Как найти сумму углов треугольника авс

Сумма углов треугольника:

Великий французский ученый XVII в. Блез Паскаль (1623—1662) еще в детстве любил изучать геометрические фигуры, открывать их свойства, измерять углы транспортиром.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Юный исследователь заметил, что у любого треугольника сумма углов одна и та Ж6 180°. «Как же это объяснить?» — думал Паскаль. Тогда он отрезал у треугольника два уголка и приложил их к третьему (рис. 219). Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие! Дальнейшая судьба мальчика была предопределена.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Теорема. Сумма углов треугольника равна 180°.

Дано: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВС (рис. 220).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Доказать: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA+Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC = 180°.

Доказательство:

Через вершину В треугольника ABC проведем прямую КМ, параллельную стороне АС. Тогда Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияKBA =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей АВ, aСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияMBC =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC как внутренние накрест лежащие углы при параллельных прямых КМ и АС и секущей ВС. Так как углы КВА, ABC и МВС образуют развернутый угол, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияKBA +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияABC +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияMBC = 180°. ОтсюдаСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB +Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC = 180°. Теорема доказана.

Следствия.

1.    Каждый угол равностороннего треугольника равен 60°. (рис. 221).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

2.    Сумма острых углов прямоугольного треугольника равна 90° (рис. 222).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

В прямоугольном треугольнике стороны, заключающие прямой угол, называются катетами, сторона, противолежащая прямому углу, — гипотенузой (см. рис. 222).    

Проведем в прямоугольном треугольнике ABC высоту СН к гипотенузе АВ (рис. 223). Так как в треугольнике ABC угол 1 дополняет угол В до 90°, а в треугольнике СНВ угол 2 также дополняет угол В до 90°, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решения1 =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения2.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Доказано свойство: «Угол между высотой прямоугольного треугольника, проведенной к гипотенузе, и катетом равен углу между другим катетом и гипотенузой».

Пример:

В треугольнике ABC градусные меры углов А, В и С относятся соответственно как 5:7:3. Найти углы треугольника (рис. 224).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Решение:

Пусть Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения (Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения — градусная мера одной части).

Так как сумма углов треугольника равна 180°, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Тогда Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения 

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Ответ: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

В треугольнике ABC (рис. 225) угол В равен 70°, АК и СМ — биссектрисы, О — точка их пересечения. Найти угол АОС между биссектрисами.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Решение:

Сумма углов А и С треугольника ABC равна 180° — 70° = 110°. Так как биссектриса делит угол пополам, то

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияСумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Из треугольника АОС находим: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Ответ: 125°.

Замечание. Если Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения то, рассуждая аналогично, получим формулу: Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения Если, например, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то данный треугольник — прямоугольный.

Доказательство:

Пусть СМ — медиана, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения (рис. 226).

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Докажем, чтоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = 90°. Обозначим Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияВ = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Так как медиана делит сторону пополам, то AM = MB = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения АВ. Тогда СМ=АМ=МВ. Так как Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАМС — равнобедренный, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения как углы при основании равнобедренного треугольника. Аналогично, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияСМВ — равнобедренный и Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Сумма углов треугольника ABC, с одной стороны, равна 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, с другой — равна 180°. Отсюда 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + 2Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения = 180°, 2(Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения) = 180°, Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения = 90°. НоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения + Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, поэтому

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACB = 90°. 

Замечание. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. На рисунке 227 это угол АСВ. Из задачи 3 следует свойство: «Вписанный угол, опирающийся на диаметр, — прямой». 

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Пример:

Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

Доказательство:

Пусть в треугольнике ABC (рис. 228) Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияC=90°,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения,Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияB=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения.

Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения

Проведем отрезок СМ так, чтоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, и докажем, что СМ — медиана и что СМ=Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВ. Угол В дополняет угол А до 90°, aСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM дополняетСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM до 90°. Поскольку Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияACM =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияA = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения, тоСумма углов треугольника - определение и вычисление с доказательствами и примерами решенияBCM =Сумма углов треугольника - определение и вычисление с доказательствами и примерами решения. Треугольники АМС и ВМС — равнобедренные по признаку равнобедренного треугольника. Тогда AM = МС и МВ = МС. Отсюда СМ — медиана и СМ = Сумма углов треугольника - определение и вычисление с доказательствами и примерами решенияАВ.

  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Четырехугольник и его элементы
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Соотношения в прямоугольном треугольнике

Сумма углов треугольника равна (180°).

Pierad.png

Доказательство

Рассмотрим произвольный треугольник (KLM) и докажем, что

 (K) (+)

 (L) (+)

 (M =)

180°

.

1. Через вершину (L) параллельно стороне (KM) проведём прямую (a).

2. При пересечении параллельных прямых (a) и (KM) секущей (KL), углы, которые обозначаются (1), будут накрест лежащими углами,  а углы, обозначенные (2) — это накрест лежащие углы при пересечении этих же параллельных прямых секущей (ML).

Очевидно, сумма углов (1), (2) и (3) равна развёрнутому углу с вершиной (L), т. е. 

 (1) (+)

 (2) (+)

 (3 =)

180°

, или

 (K) (+)

 (L) (+)

 (M =)

180°

.

Теорема доказана.

Следствия из теоремы о сумме углов треугольника

Следствие 1. Сумма острых углов прямоугольного треугольника равна

90°

.

Следствие 2.  В равнобедренном прямоугольном треугольнике каждый острый угол равен

45°

.

Следствие 3.  В равностороннем треугольнике каждый угол равен

60°

.

Следствие 4.  В любом треугольнике либо все углы острые, либо два угла острые, а третий — тупой или прямой.

Следствие 5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Arejsl.png

Доказательство

Из равенств

 (KML) (+)

 (BML=)

180°

 и

 (K) (+)

 (L) (+)

 (KML =)

180°

 получаем, что

 (BML =)

 (K) (+)

 (L).

Остроугольный, прямоугольный и тупоугольный треугольники

Как гласит четвёртое следствие из теоремы о сумме углов треугольника, можно выделить три вида треугольников в зависимости от углов.

Saurl.png

У треугольника (KLM) все углы острые.

Taisnl.png

У треугольника (KMN) угол (K = 90)

°

.

У прямоугольного треугольника сторона, лежащая против прямого угла, называется гипотенузой, а две остальные стороны — катетами.

На рисунке (MN) — гипотенуза, (MK) и (KN) — катеты.

Platl.png

У треугольника (KLM) один угол тупой.

Сумма углов треугольника

Доказательство теоремы:

Нарисуем треугольник. Через одну из его вершин проведем прямую, параллельную противоположной стороне, и найдем на рисунке равные углы.

Угол 1 равен углу BAC, они накрест лежащие. Угол 2 равен углу ACB, они тоже накрест лежащие.

Сумма угла 1, угла ABC и угла 2 составляет развернутый угол.

A развернутый угол равен 180{}^circ . Значит, и сумма углов треугольника тоже равна 180 градусов.

Сумма углов треугольника

Разберем задачи ЕГЭ и ОГЭ, в которых фигурирует сумма углов треугольника.

Заметим, что они похожи друг на друга. Одна и та же задача на тему «Сумма углов треугольника» может встретиться и на ОГЭ, и на ЕГЭ по математике. И уровень сложности заданий по этой теме в ЕГЭ и ОГЭ примерно одинаковый.

Задачи ЕГЭ по теме: Сумма углов треугольника

Задача 1. Один из внешних углов треугольника равен 85 градусов. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Решение:

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85 градусов, а их отношение равно 2:3. Пусть эти углы равны 2х и 3х.

Получим уравнение:

2x+3x=85 и найдем x = 17.

Тогда 3x=51.

Ответ: 51.

Обратите внимание, что это даже не геометрия, а алгебра. Мы составили уравнение и решили его.

Задача 2.

Один из углов равнобедренного треугольника равен 98 градусов. Найдите один из других его углов. Ответ дайте в градусах.

Решение:

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98 градусов?

Нет, конечно! Ведь сумма углов треугольника равна 180 градусов. Значит, один из углов треугольника равен 98^{circ}, а два других равны genfrac{}{}{}{0}{displaystyle 180-98}{displaystyle 2}=41^{circ}.

Ответ: 41.

Задача 3.

На рисунке угол 1 равен 46^{circ}, угол 2 равен 30^{circ}, угол 3 равен 44^{circ}. Найдите угол 4. Ответ дайте в градусах.

Рисунок 1

Решение:

Давайте отметим на чертеже еще несколько углов. Они нам понадобятся.

Рисунок 2

Сначала найдем угол 5.

Он равен 180^{circ}-angle 1-angle 3 = 90^{circ}.

Тогда angle 6= 90^{circ}.

angle 7=180^{circ}-angle 2-angle 6=60^{circ}.

Угол 4, смежный с углом 7 равен 120^{circ}.

Ответ: 120^{circ}.

Заметим, что такой способ решения — не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти.

Задача 4.

Углы треугольника относятся как 2:3:4. Найдите меньший из них. Ответ дайте в градусах.

Решение:

Пусть углы треугольника равны 2x, 3x и 4x. Запишем, чему равна сумма углов этого треугольника.

2x+3x+4x=180^{circ};

9x=180^{circ};

x=20^{circ};

Тогда 2x=40^{circ}.

Здесь мы тоже составили уравнение и решили его. Так же, как на уроках алгебры.

Ответ: 40.

Задача 5. В треугольнике ABC проведена биссектриса AL, угол ALC равен {48}^circ, угол ABC равен {41}^circ. Найдите угол ACB. Ответ дайте в градусах.

Решение:

angle ALC — внешний угол triangle ABL, и он равен сумме двух внутренних углов, не смежных с ним. Значит, angle BAL=angle ALC-angle ABL=48{}^circ -41{}^circ =7{}^circ .

AL — биссектриса angle  BAC, а это значит, что angle  BAC=2 angle BAL=2cdot 7{}^circ =14{}^circ .

По теореме о сумме углов треугольника получаем:
angle ACB=180{}^circ -41{}^circ -14{}^circ =125{}^circ .
Ответ: 125.

Задача 6. В выпуклом четырёхугольнике ABCD известно, что AB=BC, AD=CD, angle B=61{}^circ , angle D=151{}^circ . Найдите величину угла A. Ответ дайте в градусах.

Решение:

Если соединить точки B и D, получим два равных треугольника. Они равны по трем сторонам. В равных треугольниках напротив равных сторон лежат равные углы.

В треугольнике ABD сумма двух углов
angle DBA+angle BDA=displaystyle frac{1}{2}left(angle B+angle Dright)=displaystyle frac{1}{2}left(61+151right)=106{}^circ .
Тогда angle A=180{}^circ -106=74{}^circ , по теореме о сумме углов треугольника.

Ответ: 74.

Задача 7. Отрезки AC и BD — диаметры окружности с центром O. Угол AOD равен {124}^circ. Найдите вписанный угол ACB. Ответ дайте в градусах.

Решение:

AC и BD — диаметры окружности. Значит, triangle BOC — равнобедренный, в нем BO=OC — как радиусы.

angle AOD=angle BOC=124{}^circ как вертикальные углы, тогда по теореме о сумме углов в треугольнике:

angle OCB=displaystyle frac{180{}^circ -124{}^circ }{2}=28{}^circ .

Ответ: 28.

Задача 8. В треугольнике ABC AD — биссектриса, угол C равен {104}^circ, угол CAD равен {5}^circ. Найдите угол B. Ответ дайте в градусах.

Решение:

AD — биссектриса, отсюда следует, что angle CAD=angle DAB=5{}^circ Rightarrow angle CAB=10{}^circ .

Тогда по теореме о сумме углов треугольника angle B=180{}^circ -104{}^circ -10{}^circ =66{}^circ .

Ответ: 66.

Задача 9. В треугольнике ABC CD — медиана, угол C равен {90}^circ, угол B равен {35}^circ. Найдите угол ACD. Ответ дайте в градусах.

Решение:

В треугольнике ABC угол C равен {90}^circ, угол B равен {35}^circ, тогда угол A равен 90{}^circ -35{}^circ =55{}^circ .

CD — медиана. А медиана, проведенная к гипотенузе в прямоугольном треугольнике, равна половине гипотенузы. Значит, CD=AD=DB.

Поэтому треугольник ADC равнобедренный и angle A=angle ACD=55{}^circ .

Ответ: 55.

Задача 10. В треугольнике ABC угол C равен {58}^circ, биссектрисы AD и BE пересекаются в точке O. Найдите угол AOB. Ответ дайте в градусах

Решение:

В треугольнике ABC угол C равен {58}^circ, отсюда по теореме о сумме углов треугольника angle A+angle B=180{}^circ -58{}^circ =122{}^circ .

Биссектрисы AD и BE пересекаются в точке O. Угол OAB — это половина угла CAB, угол OBA — это половина угла CBA. Теперь применим теорему о сумме углов треугольника к треугольнику AOB.

angle AOB=180{}^circ -displaystyle frac{1}{2}left(angle A+angle Bright)=180{}^circ -61{}^circ =119{}^circ .

Ответ: 119.

Задача 11. В треугольнике ABC угол A равен {56}^circ, углы B и C — острые, высоты BD и CE пересекаются в точке O. Найдите угол DOE. Ответ дайте в градусах.

Решение:

BD — высота triangle ABC, тогда triangle ABD — прямоугольный,

angle ABD=90{}^circ -56{}^circ =34{}^circ .

CE — высота triangle ABC, тогда triangle BOE — прямоугольный и angle BOE=90{}^circ -34{}^circ =56{}^circ .

Углы angle BOE и angle EOD — смежные, поэтому angle EOD=180{}^circ -56{}^circ =124{}^circ .

Ответ: 124.

Задача 11. В прямоугольном треугольнике угол между высотой и биссектрисой, проведёнными из вершины прямого угла, равен {14}^circ. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

Решение:

Обозначим на рисунке вершины треугольника ABC, биссектрису CК и высоту CН. Биссектриса CК делит прямой угол на два угла по 45{}^circ . Угол BCН равен разности углов BCК и КCН, то есть 45{}^circ -14{}^circ =31{}^circ .

Треугольники BCН и BAC подобны по двум углам. Значит, угол BAC равен углу BCН, то есть 31{}^circ .

Ответ: 31.

Задача 12. Острые углы прямоугольного треугольника равны {84}^circ и {6}^circ. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.

Решение:

Обозначим на рисунке медиану CМ и высоту CН.

Пусть angle A=6{}^circ и angle B=84{}^circ . Высота CН разбивает прямоугольный треугольник на два треугольника, подобных исходному. Значит, угол BCН равен углу BAC, то есть {6}^circ.

у которых углы равны т. е. угол C разбился на углы

{84}^circ и

Медиана, проведенная к гипотенузе в прямоугольном треугольнике, равна половине гипотенузы. Получили два равнобедренных треугольника, BCМ и ACМ. В треугольнике ACМ углы A и C равны 6 градусов каждый.

Тогда угол МCН между высотой и медианой равен: 90{}^circ -angle ACM- angle BCH=90{}^circ -6{}^circ -6{}^circ =78{}^circ .

Ответ: 78.

Задачи ОГЭ по математике по теме: Сумма углов треугольника.

Задача 13. В треугольнике два угла равны {57}^circ и {86}^circ. Найдите его третий угол. Ответ дайте в градусах.

Решение:

Сумма углов в треугольнике равна 180{}^circ , поэтому

третий угол равен 180{}^circ -57{}^circ -86{}^circ =37{}^circ .

Ответ: 37.

Задача 14. Один из острых углов прямоугольного треугольника равен 34{}^circ. Найдите его другой острый угол. Ответ дайте в градусах.

Решение:

Сумма острых углов прямоугольного треугольника равна 90{}^circ . Поэтому второй острый угол равен: 90{}^circ -34{}^circ =56{}^circ .

Ответ: 56.

Задача 15.

В треугольнике ABC известно, что AB=BC, angle ABC=108{}^circ. Найдите угол BCA. Ответ дайте в градусах.

Решение:

В треугольнике ABC известно, что AB=BC. Значит, треугольник ABС равнобедренный, и углы при основании AС равны,

т.е. angle A=angle C=displaystyle frac{180{}^circ -108{}^circ }{2}=36{}^circ .

Ответ: 36.

Задача 16. В остроугольном треугольнике ABC проведена высота BH, angle BAC=37{}^circ. Найдите угол ABH. Ответ дайте в градусах.

Решение:

BH — высота triangle ABC, тогда triangle ABH — прямоугольный, в нем angle AHB=90{}^circ  и  angle BAC=37{}^circ . Используя теорему о сумме углов в треугольнике, найдем угол ABH:
angle ABH=180{}^circ -angle AHB-angle AHB=180{}^circ -90{}^circ -37{}^circ =53{}^circ .
Ответ: 53.

Задача 17. В треугольнике ABC угол C равен {133}^circ. Найдите внешний угол при вершине C. Ответ дайте в градусах.

Решение:

Внешний угол треугольника AВC при вершине C является смежным углом с углом ACB, а сумма смежных углов равна 180{}^circ .

Значит, внешний угол треугольника ABC при вершине C равен: 180{}^circ -133{}^circ =47{}^circ .

Ответ: 47.

Задача 18. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и angle ABC=25{}^circ. Найдите угол BOC. Ответ дайте в градусах.

Решение:

triangle ABC — равнобедренный, angle A=angle C=displaystyle frac{180{}^circ -25{}^circ }{2}=displaystyle frac{155{}^circ }{2}.

angle BAC — вписанный угол и опирается на дугу BC, а angle BOC — центральный угол и также опирается на дугу BC. Центральный угол в два раза больше вписанного опирающегося на ту же дугу, angle BOC=2angle BAC=155{}^circ .

Ответ: 155.

Задача 19. Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и angle ABC=123{}^circ. Найдите угол BOC. Ответ дайте в градусах.

Решение:

triangle ABC — равнобедренный треугольник, отсюда angle BAC=angle ACB.

angle BAC — вписанный угол, он опирается на дугу BC, а angle BOC — центральный угол и также опирается на дугу BC. Центральный угол в два раза больше вписанного угла, опирающегося на ту же дугу, значит, angle BOC=2angle BAC=180{}^circ -123{}^circ =57{}^circ .

Ответ: 57.

Задача 20. В окружности с центром в точке O отрезки AC и BD — диаметры. Угол AOD равен {114}^circ. Найдите угол ACB. Ответ дайте в градусах.

Решение:

AC и BD — диаметры, отсюда следует, что triangle BOC — равнобедренный, BO=OC — радиусы.

angle AOD=angle BOC=114{}^circ как вертикальные углы, тогда по теореме о сумме углов в треугольнике angle OCB=displaystyle frac{180{}^circ -114{}^circ }{2}=33{}^circ .

Ответ: 33.

Задача 21. Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен {75}^circ. Ответ дайте в градусах.

Решение:

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. A это означает, что AB — диаметр. Угол, опирающийся на диаметр, равен 90{}^circ , и треугольник ABC — прямоугольный. И если angle BAC=75{}^circ , то второй острый угол этого треугольника равен: 90{}^circ -75{}^circ =15{}^circ

Ответ: 15.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Сумма углов треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
07.05.2023

План урока:

Сумма углов треугольника

Внешние углы треугольника

Сравнение сторон и углов треугольника

Неравенство треугольника

Сумма углов треугольника

Рассмотрим произвольный треугольник АВС. Точки А, В и С не лежат на одной прямой, а потому через В можно провести прямую a, параллельную АС. При этом прямые СВ и АВ окажутся секущими для двух параллельных прямых:

1 treugolnik

Известно, что секущие образуют пары накрест лежащие углы, причем они равны. Отметим на рисунке эти пары и обозначим их как ∠1, ∠2, ∠3 и ∠ 4.

Равные углы (∠1 = ∠2, ∠3 = ∠4) отметим одним цветом. Также обозначим ∠АВС как ∠5:

2 treugolnik

С одной стороны, углы 2, 4 и 5 вместе образуют развернутый угол, то есть их сумма равна 180°:

3 treugolnik

В результате мы получили, что сумма углов треугольника АВС в точности равна 180°! В итоге мы можем сформулировать следующую теорему:

4 treugolnik

Задание. В треуг-ке один угол равен 50°, а второй – 60°. Чему равен третий угол этого треуг-ка?

Решение. Обозначим углы треугольника как ∠1, ∠2 и ∠3.

5 treugolnik

6 treugolnik

Получили обыкновенное уравнение с одной переменной. Для его решения просто перенесем слагаемые 50° и 60° из левой части в правую:

7 treugolnik

Задание. Докажите, что у любого треуг-ка есть хотя бы один угол, который не превосходит 60°.

Решение. Докажем это утверждение методом «от противного». Пусть существует такой треуг-к, у которого каждый из углов больше 60°. Это можно записать в виде трех неравенств:

8 treugolnik

В итоге имеем, что в сумме эти углы больше 180°, а это невозможно. Это противоречие, следовательно, треуг-к с тремя углами, каждый из которых больше 60°, не существует.

Задание. Основанием рав-бедр. ∆АВС является сторона АС. Известно, что ∠В = 40°. Чему равны ∠А и ∠С этого треуг-ка?

Решение. Сначала необходимо вспомнить важное свойство – углы равнобедренного треугольника при его основании равны друг другу. В нашем случае это значит, что ∠А = ∠С:

9 treugolnik

10 treugolnik

Задание. Один из углов при основании рав-бедр. треуг-ка равен 50°. Найдите два других угла.

Решение. Построим рисунок по условию задачи:

11 treugolnik

12 treugolnik

Отдельного внимания заслуживает равносторонний треуг-к. Напомним, что у него равны все три стороны. Построим его:

13 treugolnik

Теперь подумаем о том, чему равны его углы. С одной стороны, мы можем рассматривать ∆АВС как рав-бедр. с основанием АС, ведь AB = BC. Тогда∠А = ∠С. Но с другой стороны, всё тот же ∆АВС мы можем одновременно считать и рав-бедр. с основанием АВ, ведь АС = ВС. Из этого следует, что ∠А = ∠С. В итоге получаем, что все три угла ∆АВС равны:

14 treugolnik

15 treugolnik

Итак, получили удивительный факт – в равностороннем треуг-ке все углы равны 60°!

16 treugolnik

Рассмотрим чуть более сложную задачу, где неизвестен ни один из углов треуг-ка, однако известны некоторые соотношения между ними.

Задание. Первый угол треуг-ка больше второго в 2 раза, а третий равен сумме первых двух углов. Чему равны углы треуг-ка?

Решение. Для большей наглядности примем первый угол треуг-ка за неизвестную величину, то есть за х. Тогда второй угол будет равен , а третий окажется равным их сумме:

17 treugolnik

18 treugolnik

Внешние углы треугольника

Построим некоторый треуг-к, а потом продлим одну из его сторон. На рисунке мы продлили сторону АС. В результате образуется угол, который называют внешним углом треугольника:

19 treugolnik

На рисунке видно, что ∠ВСD является внешним. Но одновременно можно утверждать и ещё один факт – углы ∠АСВ и ∠ВСD являются смежными. Это позволяет нам дать следующее определение:

20 treugolnik

21 treugolnik

В итоге мы доказали, что внешний угол треугольника равен сумме двух углов треуг-ка, которые с ним не смежны.

22 treugolnik

Задание. У ∆АВС ∠А = 50°, ∠В = 75°. Найдите величину внешнего угла, смежного с ∠С.

23 treugolnik

Решение. В данном случае, согласно доказанному нами правилу, достаточно просто сложить ∠А и ∠B:

24 treugolnik

Рассмотрим ещё несколько более тяжелых задач.

Задание. В ∆АВС проведены биссектрисы угловА и B. Они пересекаются в точке М. Известно, что ∠А = 58°, B = 96°. Найдите ∠АМB.

Решение. Устно такую задачу не решить, поэтому построим рисунок:

25 treugolnik

АМ – это биссектриса, а она разбивает∠ВАС на два равных угла. Поэтому мы можем вычислить ∠ВАМ:

26 treugolnik

Отметим найденные углы на рисунке:

27 treugolnik

Обратите внимание на ∆АВМ, который выделен красным цветом. Теперь мы знаем два угла в нем. Значит, можно найти и третий! Запишем для ∆АВМ сумму его углов:

28 treugolnik

Задание. Построен внешний угол равнобедренного треугольника, который смежен с вершиной, лежащей против основания. Далее построили биссектрису этого внешнего угла. Докажите, что эта биссектриса будет параллельна основанию.

Решение. Выполним построение:

29 treugolnik

Пусть АС – это основание рав-бедр. ∆АВС. Тогда внешний угол должен быть проведен к вершине В, ведь именно она лежит против основания. Обозначим внешний угол как ∠СВD (для этого мы просто добавили точку Dна продолжение отрезка АВ). Далее проводим биссектрису ВК. Нам требуется доказать, что ВК||АС.

Поступим очень просто – обозначим неизвестную нам величину угла при основании как х. То есть

30 treugolnik

В результате мы получили, что и ∠С, и ∠CBK равны х, то есть они равны и друг другу. Однако эти углы являются накрест лежащими для прямых АС и ВК и секущей ВС. Из равенства накрест лежащих углов следует, что АС||ВК.

31 treugolnik

Задание. В ∆АВС проведена медиана АМ, причем ее длина равна ВМ. Найдите ∠А.

Решение. Напомним, что медиана – это прямая, разбивающая сторону на два равных отрезка. То есть ВМ = МС. По условию АМ = ВМ, значит, имеет место двойное равенство:

32 treugolnik

Посмотрите на рисунок – здесь есть сразу два рав-бедр. треуг-ка! Это ∆АВМ (с основанием АВ) и ∆АМС (с основанием АМС). Обозначим∠В как х, а ∠С – как у. Углы при основании рав-бедр. треуг-ков одинаковы, а потому

33 treugolnik

34 treugolnik

Сравнение сторон и углов треугольника

Докажем следующую теорему:

35 treugolnik

Построим ∆АВС, в котором сторона АВ будет длиннее, чем АС. Нам надо доказать, что ∠С >∠B:

36 treugolnik

Выполним дополнительное построение – отметим на прямой АВ такую точку D, что AD = АС. Точка D будет располагаться на отрезке АВ, ведь АВ больше АС, а, значит, и больше АD. Также соединим C и D отрезком:

37 treugolnik

Теперь рассмотрим ∆ADC. Он является рав-бедр., ведь AD = AC. Из этого следует, что ∠ADC = ∠ACD.

Можно заметить, что ∠АDС является внешним углом для ∆BDC. Это значит, что

38 treugolnik

Мы доказали только первую часть теоремы. Теперь надо доказать обратное утверждение – против большего угла находится большая сторона треугольника. Предположим обратное, что существует ∆АВС, в котором ∠С>∠B, но не выполняется условие АВ >AC. Тогда либо АВ = ВС, либо АВ <ВС. Первый вариант означает, что ∆АВС – рав-бедр., но тогда ∠С =∠B, что противоречит условию. Если же АВ <ВС, то по только что доказанному утверждению ∠С<∠B, что также противоречит исходному условию. Поэтому АВ >AC.

Задание. В ∆АВС известны углы:

39 treugolnik

Запишите стороны этого треуг-ка в порядке возрастания.

Решение. Всё очень просто – чем больше сторона, тем против большего угла она лежит. Поэтому самая большая сторона – это АВ, вторая по длине – АС, а наименьшая сторона – ВС. То есть BС<AС<AВ:

40 treugolnik

Доказанная теорема помогает сформулировать важный признак рав-бедр. треуг-ка:

41 treugolnik

Действительно, против равных углов должны лежать равные стороны, в противном случае сложится ситуация, когда в треуг-ке против сторон разной длины будут лежать равные углы, что невозможно.

Задание. В рав-бедр. ∆АВС основанием является АС. Из точек А и С проведены биссектрисы, которые пересеклись в точке О. Докажите, что ∆АОС также является рав-бедр.

Решение.

42 treugolnik

Ясно, что ∠ВАС = ∠ВСА, так как это углы при основании рав-бедр. ∆АВС. С другой стороны, ∠ОАС равен половине ∠ВАС, ведь АО – биссектриса:

43 treugolnik

В итоге имеем, что ∠ОАС и ∠АСО равны. Но тогда в ∆АОС есть два одинаковых угла, а потому он является рав-бедр. (АО = ОС).

Неравенство треугольника

Следующая важная теорема называется неравенством треугольника:

44 treugolnik

Попробуем доказать неравенство треугольника. Возьмем произвольный ∆АВС и покажем, что сторона АВ меньше, чем величина ВС + АС. Для этого «дорисуем» к отрезку АС ещё один отрезок СD, равный BC, при этом АС и СD должны лежать на одной прямой:

45 treugolnik

Так как AD = АС + СD, то нам достаточно показать, что АВ <AD. Ясно, что ∆ВСD является рав-бедр., ведь ВС = СD. Это значит, что

46 treugolnik

Получается, что в ∆АВD сторона АВ лежит против меньшего угла по сравнению со стороной АD. Значит, эта сторона должна быть меньше АD, что мы и пытаемся доказать.

Доказанная теорема означает, что не всякий треуг-к можно построить по его сторонам. Так, у нас никогда не получится построить треуг-к, у которого стороны равны 2, 3 и 7 см, так как одна из этих длин больше, чем сумма двух других:

7 > 2 + 3

Верно обратное утверждение – если все заданные длины удовлетворяют неравенству, то треуг-к построить можно.

Задание. Известны две стороны равнобедренного треугольника, они равны 25 и 10 см. Какая из них является основанием?

Решение. Рассмотрим сперва случай, когда основание равно 25 см. Тогда две другие стороны имеют длину 10 см. Их сумма (10 см + 10 см = 20 см) меньше основания. Такая ситуация невозможно из-за неравенства треуг-ка.

Ситуация же, при которой основание имеет длину 10 см, вполне допустима. Тогда две другие стороны равны 25 см, и для каждой стороны неравенство треуг-ка выполняется:

47 treugolnik

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти где стоит камера
  • Как с помощью площади найти стороны прямоугольника
  • Как найти скины с наклейками стандофф
  • Как найти течь масла на двигателе
  • Как составить тему сообщение на тему зачем нужны знаки препинания

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии