frac1xright)}{xleft(1-frac1xright)}=frac{1+0}{1-0}=1 end{gather*} Функция имеет одну наклонную асимптоту (y=x+1).
График асимптотического поведения функции (y=frac{x^3+x^2+x+1}{x^2-1})
Пример 1в

г*) ( y=xe^{frac{1}{2-x}} )
1) Вертикальные асимптоты
Точка, подозрительная на разрыв: (x=2)
Односторонние пределы: begin{gather*} lim_{xrightarrow 2-0}xe^{frac{1}{2-x}}=(2-0)e^{frac{1}{2-(2-0)}}=2e^{frac{1}{+0}}=2e^{+infty}=+infty\ lim_{xrightarrow 2+0}xe^{frac{1}{2-x}}=(2+0)e^{frac{1}{2-(2+0)}}=2e^{frac{1}{-0}}=2e^{-infty}=-infty end{gather*} Точка (x=2) — точка разрыва 2-го рода.
Функция имеет одну вертикальную асимптоту (x=2)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}xe^{frac{1}{2-x}}=-inftycdot e^0=-infty\ b_2=lim_{xrightarrow +infty}xe^{frac{1}{2-x}}=+inftycdot e^0=+infty end{gather*} Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k_1=lim_{xrightarrow -infty}frac{xe^{frac{1}{2-x}}}{x}=lim_{xrightarrow -infty}e^{frac{1}{2-x}}=e^0=1\ k_2=lim_{xrightarrow +infty}frac{xe^{frac{1}{2-x}}}{x}=lim_{xrightarrow +infty}e^{frac{1}{2-x}}=e^0=1\ k=k_1=k_2=1 end{gather*} У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin{gather*} b=lim_{xrightarrow infty}(y-kx)= lim_{xrightarrow infty}left(xe^{frac{1}{2-x}}-xright)=lim_{xrightarrow infty}xleft(e^{frac{1}{2-x}}-1right)=left[inftycdot 0right] end{gather*} Используем одно из следствий второго замечательного предела (см. §39 данного справочника): begin{gather*} lim_{xrightarrow 0}frac{e^x-1}{x}=1\ b=lim_{xrightarrow infty}xleft(e^{frac{1}{2-x}}-1right)= left[ begin{array}{l} t=frac{1}{2-x}\ trightarrow 0\ x=2-frac1t=frac{2t-1}{t} end{array} right]=\ =lim_{trightarrow 0}left(left(frac{2t-1}{t}right)(e^t-1)right)=lim_{trightarrow 0}(2t-1)cdot lim_{trightarrow 0}frac{e^t-1}{t}=-1cdot 1=-1 end{gather*} Функция имеет одну наклонную асимптоту (y=x-1).

График асимптотического поведения функции (y=xe^{frac{1}{2-x}})
Пример 1г

Содержание:

Понятие асимптоты:

Асимптота кривой — это прямая, к которой неограниченно приближается кривая при ее удалении в бесконечность.

Асимптоты графика функции с примерами решения

Вертикальные асимптоты Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения — вертикальная асимптота, если при Асимптоты графика функции с примерами решения

Вертикальная асимптота Асимптоты графика функции с примерами решения может быть в точке Асимптоты графика функции с примерами решения если точка Асимптоты графика функции с примерами решения ограничивает открытые (или полуоткрытые) промежутки области определения данной функции и вблизи точки Асимптоты графика функции с примерами решения значения функции стремятся к бесконечности.

Примеры вертикальных асимптот графиков функций

Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решениявертикальная асимптота (Асимптоты графика функции с примерами решения — также асимптота, но горизонтальная)

Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решениявертикальная асимптота

Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения

Наклонные и горизонтальные асимптоты Асимптоты графика функции с примерами решения

I. Если Асимптоты графика функции с примерами решения — дробно рациональная функция, у которой степень числителя на единицу больше степени знаменателя (или равна ей), то выделяем целую часть дроби и используем определение асимптоты.

Примеры:

Асимптоты графика функции с примерами решения

При Асимптоты графика функции с примерами решения тогда Асимптоты графика функции с примерами решения Следовательно, Асимптоты графика функции с примерами решения— наклонная асимптота (также Асимптоты графика функции с примерами решения — вертикальная асимптота)

Асимптоты графика функции с примерами решения

При Асимптоты графика функции с примерами решения тогда Асимптоты графика функции с примерами решения Следовательно, Асимптоты графика функции с примерами решения — горизонтальная асимптота (также Асимптоты графика функции с примерами решения — вертикальная асимптота)

II. В общем случае уравнения наклонных и горизонтальных асимптотАсимптоты графика функции с примерами решенияможно получить с использованием формул

Асимптоты графика функции с примерами решения Асимптоты графика функции с примерами решения

Понятие асимптоты

Если кривая Асимптоты графика функции с примерами решения имеет бесконечную ветвь, то асимптотой такой кривой называют прямую, к которой эта ветвь неограниченно приближается. Другими словами, асимптота кривой — это прямая, к которой неограниченно приближается кривая при ее удалении в бесконечность.

Асимптоты могут быть вертикальными, горизонтальными или наклонными.

Например, для графика функции Асимптоты графика функции с примерами решения (рис. 7.1) асимптотами будут оси координат, поскольку при Асимптоты графика функции с примерами решения и при Асимптоты графика функции с примерами решения график функции приближается к прямой Асимптоты графика функции с примерами решения ось Асимптоты графика функции с примерами решениягоризонтальная асимптота. Когда функция стремится к Асимптоты графика функции с примерами решения (или Асимптоты графика функции с примерами решения), то кривая приближается к прямой Асимптоты графика функции с примерами решения ось Асимптоты графика функции с примерами решениявертикальная асимптота.

Если рассмотреть функциюАсимптоты графика функции с примерами решения то при Асимптоты графика функции с примерами решения выражение Асимптоты графика функции с примерами решенияВследствие этого график функции Асимптоты графика функции с примерами решения приближается к прямой Асимптоты графика функции с примерами решения поэтому эта прямая будет наклонной асимптотой графика функцииАсимптоты графика функции с примерами решения(рис. 7.2) (график этой функции имеет также и вертикальную асимптоту Асимптоты графика функции с примерами решения).

Следует отметить, что не любая кривая имеет асимптоту, поэтому не у каждого графика функции будет асимптота. Но исследование функции на наличие у ее графика асимптот позволяет уточнить свойства функции и поведение ее графика.

Асимптоты графика функции с примерами решенияАсимптоты графика функции с примерами решения

Вертикальные асимптоты

Если прямая Асимптоты графика функции с примерами решения — вертикальная асимптота, то по определению около точки Асимптоты графика функции с примерами решения кривая должна иметь бесконечную ветвь, то есть предел данной функции при Асимптоты графика функции с примерами решения (слева или справа) должен равняться бесконечности (Асимптоты графика функции с примерами решения). Исходя из непрерывности элементарных функций, которые рассматривались в школьном курсе математики, такими точками могут быть только точки, ограничивающие открытые (или полуоткрытые) промежутки области определения данной функции.

Например, у функции Асимптоты графика функции с примерами решения область определения Асимптоты графика функции с примерами решения имеет разрыв в точке Асимптоты графика функции с примерами решения (область определения: Асимптоты графика функции с примерами решения и точка 1 ограничивает открытые промежутки области определения). Можно предположить, что прямая Асимптоты графика функции с примерами решения будет вертикальной асимптотой. Для того чтобы убедиться в этом, необходимо проверить, будет ли функция стремиться к бесконечности около точки 1 (слева или справа). Для этого рассмотрим

Асимптоты графика функции с примерами решения

Аналогично Асимптоты графика функции с примерами решения

Таким образом, прямая Асимптоты графика функции с примерами решения является вертикальной асимптотой, поскольку при стремлении функции к бесконечности ее график неограниченно приближается к прямой Асимптоты графика функции с примерами решения (рис. 7.3).

Асимптоты графика функции с примерами решенияАсимптоты графика функции с примерами решения

Отметим, что не всегда в точке разрыва области определения функция будет иметь вертикальную асимптоту. Например, функция Асимптоты графика функции с примерами решения имеет область определения Асимптоты графика функции с примерами решения поэтому прямая Асимптоты графика функции с примерами решения «подозрительна» на вертикальную асимптоту. Но Асимптоты графика функции с примерами решения АналогичноАсимптоты графика функции с примерами решения Следовательно, около прямой Асимптоты графика функции с примерами решенияфункция Асимптоты графика функции с примерами решения не стремится к бесконечности, и поэтому прямая Асимптоты графика функции с примерами решения не является асимптотой графика данной функции (рис. 7.4).

Наклонные и горизонтальные асимптоты

Наклонные и горизонтальные асимптоты довольно просто находятся для графиков дробно-рациональных функций, у которых степень числителя на единицу больше степени знаменателя (или равна степени знаменателя). Для этого достаточно выделить целую часть заданной дроби и использовать определение асимптоты.

Например, еще раз рассмотрим функцию Асимптоты графика функции с примерами решения Выделим целую часть: Асимптоты графика функции с примерами решения

При Асимптоты графика функции с примерами решения выражение Асимптоты графика функции с примерами решения то есть график нашей функции будет х -1 неограниченно приближаться к прямой Асимптоты графика функции с примерами решения при Асимптоты графика функции с примерами решения Из этого следует, что наклонной асимптотой графика данной функции* будет прямая Асимптоты графика функции с примерами решения (рис. 7.3).

Рассмотрим, как находятся наклонные и горизонтальные асимптоты в общем случае.

Пусть наклонной (или горизонтальной) асимптотой графика функции Асимптоты графика функции с примерами решенияявляется прямая Асимптоты графика функции с примерами решения По определению асимптоты при Асимптоты графика функции с примерами решения график функции Асимптоты графика функции с примерами решения неограниченно приближается к прямой Асимптоты графика функции с примерами решения Другими словами, при Асимптоты графика функции с примерами решения с любой точностью будет выполняться равенство

Асимптоты графика функции с примерами решения (1)

Эта равенство не нарушится, если обе его части разделить на Асимптоты графика функции с примерами решения Получим: Асимптоты графика функции с примерами решения При Асимптоты графика функции с примерами решения отношение Асимптоты графика функции с примерами решения поэтому отношение Асимптоты графика функции с примерами решения при Асимптоты графика функции с примерами решения, то есть

Асимптоты графика функции с примерами решения(2)

Возвращаясь к формуле (1), получаем, что при Асимптоты графика функции с примерами решения то есть

Асимптоты графика функции с примерами решения(3)

Формулы (2) и (3) дают возможность находить наклонные и горизонтальные асимптоты для графика любой функции Асимптоты графика функции с примерами решения (при условии, что они существуют).

Отметим, что если у графика функции Асимптоты графика функции с примерами решения есть горизонтальная асимптота, то ее уравнение будет Асимптоты графика функции с примерами решения (в этом случае Асимптоты графика функции с примерами решения). Но при Асимптоты графика функции с примерами решения из формулы (3) получаем Асимптоты графика функции с примерами решения Следовательно, если существует число Асимптоты графика функции с примерами решения то график функции Асимптоты графика функции с примерами решения имеет горизонтальную асимптоту Асимптоты графика функции с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Пользуясь общими формулами, найдите наклонную асимптоту графика функцииАсимптоты графика функции с примерами решения

Решение:

Будем искать наклонную асимптоту в виде Асимптоты графика функции с примерами решения где Асимптоты графика функции с примерами решения и Асимптоты графика функции с примерами решения находятся по формулам (2) и (3):

Асимптоты графика функции с примерами решения

Асимптотой графика данной функции будет прямая Асимптоты графика функции с примерами решения то есть прямая Асимптоты графика функции с примерами решения

Пример:

Найдите асимптоты графика функции Асимптоты графика функции с примерами решения

Решение:

Область определения функции: Асимптоты графика функции с примерами решения — любое действительное число, то естьАсимптоты графика функции с примерами решения На всей области определения эта функция непрерывна, поэтому вертикальных асимптот график функции не имеет. Будем искать наклонные и горизонтальные асимптоты в виде Асимптоты графика функции с примерами решения Тогда

Асимптоты графика функции с примерами решения

Таким образом, заданная функция имеет только горизонтальную асимптоту Асимптоты графика функции с примерами решения (рис. 7.5).

Иногда график функции Асимптоты графика функции с примерами решения может иметь разные асимптоты при Асимптоты графика функции с примерами решения и при Асимптоты графика функции с примерами решения в этом случае при использовании формул (2) и (3) приходится отдельно находить значения Асимптоты графика функции с примерами решения и Асимптоты графика функции с примерами решения при Асимптоты графика функции с примерами решения и при Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения

Как найти асимптоты графика функции

При исследовании поведения функции на бесконечности или вблизи точек разрыва часто оказывается, что расстояние между точками графика функции и точками некоторой прямой стремится к нулю при неограниченном удалении точек графика от начала координат. Прямая, к которой стремится кривая в бесконечно удаленной точке, называется асимптотой графика. Различают вертикальные и наклонные асимптоты. Прямая Асимптоты графика функции с примерами решения называется вертикальной асимптотой графика функции y=f(x), если хотя бы один из односторонних пределов в точке Асимптоты графика функции с примерами решенияравен бесконечности: Асимптоты графика функции с примерами решения Такие асимптоты существуют только в точках разрыва второго рода.

Внимание! Непрерывные на множестве действительных чисел функции вертикальных асимптот на имеют.

Для того чтобы график функции y=f(x) имел наклонную асимптоту y=kx+b, необходимо и достаточно, чтобы существовали конечные пределы

Асимптоты графика функции с примерами решения

Частным случаем наклонной асимптоты (k=0) является горизонтальная асимптота.

Пример:

Найти асимптоты графика функции Асимптоты графика функции с примерами решения

Решение:

Функция Асимптоты графика функции с примерами решения непрерывна в области определения Асимптоты графика функции с примерами решения как элементарная. Следовательно, вертикальных асимптот нет. Найдем наклонные асимптоты y=kx+b:

Асимптоты графика функции с примерами решения

Получаем горизонтальную асимптоту y=0.

Общее исследование функции и построение графика

С помощью производной функции можно провести ее полное исследование и построить график этой функции. При этом рекомендуется использовать следующую схему.

  1. Найти область определения функции D(f).
  2. Исследовать функцию на четность Асимптоты графика функции с примерами решения нечетность Асимптоты графика функции с примерами решения периодичность Асимптоты графика функции с примерами решения
  3. Исследовать функцию на непрерывность, найти точки разрыва.
  4. Найти асимптоты графика функции.
  5. Исследовать функцию на монотонность, найти точки экстремума.
  6. Найти интервалы выпуклости и вогнутости, точки перегиба функции.
  7. Используя результаты проведенного исследования, построить график функции (можно вычислить координаты точек пересечения с осями координат).

Пример:

Провести полное исследование функции Асимптоты графика функции с примерами решения и построить ее график.

Решение:

Область определения функции — вся числовая прямая: Асимптоты графика функции с примерами решения

Функция непериодическая. Она нечетная, т.к. область определения симметрична относительно начала координат и Асимптоты графика функции с примерами решения

Асимптоты графика функции с примерами решения

Следовательно, график функции симметричен относительно начала координат и достаточно исследовать функцию для Асимптоты графика функции с примерами решения

Функция непрерывна в области определения как композиция основных элементарных функций. Поскольку Асимптоты графика функции с примерами решения точек разрыва нет.

Строим график функции, используя результаты исследования.

Асимптоты графика функции с примерами решения

  • Касательная к графику функции и производная
  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности
  • Иррациональные уравнения
  • Иррациональные неравенства
  • Производная в математике
  • Как найти производную функции

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить актуальность занятия
  • Pes 2017 сохраненные данные повреждены как исправить
  • Как найти периметр треугольника через синус
  • Как найти спавнер мобов в minecraft командой
  • Видео как найти наименьший общий знаменатель

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии