Калькулятор определяет плотность воздуха в зависимости от:
-
- давления воздуха;
- температуры воздуха;
- относительной влажности воздуха.
Определение плотности воздуха.
Примечание.
Расчеты №1 и №2 составлены на основании уравнения идеального газа. Формулы не учитывают влажность воздуха и коэффициент сжимаемости воздуха. В связи с этим в реальных условиях эти формулы применимы для воздуха низкого давления близкого к атмосферному (атмосферный воздух, воздух в системах вентиляции и кондиционирования). Учитывая, что количество водяных паров в воздухе относительно невелико, уменьшением плотности в практических расчетах система вентиляции и кондиционирования можно смело пренебречь. При проведении метрологических расчетов данные формулы не используются.
Расчет №3 составлен на основании формулы Е.3-1 из ГОСТ OIML R 111-1-2009 . Формула позволяет учесть влажность воздуха. При области применения формулы 900 мбар≤P≤1100 мбар, 15ºC≤t≤25ºC и ≤80% относительная неопределенность определения плотности воздуха, вычисленная по формуле (Е.3-1), не превышает 2·10%.
Расчеты №1, №2, №3 не предназначен для определения плотности сжатого воздуха.
В комментарии приветствуются пожелания, замечания и рекомендации по улучшению программы.
Поделиться ссылкой:
Как мы теряем тепло обычным воздухом?
Смысл данной статьи понять, как мы теряем тепло в доме или в квартире — обычным проходящим воздухом, которым дышим. Также сколько тепла уходит на постоянную вентиляцию в доме или в квартире, для проветривания помещения.
Мало того я даже расскажу как это тепло посчитать и потом найти потраченные деньги. Решим реальную задачу на потерю тепла через вентиляцию. Также вы поймете, сколько нужно закладывать тепла на вентиляцию в отличие от отопления.
Расчет вентиляции воздухом
Согласно СНиП для жилых помещений дома, квартиры, необходимо: 3 м3/ч на м2 жилых помещений. Грубо говоря, если от пола до потолка 3 метра, то получается, что весь воздух в течение часа должен быть заменен новым воздухом. Также на каждого человека необходимо не менее 30 м3/ч. То есть, если в квартире проживает 10 человек, то для квартиры необходима вентиляция 300 м3/час.
Но это все для хорошего климата в комнатах. В реальности, в квартирах такой вентиляции не бывает. Особенно зимой в холодных квартирах форточки постоянно закрыты.
Подробные сведения по расчетам вентиляции, можно узнать в санитарных нормах и правилах.
Немного о теории… Не пугайтесь раньше времени!!! Нам для расчета нужны будут теплоемкость и плотность воздуха — величину, которых мы возьмем из таблицы.
Чтобы рассчитать потребляемое тепло проходящим воздухом через дома и квартиры, необходимо прибегнуть к науке теплотехнике.
Теплоемкость сухого воздуха: 1,005 кДж/(кг•K).
Воздух 100% влажности: 1,0301 кДж/(кг•K).
Формула расчёта удельной теплоёмкости:
Где c — удельная теплоёмкость, Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m — масса нагреваемого (охлаждающегося) вещества, ΔT — разность конечной и начальной температур вещества.
На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.
Плотность воздуха — масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Величина плотности воздуха является функцией от высоты производимых измерений, от его температуры и влажности. Обычно стандартной величиной считается значение 1,225 кг⁄м3, которая соответствует плотности сухого воздуха при 15°С на уровне моря.
Плотность сухого воздуха может быть вычислена с использованием уравнения Менделеева-Клапейрона для идеального газа при заданных температуре и давлении:
Здесь ρ — плотность воздуха, M — молярная масса (29 г/моль для сухого воздуха),p — абсолютное давление, R — универсальная газовая постоянная, T — абсолютная температура в Кельвинах. Таким образом подстановкой получаем:
При стандартной атмосфере Международного союза теоретической и прикладной химии (температуре 0 °С, давлении 100 кПа, нулевой влажности) плотность воздуха 1,2754 кг⁄м3;
При 20 °C, 101,325 кПа и сухом воздухе плотность атмосферы составляет 1,2041 кг⁄м3.
В приведенной таблице даны различные параметры воздуха, вычисленные на основании соответствующих элементарных формул, в зависимости от температуры (давление взято за 101,325 кПа )
Влияние влажности воздуха
Под влажностью понимается наличие в воздухе газообразного водяного пара, парциальное давление которого не превосходит давления насыщенного пара для данных атмосферных условий. Добавление водяного пара в воздух приводит к уменьшению его плотности, что объясняется более низкой молярной массой воды (18 гр⁄мол) по сравнению с молярной массой сухого воздуха (29 гр⁄мол). Влажный воздух может рассматриваться как смесь идеальных газов, комбинация плотностей каждого из которых позволяет получить требуемое значение для их смеси.[2] Подобная интерпретация позволяет определение значения плотности с уровнем ошибки менее 0,2% в диапазоне температур от −10 °C до 50 °C.
Заключение
Для того, чтобы вычислить сколько ушло тепла через воздух, нужны всего лишь четыре составляющих фактора влияющие на значение теплопотерь:
Плотность воздуха.
Теплоемкость воздуха
Температура приходящего и уходящего воздуха через отапливаемое помещение.
Количество проходящего воздуха.
Количество потраченного тепла через воздух находится по этой формуле:
Q - количество теплоты, Дж или Вт
С - теплоемкость, Дж/(кг•°C) или Вт/(кг•°C)
m - масса воздуха, кг.
V- однократный объем воздуха, м3. Либо вставьте количество воздуха в 1 час.
ρ - плотность воздуха, кг⁄м3.
Перевод:
1 Вт = 3600 Дж. Или 1 Дж = 0,000277724 Вт.
1 калория = 4,1868 Дж.
1 Калория = 0,001163 Ватт • час
Для определения количества объема воздуха, необходимо узнать, сколько кубометров будет проходить в 1 час. Посчитать по формуле и полученное тепло помножить на необходимые часы в месяце. Помножив на 24 часа в сутки, и потом помножив на количество дней в месяце.
После того как Вы получите количество Ватт, можно уже узнать сколько будете тратить денег. Это уже зависит от источника энергоресурсов, газа, электричества или любого другого топлива.
При решении задач не забываем переводить в нужные единицы измерения. Сейчас на задаче покажу!
Задача:
Имеется дом с площадью 70 квадратных метров, проживает два человека. Высота потолков стандартная не более 3 метров. Средняя температура внутри +18 °C. Температура на улице зимой предположим -10 °C.
Согласно расчетам Санитарных норм и правил для жилого помещения. Насчитано:
1. На количество в 70 м2 получилось 210 м3/ч.
2. На два человека не менее 60 м3/ч.
3 Согласно реальным показателям: 40 м3/ч. При закрытых окнах и закрытых форточках.
Дано:
V1 = 210 м3/ч.
V2 = 60 м3/ч.
V3 = 40 м3/ч.
t1 = 18 °C.
t2 = -10 °C.
Значение теплоемкости возьмем среднее между сухим и влажным воздухом (Чаще сухой).
C = 1,015 кДж/(кг•°C) = 1015 Дж/(кг•°C)
Среднее значение между температурами: t=(t1+t2)/2 = +4°С.
Находим плотность воздуха для температуры +4°С.
ρ = 1,275 кг/м3.
Решение:
При объеме в V1 = 210 м3/ч.
Q= C• ρ• V1 • (t1-t2) = 1015 • 1,275 • 210 • ( 18 — (-10) ) = 7 609 455 Дж.
7 609 455 Дж. / 3600 = 2114 Вт
При объеме в V2 = 60 м3/ч.
Q= C• ρ• V2 • (t1-t2) = 1015 • 1,275 • 60 • ( 18 — (-10) ) = 2 174 130 Дж.
2 174 130 Дж. / 3600 = 604 Вт
При объеме в V3 = 40 м3/ч.
Q= C• ρ• V3 • (t1-t2) = 1015 • 1,275 • 40 • ( 18 — (-10) ) = 1 449 420 Дж.
1 449 420 Дж. / 3600 = 403 Вт
Это мы получили количество тепла, потребляемое за один раз замены указанного объема воздуха. Давайте рассмотрим вариант объемом 40 м3/час.
Давайте посчитаем, сколько получиться за один месяц:
403 Вт • 24 часа • 30 дней = 403 • 24 • 30 = 290 160 Вт • ч.
Давайте теперь попробуем найти сумму в рублях:
Если принять за отопительный прибор электрический котел или обычный электрический обогреватель, а за 1кВат•час принять 1,8 рублей (Тариф 2013года. Россия). То получим:
290 160 Вт • ч. = 290 кВт
290 • 1,8 рублей = 522 рубля.
Итого: На вентиляцию в 40 м3/ч. мы тратим в месяц 522 рубля за электроэнергию равной 1,8 руб/кВт.
А теперь посчитаем при объеме в V1 = 210 м3/ч.
2114 Вт • 24 часа • 30 дней = 2114 • 24 • 30 = 1 522 080 Вт • ч.
1 522 080 Вт • ч. = 1 522 кВт
1 522 • 1,8 рублей = 2740 рублей.
Итого: На вентиляцию в 210 м3/ч. мы тратим в месяц 2740 рублей за электроэнергию равной 1,8 руб/кВт.
Для расчетов на потребление других энергоресурсов необходимо сделать расчеты по переводу Ватт или калорий на объемы энергоресурсов, о которых возможно будет объясняться в других статьях.
На этом статья закончена, если не понятно пишите комментарии, я отвечу на Ваши вопросы.
Все о дачном доме
Водоснабжение
Обучающий курс. Автоматическое водоснабжение своими руками. Для чайников.
Неисправности скважинной автоматической системы водоснабжения.
Водозаборные скважины
Ремонт скважины? Узнайте нужен ли он!
Где бурить скважину — снаружи или внутри?
В каких случаях очистка скважины не имеет смысла
Почему в скважинах застревают насосы и как это предотвратить
Прокладка трубопровода от скважины до дома
100% Защита насоса от сухого хода
Отопление
Обучающий курс. Водяной теплый пол своими руками. Для чайников.
Теплый водяной пол под ламинат
Обучающий Видеокурс: По ГИДРАВЛИЧЕСКИМ И ТЕПЛОВЫМ РАСЧЕТАМ
Водяное отопление
Виды отопления
Отопительные системы
Отопительное оборудование, отопительные батареи
Система теплых полов
Личная статья теплых полов
Принцип работы и схема работы теплого водяного пола
Проектирование и монтаж теплого пола
Водяной теплый пол своими руками
Основные материалы для теплого водяного пола
Технология монтажа водяного теплого пола
Система теплых полов
Шаг укладки и способы укладки теплого пола
Типы водных теплых полов
Все о теплоносителях
Антифриз или вода?
Виды теплоносителей (антифризов для отопления)
Антифриз для отопления
Как правильно разбавлять антифриз для системы отопления?
Обнаружение и последствия протечек теплоносителей
Как правильно выбрать отопительный котел
Тепловой насос
Особенности теплового насоса
Тепловой насос принцип работы
Запас мощности котла. Нужен ли он?
Про радиаторы отопления
Способы подключения радиаторов. Свойства и параметры.
Как рассчитать колличество секций радиатора?
Рассчет тепловой мощности и количество радиаторов
Виды радиаторов и их особенности
Автономное водоснабжение
Схема автономного водоснабжения
Устройство скважины Очистка скважины своими руками
Опыт сантехника
Подключение стиральной машины
Полезные материалы
Редуктор давления воды
Гидроаккумулятор. Принцип работы, назначение и настройка.
Автоматический клапан для выпуска воздуха
Балансировочный клапан
Перепускной клапан
Трехходовой клапан
Трехходовой клапан с сервоприводом ESBE
Терморегулятор на радиатор
Сервопривод коллекторный. Выбор и правила подключения.
Виды водяных фильтров. Как подобрать водяной фильтр для воды.
Обратный осмос
Фильтр грязевик
Обратный клапан
Предохранительный клапан
Смесительный узел. Принцип работы. Назначение и расчеты.
Расчет смесительного узла CombiMix
Гидрострелка. Принцип работы, назначение и расчеты.
Бойлер косвенного нагрева накопительный. Принцип работы.
Расчет пластинчатого теплообменника
Рекомендации по подбору ПТО при проектировании объектов теплоснабжения
О загрязнение теплообменников
Водонагреватель косвенного нагрева воды
Магнитный фильтр — защита от накипи
Инфракрасные обогреватели
Радиаторы. Свойства и виды отопительных приборов.
Виды труб и их свойства
Незаменимые инструменты сантехника
Интересные рассказы
Страшная сказка о черном монтажнике
Технологии очистки воды
Как выбрать фильтр для очистки воды
Поразмышляем о канализации
Очистные сооружения сельского дома
Советы сантехнику
Как оценить качество Вашей отопительной и водопроводной системы?
Профрекомендации
Как подобрать насос для скважины
Как правильно оборудовать скважину
Водопровод на огород
Как выбрать водонагреватель
Пример установки оборудования для скважины
Рекомендации по комплектации и монтажу погружных насосов
Какой тип гидроаккумулятора водоснабжения выбрать?
Круговорот воды в квартире
фановая труба
Удаление воздуха из системы отопления
Гидравлика и теплотехника
Введение
Что такое гидравлический расчет?
Невязка гидравлического расчета
Физические свойства жидкостей
Гидростатическое давление
Поговорим о сопротивлениях прохождении жидкости в трубах
Режимы движения жидкости (ламинарный и турбулентный)
Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе
Местные гидравлические сопротивления
Профессиональный расчет диаметра трубы по формулам для водоснабжения
Как подобрать насос по техническим параметрам
Профессиональный расчет систем водяного отопления. Расчет теплопотерь водяного контура.
Гидравлические потери в гофрированной трубе
Теплотехника. Речь автора. Вступление
Процессы теплообмена
Тплопроводность материалов и потеря тепла через стену
Как мы теряем тепло обычным воздухом?
Законы теплового излучения. Лучистое тепло.
Законы теплового излучения. Страница 2.
Потеря тепла через окно
Факторы теплопотерь дома
Начни свое дело в сфере систем водоснабжения и отопления
Вопрос по расчету гидравлики
Конструктор водяного отопления
Диаметр трубопроводов, скорость течения и расход теплоносителя.
Вычисляем диаметр трубы для отопления
Расчет потерь тепла через радиатор
Мощность радиатора отопления
Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704
Расчет теплопотерь через ограждающие конструкции
Найти теплопотери через чердак и узнать температуру на чердаке
Подбираем циркуляционный насос для отопления
Перенос тепловой энергии по трубам
Расчет гидравлического сопротивления в системе отопления
Распределение расхода и тепла по трубам. Абсолютные схемы.
Расчет сложной попутной системы отопления
Расчет отопления. Популярный миф
Расчет отопления одной ветки по длине и КМС
Расчет отопления. Подбор насоса и диаметров
Расчет отопления. Двухтрубная тупиковая
Расчет отопления. Однотрубная последовательная
Расчет отопления. Двухтрубная попутная
Расчет естественной циркуляции. Гравитационный напор
Расчет гидравлического удара
Сколько выделяется тепла трубами?
Собираем котельную от А до Я…
Система отопления расчет
Онлайн калькулятор Программа расчет Теплопотерь помещения
Гидравлический расчет трубопроводов
История и возможности программы — введение
Как в программе сделать расчет одной ветки
Расчет угла КМС отвода
Расчет КМС систем отопления и водоснабжения
Разветвление трубопровода – расчет
Как в программе рассчитать однотрубную систему отопления
Как в программе рассчитать двухтрубную систему отопления
Как в программе рассчитать расход радиатора в системе отопления
Перерасчет мощности радиаторов
Как в программе рассчитать двухтрубную попутную систему отопления. Петля Тихельмана
Расчет гидравлического разделителя (гидрострелка) в программе
Расчет комбинированной цепи систем отопления и водоснабжения
Расчет теплопотерь через ограждающие конструкции
Гидравлические потери в гофрированной трубе
Гидравлический расчет в трехмерном пространстве
Интерфейс и управление в программе
Три закона/фактора по подбору диаметров и насосов
Расчет водоснабжения с самовсасывающим насосом
Расчет диаметров от центрального водоснабжения
Расчет водоснабжения частного дома
Расчет гидрострелки и коллектора
Расчет Гидрострелки со множеством соединений
Расчет двух котлов в системе отопления
Расчет однотрубной системы отопления
Расчет двухтрубной системы отопления
Расчет петли Тихельмана
Расчет двухтрубной лучевой разводки
Расчет двухтрубной вертикальной системы отопления
Расчет однотрубной вертикальной системы отопления
Расчет теплого водяного пола и смесительных узлов
Рециркуляция горячего водоснабжения
Балансировочная настройка радиаторов
Расчет отопления с естественной циркуляцией
Лучевая разводка системы отопления
Петля Тихельмана – двухтрубная попутная
Гидравлический расчет двух котлов с гидрострелкой
Система отопления (не Стандарт) — Другая схема обвязки
Гидравлический расчет многопатрубковых гидрострелок
Радиаторная смешенная система отопления — попутная с тупиков
Терморегуляция систем отопления
Разветвление трубопровода – расчет
Гидравлический расчет по разветвлению трубопровода
Расчет насоса для водоснабжения
Расчет контуров теплого водяного пола
Гидравлический расчет отопления. Однотрубная система
Гидравлический расчет отопления. Двухтрубная тупиковая
Бюджетный вариант однотрубной системы отопления частного дома
Расчет дроссельной шайбы
Что такое КМС?
Расчет гравитационной системы отопления
Конструктор технических проблем
Удлинение трубы
Требования СНиП ГОСТы
Требования к котельному помещению
Вопрос слесарю-сантехнику
Полезные ссылки сантехнику
—
Сантехник — ОТВЕЧАЕТ!!!
Жилищно коммунальные проблемы
Монтажные работы: Проекты, схемы, чертежи, фото, описание.
Если надоело читать, можно посмотреть полезный видео сборник по системам водоснабжения и отопления
УчебаФизика
Плотность воздуха в зависимости от давления и температуры
Этот онлайн калькулятор рассчитывает значение плотности воздуха для заданных давления и температуры, используя уравнение Менделеева — Клапейрона для идеального газа.
,
где
ρ — плотность воздуха,
P — абсолютное давление (по умолчанию используется 101.325 кПа — атмосферное давление),
М — молярная масса, 28.98 г/моль для сухого воздуха,
R — универсальная газовая постоянная, 8.314 462 618 153 24 Дж/(моль∙К),
T — температура в Кельвинах (°С + 273.15).
Плотность воздуха в зависимости от давления и температуры
Давление, кПа
Температура, °C
Точность вычисления
Знаков после запятой: 3
Плотность воздуха, кг/м³
Ссылка скопирована в буфер обмена
Похожие калькуляторы
- • Плотность нефти
- • Преобразование плотности нефтепродуктов по ГОСТ 3900-85
- • Процентное содержание металлов в сплаве
- • Вычисление массы по объему
- • Вычисление массы по объему
- • Раздел: Физика ( 52 калькуляторов )
Воздух плотность Физика Химия
PLANETCALC, Плотность воздуха в зависимости от давления и температуры
Timur2022-10-31 12:27:09
Комментарии
Ваше сообщение
Сообщать о комментариях
Random converter
- Калькуляторы
- Термодинамика — теплота
Калькулятор зависимости температуры, давления и плотности воздуха от высоты в стандартной атмосфере
Калькулятор Международной стандартной атмосферы (МСА) и Стандартной атмосферы США 1976 г.
Этот калькулятор определяет атмосферное давление, плотность воздуха, температуру и скорость звука для заданных высоты и отклонения температуры от стандартного значения с использованием методики, принятой в Международной стандартной атмосфере (International Standard Atmosphere, МСА, англ. ISA) и Стандартной атмосфере США 1976 г. (1976 U.S. Standard Atmosphere, USSA). В диапазоне высот 0–86 км, на который рассчитан этот калькулятор, обе модели дают одинаковые результаты. Отклонение температуры, которое вводится в калькулятор — это отклонение от стандартной температуры атмосферы 15 °C. Например, если реальная температура воздуха над поверхностью земли равна 28 °C, то нужно ввести отклонение температуры 10 °C. Калькулятор позволяет выбрать различные величины радиуса Земли, используемые в расчетах.
Пример: рассчитать давление атмосферы, плотность воздуха, температуру и скорость звука на обычной крейсерской высоте полета 35 000 футов (10 600 м) при отклонении температуры от нормальной 10 °С.
Входные данные
Высота (геометрическая)
h
Отклонение температуры
to
Радиус Земли, R⊕
Поделиться ссылкой на этот калькулятор, включая входные параметры
Выходные данные
Давление
p Па
p psi ат
Плотность воздуха
ρ кг/м³ (г/л)
Температура
t К °C
Скорость звука
c м/с км/ч
Ускорение силы тяжести
ge м/с²
Геопотенциальная высота
h км
Для расчета введите значения в соответствующие поля, выберите метрические или традиционные единицы измерения и нажмите кнопку Рассчитать.
Международная стандартная атмосфера (ISA)
Стандартная атмосфера США
Определения, константны и формулы, используемые в расчетах
Высота и эшелон полета
Селектор радиуса Земли R⊕
Удельная газовая постоянная для сухого воздуха Rsp
Стаднартное ускорение свободного падения
Геопотенциальная высота
Скорость звука
Зависимость силы тяжести от высоты
Зависимость температуры от высоты
Зависимость давления от высоты
Плотность воздуха
Земная атмосфера находится в непрерывном движении. Поэтому были разработаны гипотетические модели, которые приблизительно показывают поведение атмосферы, если воздух не содержит пыли и влаги, а также нет ветра и возмущений. Эти модели известны под названием «стандартная атмосфера». Они необходимы для расчетов и проектирования воздушных судов, для изучения их характеристик, для сравнения результатов испытаний воздушных судов и для решения многих других задач в авиации и других отраслях науки и техники.
Концепция стандартной атмосферы была разработана для стандартизации и унификации калибровки высотомеров, для изучения характеристик авиационных двигателей, при разработке которых очень важно точно знать величины плотности и давления воздуха, температуры атмосферы на среднем уровне моря, а также их распределение по высоте. Международная стандартная атмосфера (ISA) является одной из таких моделей. Международная организация по стандартизации (ISO) опубликовала эту модель в качестве международного стандарта ISO 2533:1975. Организации по стандартизации разных стран публикуют собственные атмосферные модели, основанные на стандарте ISA. Широко известным стандартом атмосферы является Стандартная атмосфера США 1976 г., в которой используется модель атмосферы, основанная на стандарте ISA. Различие между этими двумя моделями имеются на высотах более 86 км, которые в данном калькуляторе не рассматриваются. В России используется ГОСТ 4401-81 «Атмосфера стандартная. Параметры», также основанный на стандарте ISA.
Земная атмосфера находится в постоянном движении
Международная стандартная атмосфера (ISA)
Международная стандартная атмосфера «предназначена для использования в расчетах летательных аппаратов, для приведения результатов испытаний летательных аппаратов и их компонентов к одинаковым условиям и для унификации разработки и калибровки приборов». Использование этой атмосферной модели также рекомендуется при обработке данных геофизических и метеорологических наблюдений. Модель атмосферы используется в качестве стандарта, с которым можно сравнить реальную атмосферу. Значения температуры, давления и плотности воздуха уменьшаются с ростом высоты. На уровне моря они имеют следующие значения:
- Давление 101,325 кПа.
- Температура +15 °C.
- Плотность 1,225 кг/м³.
Стандартная атмосфера США
«Стандартная атмосфера США, 1976 г. является идеализированным представлением земной атмосферы в статическом состоянии от поверхности до высоты 1000 км». Модель основана на существующих международных стандартах и, в основном, использует методологию, принятую в Международной стандартной атмосфере (ISA). Уравнения модели были приняты Комитетом по расширению стандартной атмосферы США (United States Committee on Extension to the Standard Atmosphere, COESA), который представлял 29 научных, правительственных, военных и инженерных организаций США. В модели атмосфера разделяется на семь слоев до максимальной высоты 86 км. Главным отличием Стандартной атмосферы США от Международной стандартной атмосферы является предложенное распределение температур на больших высотах, которое данный в данном калькуляторе не рассматривается.
Определения, константны и формулы, используемые в расчетах
Высота и эшелон полета
Современный высотомер с барабанным цифровым счетчиком, установленный на самолете Fokker 100. В двух окнах показано значение давления в гектопаскалях и дюймах ртутного столба, которое вводится путем вращения ручки кремальеры (слева внизу)
Несмотря на то, что эшелон и высота полета измеряются в одних и тех же единицах длины (метрах, километрах, футах и милях), они являются разными физическими величинами:
- Высота полета — вертикальное расстояние объекта от среднего уровня моря, измеренное с помощью прибора для измерения длины или расстояния, например, лазерного дальномера или радиовысотомера.
- Эшелон — условная вертикальная стандартная высота, рассчитанная по давлению, обозначаемая в сотнях футов с добавлением букв FL (англ. Flight Level — эшелон). Например, эшелон 34 000 футов обозначается как FL340. Эшелон измеряется с помощью прибора для измерения давления (например, барометрического высотомера, который фактически является точным барометром, откалиброванным в единицах высоты). При подготовке к взлету высотомер устанавливается на нулевую высоту. Когда самолет поднялся достаточно высоко (на высоту перехода), летчик устанавливает на высотомере стандартное давление 29,921 дюйма ртутного столба или 1013,25 гектопаскалей. При подготовке к посадке самолета, летчик должен на небольшой высоте (в разных юрисдикциях она может быть от 3000 до 18000 футов над уровнем моря установить на высотомере давление в аэропорту назначения, чтобы высотомер показывал при приземлении реальную высоту над уровнем моря.
Механический высотомер с ручкой установки барометрического давления измеряет атмосферное давление на приемнике статического давления, расположенном на обшивке борта самолета. Он откалиброван так, чтобы показывать давление в единицах высоты над уровнем моря. Перед взлетом и посадкой летчик получает от диспетчера величины давления на взлетно-посадочной полосе и устанавливает их в окошке, поворачивая ручку кремальеры.
Селектор радиуса Земли R⊕
В селекторе используется четыре константы радиуса Земли:
Средний радиус Земли, определенный Всемирной геодезической системой координат WGS-84: R₁ = 6371,0088 км.
Средний радиус Земли, определенный в Стандартной атмосфере США: R₀ = 6356,766 км.
Экваториальный радиус Земли (большая полуось), определенный Всемирной геодезической системой координат WGS-84: a = 6378,1370 км.
Полярный радиус Земли (малая полуось), определенный Всемирной геодезической системой координат WGS-84: b = 6356,7523142 км.
А — экваториальный, В — полярный и С — средний радиус Земли; С = (2А + В)/3
Удельная газовая постоянная для сухого воздуха Rsp
Удельная газовая постоянная для сухого воздуха Rsp определяется как универсальная газовая постоянная, отнесенная к молярной массе сухого воздуха. В Стандартной атмосфере США 1976 г. и в ГОСТ 4401-81 «Стандартная атмосфера. Параметры» универсальная газовая постоянная определена как R* = 8314,32 Н м кмоль⁻¹ K⁻¹. Следовательно, удельная газовая постоянная для сухого воздуха в Дж K⁻¹ кг⁻¹ рассчитывается как
Стаднартное ускорение свободного падения
Стандартное ускорение свободного падения определяется международным стандартом ISO 80000-3 «Величины и единицы. Часть 3. Пространство и время»: g₀ = 9,80665 м/с² или 32,17405 фут/с². Несмотря на то, что ускорение свободного падения в разных местах Земли различное, для измерений всегда используется указанная выше стандартная величина.
Геопотенциальная высота
Сила тяготения зависит от высоты и широты места. Переход от геометрической высоты к геопотенциальной устраняет переменную — ускорение свободного падения. Геопотенциальная высота — это вертикальная координата относительно среднего уровня моря, вычисленная из геометрической высоты (измеренной с помощью прибора для измерения длины) с учетом изменения ускорения свободного падения в зависимости от высоты и широты. Иными словами, геопотенциальная высота — это высота, учитывающая силу тяжести. При этом изменение силы тяжести от широты места малó и не учитывается. Геопотенциальная высота является мерой удельной потенциальной энергии на данной геометрической высоте относительно поверхности Земли. Она используется в метеорологии и авиации. Соотношение между геометрической H и геопотенциальной высотой Z определяется следующей формулой (формула 18 в 1976 USSA), которая используется в этом калькуляторе
Например, для максимальной геометрической высоты, которую позволяет рассчитать этот калькулятор (Z = 86 км), соответствующая геопотенциальная высота будет H = 84,852 км. В калькуляторе геопотенциальная высота рассчитывается до определения температуры и давления.
Скорость звука
Скорость звука в воздухе около 343 м/с, или 1,235 км/час, или 767 миль в час. Это означает, что звук может проходить в воздухе один километр за 3 секунды или милю за 5 секунд. Скорость звука в воздухе зависит главным образом от его температуры; зависимость от частоты звуковых колебаний и давления воздуха пренебрежимо мала.
Конденсация влаги при околозвуковой скорости
Если предположить, что воздух сухой и что он является идеальным газом при относительно низком давлении и плотности, что имеет место в стандартных условиях на уровне моря, а также предположить, что температура ниже или равна комнатной, то скорость звука определяется по следующей формуле, которая используется в этом калькуляторе:
Здесь γ — рассматриваемый ниже показатель адиабаты, R = 287,052 Дж·кг⁻¹·K⁻¹ — удельная газовая постоянная и T — абсолютная температура воздуха в кельвинах.
Показатель адиабаты газа, называемый также коэффициентом Пуассона и фактором изоэнтропийного расширения, обозначается греческой буквой γ (гамма) и является отношением теплоемкости при постоянном давлении Cp к теплоемкости при постоянном объеме Cv
Для сухого воздуха при 20 °C, γ=1,40.
Зависимость силы тяжести от высоты
Зависимость гравитационного ускорения Gh от высоты h приблизительно определяется следующей формулой, которая используется в этом калькуляторе:
Здесь
g0 — стандартное ускорение свободного падения. Например, ускорение свободного падения на максимальной для этого калькулятора геометрической высоте 86 км равно Gh = 0,9874·g0, то есть разница очень мала.
Зависимость температуры от высоты
В тропосфере температура воздуха уменьшается с увеличением высоты. В Международной стандартной атмосфере, Стандартной атмосфере США 1976 г. и ГОСТ 4401-81 скорость уменьшения температуры (вертикальный температурный градиент) равна 6,5 К/км от уровня моря до 11 км или 36089 футов. В тропопаузе (слое атмосферы от 11 до 20 км или 65617 футов) температура постоянная и равна to –56.5 °C (–69.7 °F или 216.7 K). В ионосфере, от 20 до 32 км или 104987 футов скорость уменьшения температуры (вертикальный градиент) равна 1,0 K/км. Температурные градиенты приведены ниже в таблице до высоты 86 км (геопотенциальной высоты 84,85 км). Таблица приводится по документу USSA 1796.
Таблица 1
Слой атмосферы | Диапазон геопотенциальных высот (км) | Номер диапазона, b | Базовая геопотенциальная высота над средним уровнем моря, Hb (км) | Базовое статическое давление, Pb (Па) | Базовая температура, Tb (K) | Базовый вертикальный температурный градиент на километр геопотенциальной высоты Lb (K/км) |
---|---|---|---|---|---|---|
Тропосфера | 0–11 | 0 | 0 | 101325 | 288,15 | -6,5 |
Тропопауза (стратосфера I) | 11–20 | 1 | 11 | 22632,06 | 216,65 | 0 |
Стратосфера II | 20–32 | 2 | 20 | 5474,889 | 216,65 | +1,0 |
Стратосфера III | 32–47 | 3 | 32 | 868,0187 | 228,65 | +2,8 |
Стратопауза (мезосфера I) | 47–51 | 4 | 47 | 110,9063 | 270,65 | 0 |
Мезосфера II | 51–71 | 5 | 51 | 66,93887 | 270,65 | -2,8 |
Мезосфера III | 71–84,9 | 6 | 71 | 3,95642 | 214,65 | -2,0 |
7 | 84,852 | 0,3734 | 186,87 | — |
«Базовый» в этой таблице означает величину на нижней границе диапазона высот. Отрицательный градиент означает уменьшение температуры с высотой, а положительный — ее увеличение. Большее значение градиента означает, что при увеличении высоты воздух охлаждается (нагревается) сильнее.
Для определения зависимости температуры от высоты:
- определите геопотенциальную высоту по геометрической высоте;
- определите номер интервала, b;
- определите температуру TM на геопотенциальной высоте H от поверхности до 84,85 км с помощью семи последовательных линейных уравнений в различных интервалах высоты. Для этого вставьте в формулу ниже значения из таблицы 1
Здесь
Hb — базовая геопотенциальная высота (Табл. 1),
Tb — базовая температура,
Lb базовый вертикальный температурный градиент
Температура TM называется молекулярной температурой, определяемой как
Здесь T — кинетическая температура, то есть температура воздуха, которую обычно измеряют термометром. Она является функцией скорости движения молекул газа в земной атмосфере. M0 — молекулярная масса воздуха на уровне моря и MH — молекулярная масса воздуха на высоте H. На высотах до 100 км молекулярная масса воздуха остается постоянной, поэтому молекулярная температура равна кинетической температуре.
Отклонение температуры от стандартного значения. Конечно, реальная атмосфера никогда не соответствует стандартной. Изменения температуры влияют на плотность воздуха и, следовательно, на его давление и вес. В холодном воздухе давление уменьшается с высотой быстрее, чем в горячем. В жаркий день вся атмосфера и график зависимости температуры от высоты будут смещены (см. график ниже), так как отклонение температуры будет прибавлено к кривой температуры и летчики, которые используют барометрические приборы для измерения высоты полета должны помнить, что в жаркий день геометрическая высота их самолета будет больше, чем показанная на высотомере. И, наоборот, в холодный день реальная высота будет меньше, чем показанная на высотомере.
Зависимость температуры, плотности и давления воздуха от геопотенциальной высоты. Синий график — давление, фиолетовый — плотность при отклонении температуры от стандартной +20 °C, оранжевый — плотность при отклонении 0 °C, зеленый — температура, отклонение +20 °C, красный — температура, отклонение 0 °C.
Если самолет входит в зону, где температура значительно ниже, чем стандартная по ISA (+15 °C на уровне моря), высотомер покажет завышенную высоту, что опасно. Чтобы учесть отклонение от стандартной атмосферы, в калькуляторе имеется поле Отклонение температуры от стандартного значения, которое можно использовать, например, для анализа или прогноза летно-технических характеристик воздушного судна в жаркий день. Следует помнить, что отклонение температуры — это температурный интервал и при преобразовании градусов Цельсия или кельвинов в градусы Фаренгейта или Ранкина нужно использовать только масштабирующий коэффициент 1 К = 1 °C = 9/5 °F = 1.8 °F = 1.8 °R. Для преобразования можно также воспользоваться нашим калькулятором температурных интервалов.
Зависимость давления от высоты
В ISA, USSA и ГОСТ 4401-81 для моделирования зависимости давления и плотности воздуха от высоты используется барометрическая формула и данные таблицы 1. Для определения зависимости давления от высоты в различных слоях атмосферы используются два выражения.
Если базовый вертикальный градиент температуры Lb нулевой, то используется формула
Если же базовый вертикальный градиент температуры Lb отличен от нуля, то используется формула
или
В этих уравнениях все величины с индексом b берутся из таблицы 1:
Pb — базовое статическое давление в слое b в паскалях
Tb — базовая температура в слове b в кельвинах
Lb — базовый вертикальный градиент температуры в слое b в К/м
Hb — базовая геопотенциальная высота слоя b в метрах
H — геопотенциальная высота над уровнем моря в метрах
R* = 8,31432·10³ Н м кмоль⁻¹ K⁻¹ — универсальная газовая постоянная
g0 = 9,80665 м/с² — гравитационное ускорение
M = 0.0289644 кг/моль — молярная масса земной атмосферы
TM — молекулярная температура на высоте H, определенная выше:
Плотность воздуха
Плотность воздуха — это масса воздуха на единицу объема. Она обозначает греческой буквой ρ и измеряется в in кг/м³ в СИ или фунт/фут³ в традиционных единицах. В ISA и USSA плотность воздуха при стандартном давлении 1013,25 гПа и температуре 15 °С равна 1,225 кг/м³ или 0,0765 фунт/фут³. На плотность воздуха влияет не только температура и давление, но также и количество воды в воздухе. Чем больше водяного пара содержится в воздухе тем ниже его плотность.
Плотность воздуха зависит от температуры и давления. При «стандартных» температуре и давлении значение плотности воздуха зависит от используемого стандарта. В Международной стандартной атмосфере (ISA) плотность сухого воздуха определяется как 1,225 кг/м³ или 0,0765 фунт/фут³. Международный союз теоретической и прикладной химии (ИЮПАК) определяет стандартную плотность сухого воздуха иначе: она равна 1,2754 кг/м³ or 0,0796 фунт/фут³ при 1000 гПа и 0 °C.
В этом калькуляторе мы рассматриваем только сухой воздух. Плотность сухого воздуха ρ рассчитывается с использованием идеального газа с учетом давления, определенного для данной высоты по следующей формуле:
Здесь:
p — абсолютное давление в паскалях (Па),
T — абсолютная температура воздуха в кельвинах (K) и
R = 287,052 Дж·кг⁻¹·K⁻¹ — удельная газовая постоянная.
Отметим, что поскольку мы рассматриваем воздух как идеальный газ, не содержащий влаги, результат наших расчетов является теоретическим приближением. Наиболее точные результаты получается при низких температурах и давлениях (то есть на больших высотах).