Сумма углов треугольника:
Великий французский ученый XVII в. Блез Паскаль (1623—1662) еще в детстве любил изучать геометрические фигуры, открывать их свойства, измерять углы транспортиром.
Юный исследователь заметил, что у любого треугольника сумма углов одна и та Ж6 180°. «Как же это объяснить?» — думал Паскаль. Тогда он отрезал у треугольника два уголка и приложил их к третьему (рис. 219). Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие! Дальнейшая судьба мальчика была предопределена.
Теорема. Сумма углов треугольника равна 180°.
Дано: АВС (рис. 220).
Доказать: A+
B +
C = 180°.
Доказательство:
Через вершину В треугольника ABC проведем прямую КМ, параллельную стороне АС. Тогда KBA =
A как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей АВ, a
MBC =
C как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей ВС. Так как углы КВА, ABC и МВС образуют развернутый угол, то
KBA +
ABC +
MBC = 180°. Отсюда
A +
B +
C = 180°. Теорема доказана.
Следствия.
1. Каждый угол равностороннего треугольника равен 60°. (рис. 221).
2. Сумма острых углов прямоугольного треугольника равна 90° (рис. 222).
В прямоугольном треугольнике стороны, заключающие прямой угол, называются катетами, сторона, противолежащая прямому углу, — гипотенузой (см. рис. 222).
Проведем в прямоугольном треугольнике ABC высоту СН к гипотенузе АВ (рис. 223). Так как в треугольнике ABC угол 1 дополняет угол В до 90°, а в треугольнике СНВ угол 2 также дополняет угол В до 90°, то1 =
2.
Доказано свойство: «Угол между высотой прямоугольного треугольника, проведенной к гипотенузе, и катетом равен углу между другим катетом и гипотенузой».
Пример:
В треугольнике ABC градусные меры углов А, В и С относятся соответственно как 5:7:3. Найти углы треугольника (рис. 224).
Решение:
Пусть (
— градусная мера одной части).
Так как сумма углов треугольника равна 180°, то
Тогда
Ответ:
Пример:
В треугольнике ABC (рис. 225) угол В равен 70°, АК и СМ — биссектрисы, О — точка их пересечения. Найти угол АОС между биссектрисами.
Решение:
Сумма углов А и С треугольника ABC равна 180° — 70° = 110°. Так как биссектриса делит угол пополам, то
Из треугольника АОС находим:
Ответ: 125°.
Замечание. Если то, рассуждая аналогично, получим формулу:
Если, например,
Пример:
Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то данный треугольник — прямоугольный.
Доказательство:
Пусть СМ — медиана, (рис. 226).
Докажем, чтоACB = 90°. Обозначим
A =
,
В =
. Так как медиана делит сторону пополам, то AM = MB =
АВ. Тогда СМ=АМ=МВ. Так как
АМС — равнобедренный, то
A =
ACM =
как углы при основании равнобедренного треугольника. Аналогично,
СМВ — равнобедренный и
B =
BCM =
. Сумма углов треугольника ABC, с одной стороны, равна 2
+ 2
, с другой — равна 180°. Отсюда 2
+ 2
= 180°, 2(
+
) = 180°,
+
= 90°. Но
ACB =
+
, поэтому
ACB = 90°.
Замечание. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. На рисунке 227 это угол АСВ. Из задачи 3 следует свойство: «Вписанный угол, опирающийся на диаметр, — прямой».
Пример:
Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.
Доказательство:
Пусть в треугольнике ABC (рис. 228) C=90°,
A=
,
B=
.
Проведем отрезок СМ так, чтоACM=
, и докажем, что СМ — медиана и что СМ=
АВ. Угол В дополняет угол А до 90°, a
BCM дополняет
ACM до 90°. Поскольку
ACM =
A =
, то
BCM =
. Треугольники АМС и ВМС — равнобедренные по признаку равнобедренного треугольника. Тогда AM = МС и МВ = МС. Отсюда СМ — медиана и СМ =
АВ.
- Внешний угол треугольника
- Свойство точек биссектрисы угла
- Свойство катета прямоугольного треугольника, лежащего против угла в 30°
- Четырехугольник и его элементы
- Перпендикулярные прямые в геометрии
- Признаки равенства треугольников
- Признаки равенства прямоугольных треугольников
- Соотношения в прямоугольном треугольнике
Сумма углов треугольника равна (180°).
Доказательство
Рассмотрим произвольный треугольник (KLM) и докажем, что
∠
(K) (+)
∠
(L) (+)
∠
(M =)
180°
.
1. Через вершину (L) параллельно стороне (KM) проведём прямую (a).
2. При пересечении параллельных прямых (a) и (KM) секущей (KL), углы, которые обозначаются (1), будут накрест лежащими углами, а углы, обозначенные (2) — это накрест лежащие углы при пересечении этих же параллельных прямых секущей (ML).
Очевидно, сумма углов (1), (2) и (3) равна развёрнутому углу с вершиной (L), т. е.
∠
(1) (+)
∠
(2) (+)
∠
(3 =)
180°
, или
∠
(K) (+)
∠
(L) (+)
∠
(M =)
180°
.
Теорема доказана.
Следствия из теоремы о сумме углов треугольника
Следствие 1. Сумма острых углов прямоугольного треугольника равна
90°
.
Следствие 2. В равнобедренном прямоугольном треугольнике каждый острый угол равен
45°
.
Следствие 3. В равностороннем треугольнике каждый угол равен
60°
.
Следствие 4. В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.
Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Доказательство
Из равенств
∠
(KML) (+)
∠
(BML=)
180°
и
∠
(K) (+)
∠
(L) (+)
∠
(KML =)
180°
получаем, что
∠
(BML =)
∠
(K) (+)
∠
(L).
Остроугольный, прямоугольный и тупоугольный треугольники
Как гласит четвёртое следствие из теоремы о сумме углов треугольника, можно выделить три вида треугольников в зависимости от углов.
У треугольника (KLM) все углы острые.
У треугольника (KMN) угол (K = 90)
°
.
У прямоугольного треугольника сторона, лежащая против прямого угла, называется гипотенузой, а две остальные стороны — катетами.
На рисунке (MN) — гипотенуза, (MK) и (KN) — катеты.
У треугольника (KLM) один угол тупой.
Сумма углов треугольника
Доказательство теоремы:
Нарисуем треугольник. Через одну из его вершин проведем прямую, параллельную противоположной стороне, и найдем на рисунке равные углы.
Угол 1 равен углу BAC, они накрест лежащие. Угол 2 равен углу ACB, они тоже накрест лежащие.
Сумма угла 1, угла ABC и угла 2 составляет развернутый угол.
A развернутый угол равен . Значит, и сумма углов треугольника тоже равна 180 градусов.
Разберем задачи ЕГЭ и ОГЭ, в которых фигурирует сумма углов треугольника.
Заметим, что они похожи друг на друга. Одна и та же задача на тему «Сумма углов треугольника» может встретиться и на ОГЭ, и на ЕГЭ по математике. И уровень сложности заданий по этой теме в ЕГЭ и ОГЭ примерно одинаковый.
Задачи ЕГЭ по теме: Сумма углов треугольника
Задача 1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.
Решение:
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х.
Получим уравнение:
и найдем x = 17.
Тогда .
Ответ: 51.
Обратите внимание, что это даже не геометрия, а алгебра. Мы составили уравнение и решили его.
Задача 2.
Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.
Решение:
Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?
Нет, конечно! Ведь сумма углов треугольника равна 180 градусов. Значит, один из углов треугольника равен , а два других равны
.
Ответ: 41.
Задача 3.
На рисунке угол 1 равен , угол 2 равен
, угол 3 равен
. Найдите угол 4. Ответ дайте в градусах.
Решение:
Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.
Сначала найдем угол 5.
Он равен
Тогда
Угол 4, смежный с углом 7 равен
Ответ:
Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.
Задача 4.
Углы треугольника относятся как . Найдите меньший из них. Ответ дайте в градусах.
Решение:
Пусть углы треугольника равны 2x, 3x и 4x. Запишем, чему равна сумма углов этого треугольника.
Тогда
Здесь мы тоже составили уравнение и решили его. Так же, как на уроках алгебры.
Ответ: 40.
Задача 5. В треугольнике ABC проведена биссектриса AL, угол ALC равен , угол ABC равен
. Найдите угол ACB. Ответ дайте в градусах.
Решение:
ALC — внешний угол
и он равен сумме двух внутренних углов, не смежных с ним. Значит,
.
AL — биссектриса , а это значит, что
.
По теореме о сумме углов треугольника получаем:
Ответ: 125.
Задача 6. В выпуклом четырёхугольнике ABCD известно, что AB=BC, AD=CD, B=61
D=151
Найдите величину угла A. Ответ дайте в градусах.
Решение:
Если соединить точки B и D, получим два равных треугольника. Они равны по трем сторонам. В равных треугольниках напротив равных сторон лежат равные углы.
В треугольнике ABD сумма двух углов
Тогда , по теореме о сумме углов треугольника.
Ответ: 74.
Задача 7. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен . Найдите вписанный угол ACB. Ответ дайте в градусах.
Решение:
AC и BD — диаметры окружности. Значит, — равнобедренный, в нем
— как радиусы.
как вертикальные углы, тогда по теореме о сумме углов в треугольнике:
.
Ответ: 28.
Задача 8. В треугольнике ABC AD — биссектриса, угол C равен , угол CAD равен
. Найдите угол B. Ответ дайте в градусах.
Решение:
AD — биссектриса, отсюда следует, что .
Тогда по теореме о сумме углов треугольника .
Ответ: 66.
Задача 9. В треугольнике ABC CD — медиана, угол C равен , угол B равен
. Найдите угол ACD. Ответ дайте в градусах.
Решение:
В треугольнике ABC угол C равен , угол B равен
, тогда угол A равен
.
CD — медиана. А медиана, проведенная к гипотенузе в прямоугольном треугольнике, равна половине гипотенузы. Значит, .
Поэтому треугольник ADC равнобедренный и .
Ответ: 55.
Задача 10. В треугольнике ABC угол C равен , биссектрисы AD и BE пересекаются в точке O. Найдите угол AOB. Ответ дайте в градусах
Решение:
В треугольнике ABC угол C равен , отсюда по теореме о сумме углов треугольника
.
Биссектрисы AD и BE пересекаются в точке O. Угол OAB — это половина угла CAB, угол OBA — это половина угла CBA. Теперь применим теорему о сумме углов треугольника к треугольнику AOB.
Ответ: 119.
Задача 11. В треугольнике ABC угол A равен , углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.
Решение:
BD — высота тогда
— прямоугольный,
CE — высота тогда
— прямоугольный и
.
Углы и
— смежные, поэтому
.
Ответ: 124.
Задача 11. В прямоугольном треугольнике угол между высотой и биссектрисой, проведёнными из вершины прямого угла, равен . Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.
Решение:
Обозначим на рисунке вершины треугольника ABC, биссектрису CК и высоту CН. Биссектриса CК делит прямой угол на два угла по . Угол BCН равен разности углов BCК и КCН, то есть
.
Треугольники BCН и BAC подобны по двум углам. Значит, угол BAC равен углу BCН, то есть
Ответ: 31.
Задача 12. Острые углы прямоугольного треугольника равны и
. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.
Решение:
Обозначим на рисунке медиану CМ и высоту CН.
Пусть и
. Высота CН разбивает прямоугольный треугольник на два треугольника, подобных исходному. Значит, угол BCН равен углу BAC, то есть
.
у которых углы равны т. е. угол C разбился на углы
и
Медиана, проведенная к гипотенузе в прямоугольном треугольнике, равна половине гипотенузы. Получили два равнобедренных треугольника, BCМ и ACМ. В треугольнике ACМ углы A и C равны 6 градусов каждый.
Тогда угол МCН между высотой и медианой равен:
Ответ: 78.
Задачи ОГЭ по математике по теме: Сумма углов треугольника.
Задача 13. В треугольнике два угла равны и
. Найдите его третий угол. Ответ дайте в градусах.
Решение:
Сумма углов в треугольнике равна , поэтому
третий угол равен .
Ответ: 37.
Задача 14. Один из острых углов прямоугольного треугольника равен 34. Найдите его другой острый угол. Ответ дайте в градусах.
Решение:
Сумма острых углов прямоугольного треугольника равна . Поэтому второй острый угол равен:
.
Ответ: 56.
Задача 15.
В треугольнике ABC известно, что AB=BC, . Найдите угол BCA. Ответ дайте в градусах.
Решение:
В треугольнике ABC известно, что AB=BC. Значит, треугольник ABС равнобедренный, и углы при основании AС равны,
т.е. .
Ответ: 36.
Задача 16. В остроугольном треугольнике ABC проведена высота BH, . Найдите угол ABH. Ответ дайте в градусах.
Решение:
BH — высота , тогда
— прямоугольный, в нем
и
Используя теорему о сумме углов в треугольнике, найдем угол ABH:
Ответ: 53.
Задача 17. В треугольнике ABC угол C равен . Найдите внешний угол при вершине C. Ответ дайте в градусах.
Решение:
Внешний угол треугольника AВC при вершине C является смежным углом с углом ACB, а сумма смежных углов равна .
Значит, внешний угол треугольника ABC при вершине C равен: .
Ответ: 47.
Задача 18. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и . Найдите угол BOC. Ответ дайте в градусах.
Решение:
— равнобедренный,
.
— вписанный угол и опирается на дугу BC, а
— центральный угол и также опирается на дугу BC. Центральный угол в два раза больше вписанного опирающегося на ту же дугу,
.
Ответ: 155.
Задача 19. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ABC=123
. Найдите угол BOC. Ответ дайте в градусах.
Решение:
— равнобедренный треугольник, отсюда
.
— вписанный угол, он опирается на дугу BC, а
— центральный угол и также опирается на дугу BC. Центральный угол в два раза больше вписанного угла, опирающегося на ту же дугу, значит,
.
Ответ: 57.
Задача 20. В окружности с центром в точке O отрезки AC и BD — диаметры. Угол AOD равен . Найдите угол ACB. Ответ дайте в градусах.
Решение:
AC и BD — диаметры, отсюда следует, что — равнобедренный,
— радиусы.
как вертикальные углы, тогда по теореме о сумме углов в треугольнике
.
Ответ: 33.
Задача 21. Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен . Ответ дайте в градусах.
Решение:
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. A это означает, что AB — диаметр. Угол, опирающийся на диаметр, равен , и треугольник ABC — прямоугольный. И если
, то второй острый угол этого треугольника равен:
Ответ: 15.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Сумма углов треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
07.05.2023
План урока:
Сумма углов треугольника
Внешние углы треугольника
Сравнение сторон и углов треугольника
Неравенство треугольника
Сумма углов треугольника
Рассмотрим произвольный треугольник АВС. Точки А, В и С не лежат на одной прямой, а потому через В можно провести прямую a, параллельную АС. При этом прямые СВ и АВ окажутся секущими для двух параллельных прямых:
Известно, что секущие образуют пары накрест лежащие углы, причем они равны. Отметим на рисунке эти пары и обозначим их как ∠1, ∠2, ∠3 и ∠ 4.
Равные углы (∠1 = ∠2, ∠3 = ∠4) отметим одним цветом. Также обозначим ∠АВС как ∠5:
С одной стороны, углы 2, 4 и 5 вместе образуют развернутый угол, то есть их сумма равна 180°:
В результате мы получили, что сумма углов треугольника АВС в точности равна 180°! В итоге мы можем сформулировать следующую теорему:
Задание. В треуг-ке один угол равен 50°, а второй – 60°. Чему равен третий угол этого треуг-ка?
Решение. Обозначим углы треугольника как ∠1, ∠2 и ∠3.
Получили обыкновенное уравнение с одной переменной. Для его решения просто перенесем слагаемые 50° и 60° из левой части в правую:
Задание. Докажите, что у любого треуг-ка есть хотя бы один угол, который не превосходит 60°.
Решение. Докажем это утверждение методом «от противного». Пусть существует такой треуг-к, у которого каждый из углов больше 60°. Это можно записать в виде трех неравенств:
В итоге имеем, что в сумме эти углы больше 180°, а это невозможно. Это противоречие, следовательно, треуг-к с тремя углами, каждый из которых больше 60°, не существует.
Задание. Основанием рав-бедр. ∆АВС является сторона АС. Известно, что ∠В = 40°. Чему равны ∠А и ∠С этого треуг-ка?
Решение. Сначала необходимо вспомнить важное свойство – углы равнобедренного треугольника при его основании равны друг другу. В нашем случае это значит, что ∠А = ∠С:
Задание. Один из углов при основании рав-бедр. треуг-ка равен 50°. Найдите два других угла.
Решение. Построим рисунок по условию задачи:
Отдельного внимания заслуживает равносторонний треуг-к. Напомним, что у него равны все три стороны. Построим его:
Теперь подумаем о том, чему равны его углы. С одной стороны, мы можем рассматривать ∆АВС как рав-бедр. с основанием АС, ведь AB = BC. Тогда∠А = ∠С. Но с другой стороны, всё тот же ∆АВС мы можем одновременно считать и рав-бедр. с основанием АВ, ведь АС = ВС. Из этого следует, что ∠А = ∠С. В итоге получаем, что все три угла ∆АВС равны:
Итак, получили удивительный факт – в равностороннем треуг-ке все углы равны 60°!
Рассмотрим чуть более сложную задачу, где неизвестен ни один из углов треуг-ка, однако известны некоторые соотношения между ними.
Задание. Первый угол треуг-ка больше второго в 2 раза, а третий равен сумме первых двух углов. Чему равны углы треуг-ка?
Решение. Для большей наглядности примем первый угол треуг-ка за неизвестную величину, то есть за х. Тогда второй угол будет равен 2х, а третий окажется равным их сумме:
Внешние углы треугольника
Построим некоторый треуг-к, а потом продлим одну из его сторон. На рисунке мы продлили сторону АС. В результате образуется угол, который называют внешним углом треугольника:
На рисунке видно, что ∠ВСD является внешним. Но одновременно можно утверждать и ещё один факт – углы ∠АСВ и ∠ВСD являются смежными. Это позволяет нам дать следующее определение:
В итоге мы доказали, что внешний угол треугольника равен сумме двух углов треуг-ка, которые с ним не смежны.
Задание. У ∆АВС ∠А = 50°, ∠В = 75°. Найдите величину внешнего угла, смежного с ∠С.
Решение. В данном случае, согласно доказанному нами правилу, достаточно просто сложить ∠А и ∠B:
Рассмотрим ещё несколько более тяжелых задач.
Задание. В ∆АВС проведены биссектрисы угловА и B. Они пересекаются в точке М. Известно, что ∠А = 58°, ∠B = 96°. Найдите ∠АМB.
Решение. Устно такую задачу не решить, поэтому построим рисунок:
АМ – это биссектриса, а она разбивает∠ВАС на два равных угла. Поэтому мы можем вычислить ∠ВАМ:
Отметим найденные углы на рисунке:
Обратите внимание на ∆АВМ, который выделен красным цветом. Теперь мы знаем два угла в нем. Значит, можно найти и третий! Запишем для ∆АВМ сумму его углов:
Задание. Построен внешний угол равнобедренного треугольника, который смежен с вершиной, лежащей против основания. Далее построили биссектрису этого внешнего угла. Докажите, что эта биссектриса будет параллельна основанию.
Решение. Выполним построение:
Пусть АС – это основание рав-бедр. ∆АВС. Тогда внешний угол должен быть проведен к вершине В, ведь именно она лежит против основания. Обозначим внешний угол как ∠СВD (для этого мы просто добавили точку Dна продолжение отрезка АВ). Далее проводим биссектрису ВК. Нам требуется доказать, что ВК||АС.
Поступим очень просто – обозначим неизвестную нам величину угла при основании как х. То есть
В результате мы получили, что и ∠С, и ∠CBK равны х, то есть они равны и друг другу. Однако эти углы являются накрест лежащими для прямых АС и ВК и секущей ВС. Из равенства накрест лежащих углов следует, что АС||ВК.
Задание. В ∆АВС проведена медиана АМ, причем ее длина равна ВМ. Найдите ∠А.
Решение. Напомним, что медиана – это прямая, разбивающая сторону на два равных отрезка. То есть ВМ = МС. По условию АМ = ВМ, значит, имеет место двойное равенство:
Посмотрите на рисунок – здесь есть сразу два рав-бедр. треуг-ка! Это ∆АВМ (с основанием АВ) и ∆АМС (с основанием АМС). Обозначим∠В как х, а ∠С – как у. Углы при основании рав-бедр. треуг-ков одинаковы, а потому
Сравнение сторон и углов треугольника
Докажем следующую теорему:
Построим ∆АВС, в котором сторона АВ будет длиннее, чем АС. Нам надо доказать, что ∠С >∠B:
Выполним дополнительное построение – отметим на прямой АВ такую точку D, что AD = АС. Точка D будет располагаться на отрезке АВ, ведь АВ больше АС, а, значит, и больше АD. Также соединим C и D отрезком:
Теперь рассмотрим ∆ADC. Он является рав-бедр., ведь AD = AC. Из этого следует, что ∠ADC = ∠ACD.
Можно заметить, что ∠АDС является внешним углом для ∆BDC. Это значит, что
Мы доказали только первую часть теоремы. Теперь надо доказать обратное утверждение – против большего угла находится большая сторона треугольника. Предположим обратное, что существует ∆АВС, в котором ∠С>∠B, но не выполняется условие АВ >AC. Тогда либо АВ = ВС, либо АВ <ВС. Первый вариант означает, что ∆АВС – рав-бедр., но тогда ∠С =∠B, что противоречит условию. Если же АВ <ВС, то по только что доказанному утверждению ∠С<∠B, что также противоречит исходному условию. Поэтому АВ >AC.
Задание. В ∆АВС известны углы:
Запишите стороны этого треуг-ка в порядке возрастания.
Решение. Всё очень просто – чем больше сторона, тем против большего угла она лежит. Поэтому самая большая сторона – это АВ, вторая по длине – АС, а наименьшая сторона – ВС. То есть BС<AС<AВ:
Доказанная теорема помогает сформулировать важный признак рав-бедр. треуг-ка:
Действительно, против равных углов должны лежать равные стороны, в противном случае сложится ситуация, когда в треуг-ке против сторон разной длины будут лежать равные углы, что невозможно.
Задание. В рав-бедр. ∆АВС основанием является АС. Из точек А и С проведены биссектрисы, которые пересеклись в точке О. Докажите, что ∆АОС также является рав-бедр.
Решение.
Ясно, что ∠ВАС = ∠ВСА, так как это углы при основании рав-бедр. ∆АВС. С другой стороны, ∠ОАС равен половине ∠ВАС, ведь АО – биссектриса:
В итоге имеем, что ∠ОАС и ∠АСО равны. Но тогда в ∆АОС есть два одинаковых угла, а потому он является рав-бедр. (АО = ОС).
Неравенство треугольника
Следующая важная теорема называется неравенством треугольника:
Попробуем доказать неравенство треугольника. Возьмем произвольный ∆АВС и покажем, что сторона АВ меньше, чем величина ВС + АС. Для этого «дорисуем» к отрезку АС ещё один отрезок СD, равный BC, при этом АС и СD должны лежать на одной прямой:
Так как AD = АС + СD, то нам достаточно показать, что АВ <AD. Ясно, что ∆ВСD является рав-бедр., ведь ВС = СD. Это значит, что
Получается, что в ∆АВD сторона АВ лежит против меньшего угла по сравнению со стороной АD. Значит, эта сторона должна быть меньше АD, что мы и пытаемся доказать.
Доказанная теорема означает, что не всякий треуг-к можно построить по его сторонам. Так, у нас никогда не получится построить треуг-к, у которого стороны равны 2, 3 и 7 см, так как одна из этих длин больше, чем сумма двух других:
7 > 2 + 3
Верно обратное утверждение – если все заданные длины удовлетворяют неравенству, то треуг-к построить можно.
Задание. Известны две стороны равнобедренного треугольника, они равны 25 и 10 см. Какая из них является основанием?
Решение. Рассмотрим сперва случай, когда основание равно 25 см. Тогда две другие стороны имеют длину 10 см. Их сумма (10 см + 10 см = 20 см) меньше основания. Такая ситуация невозможно из-за неравенства треуг-ка.
Ситуация же, при которой основание имеет длину 10 см, вполне допустима. Тогда две другие стороны равны 25 см, и для каждой стороны неравенство треуг-ка выполняется: