Как найти сумму первых шести чисел арифметической

Когда речь идет о таком параметре, как сумма арифметической прогрессии, подразумевается всегда сумма первых членов арифметической прогрессии или сумма членов прогрессии с k по n, то есть количество членов, которые берутся для суммы, строго ограничено в заданных условием пределах. В противном случае задание не будет иметь решения, так как вся числовая последовательность именно арифметической прогрессии начинается с конкретного числа — первого члена a1, и продолжается бесконечно.

Бытует мнение, что формула суммы арифметической прогрессии была открыта еще Гауссом, как быстрый и точный способ расчета суммы чисел в определенной последовательности. Он заметил, что такая прогрессия является симметричной, то есть сумма симметрично расположенных с начала и конца членов прогрессии является постоянной для данного ряда.

a1+an=a2+a(n-1)=a3+a(n-2)=⋯

Соответственно, он нашел данную сумму и умножил ее на половину от общего количества чисел в последовательности, участвующих в расчете суммы. Таким образом, была выведена формула суммы арифметической прогрессии

Пример. Предположим, задано условие: «Найдите сумму первых десяти (10) членов арифметической прогрессии». Для этого понадобится следующие данные: разность прогрессии и первый ее член. Если в задаче дан какой-либо n член арифметической прогрессии вместо первого, тогда сначала нужно воспользоваться разделом, где представлена формула нахождения первого члена прогрессии, и найти его. Затем исходные данные вбиваются в калькулятор и он производит расчеты, складывая первый и десятый члены, и умножая полученную сумму на половину от общего количества складываемых членов – на 5. Аналогично происходит, если нужно найти сумму первых шести членов или любого другого количества.

В случае, когда необходимо найти сумму членов арифметической прогрессии, начинающихся не с первого, а с пятого члена, к примеру, тогда среднее арифметическое остается тем же, а общее количество членов берется как увеличенная на единицу разность между порядковыми номерами взятых членов.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Смотрите также

15
Июл 2013

Категория: Справочные материалы

Арифметическая прогрессия. Сумма n первых членов арифметической прогрессии

2013-07-15
2021-06-27

44Первую часть статьи об арифметической прогрессии смотрим  здесь.

Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100.

Юный Гаусс  (10 лет) мгновенно получил результат: 5050.

1+2+3+4+5+5+...+97+98+99+100=?

А как бы считали вы? + показать


Сумма n первых членов арифметической прогрессии

Сумма первых  n членов арифметической прогрессии S_n=a_1+a_2+a_3+...+a_n может быть найдена по формулам

S_n=frac{a_1+a_n}{2}cdot n

S_n=frac{2a_1+(n-1)d}{2}cdot n,

где  a_1 — первый член прогрессии,  a_n— член с номером n,  n— количество суммируемых членов.

(Вторая формула – результат подстановки формулы a_n=a_1+(n-1)d в первую формулу)


Пример 1. Арифметическая прогрессия задана формулой a_n=20-3n.

Найдите сумму первых десяти членов прогрессии.

Решение: + показать


Пример 2. Найдите сумму натуральных четных чисел, не превосходящих 40.

Решение:  + показать


Пример 3. Сколько последовательных натуральных чисел, начиная с 1, нужно сложить, чтобы их сумма была равна 153?

Решение:  + показать


Пример 4. Арифметическая прогрессия задана формулой a_n=103-5n.

Найдите сумму членов данной прогрессии с 5-го по 16 включительно.

Решение:  + показать


Пример 5.  Найдите сумму двузначных натуральных чисел, не кратных 4.

Решение:  + показать


тест

Вы можете пойти тест по теме «Сумма арифметической прогрессии».

Автор: egeMax |

комментариев 6

Определение

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1n+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.

Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18….., так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.

Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:

a2 = a1 + d;

a3 = a2 + d = a1+2d;

a4 = a3 + d = a1+3d.

Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:

Формула n-ого члена арифметической прогрессии

an = a1 + d(n−1)

где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии

Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.

Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.

Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.

Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.

Утверждение

Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.

Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5×20+1=101.

Свойство арифметической прогрессии

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:

аn=(аn-1+ аn+1):2

Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.

Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а911):2=(24+38):2=31. Таким образом, десятый член равен 31.

Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.

Формулы суммы n первых членов арифметической прогрессии

Для нахождения суммы (обозначим ее буквой S) большого количества членов арифметической прогрессии существует формула, позволяющая это сделать быстро.

Формула суммы членов арифметической прогрессии с известными членами

Sn=
(a1+an
)n
2

В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.

Формула суммы членов арифметической прогрессии с первым членом и разностью

Sn=2a1+d(n1)2n

Рассмотрим на примерах применение данных формул.

Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.

Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:

S50=(a1+a50
)50
2
=(11+39)502=25002=1250

Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.

Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:

d=18-3=15; а10=3+15(10-1)=138

S10=(a1+a10
)10
2
=(3+138)102=705

Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:

S10=2a1+d(101)210=2×3+15(101)210=705

Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.

Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.

Задание OM1420223

Миша решил заказать себе такси. Подача машины и первые пять минут поездки в совокупности стоят 159 рублей, а стоимость каждой последующей минуты поездки фиксирована. Стоимость поездки с 6 по 15 минуту (включительно) составила 80 рублей, а с 6 по 25 минуту – 160 рублей. Найти итоговую стоимость поездки, если она длилась 1 час.


Выпишем, что мы имеем по условию задачи в левый столбец, а в правый запишем то, что из этого следует

Известно Решение
Подача и первые 5 минут – 159 руб
Стоимость с 6 по 15 минуту – 80 рублей

Стоимость с 6 по 25 минуту – 160 рублей.

Разница во времени 10 минут стоит 80 руб
Значит, 1 минута стоит 8 руб (80:10=8)
1 час – ? руб 1 час=60 мин; убираем 5 минут, которые включены в подачу машины, значит, надо найти стоимость 55 минут: 558=440 руб

Прибавляем стоимость подачи: 440+159=599 рублей

Ответ: 599

pазбирался: Даниил Романович | обсудить разбор

Задание OM1420221

В амфитеатре 12 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?


Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем.

Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1=18; так как в каждом последующем ряду мест на 2 больше, то разность арифметической прогрессии d=2. Надо найти, сколько всего мест в амфитеатре, т.е. найти сумму арифметической прогрессии S12.

Для нахождения суммы имеем формулу Sn=a1+an2×n, то есть для нашей задачи S12=a1+a122×12. У нас нет а12, найдем его по формуле n-ого члена арифметической прогрессии: a12=a1+d(n-1)=18+2(12-1)=18+22=40. Подставим данные в формулу суммы:

S12=18+402×12=348

Следовательно, 348 мест всего в амфитеатре.

Проверка: можно проверить решение следующим способом, просто прибавляя по 2 места в каждый ряд до 12-ого, а затем сложить количество мест. Записать можно так: 18+20+22+24+26+28+30+32+34+36+38+40=348. Этим же способом, кстати, можно решить задачу, если от волнения забыли про арифметическую прогрессию.

Ответ: 348

pазбирался: Даниил Романович | обсудить разбор

Задание 14OM21R

При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 80С. Найдите температуру вещества (в градусах Цельсия) через 6 минут после начала проведения опыта, если его начальная температура составляла -60С.


Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее:

-6-8=-14 через 1 минуту

-14-8=-22 через 2 минуты

-22-8=-30 через 3 минуты

-30-8=-38 через 4 минуты

-38-8=-46 через 5 минут

-46-8=-54 через 6 минут

Значит, наш ответ -540С

Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an=a1+d(n – 1). В данном случае a1=-6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7=-61-8(7 – 1). Вычислим: a6=-6-85=-6-48=-54.

Ответ: -54

pазбирался: Даниил Романович | обсудить разбор

Задание OM1407

К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года?


Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

Рассмотрим данные:

2008 г – 38100 человек

2012 г – ? человек

2016 г. – 43620 человек

Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

Ответ: 40860

pазбирался: Даниил Романович | обсудить разбор

Задание OM1406

Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень?


Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается. То есть знаменатель геометрической прогрессии q равен 2, b1=2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn=b1(qn1)q1, где Sn>30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.

Подставляем наши данные в формулу: 2(2n1)21>30000

Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2n-1)>30000; делим обе части на 2: 2n-1>15000; переносим 1 в правую часть и получим: 2n>15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 210=1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 214=16384, где 16384<15001. Следовательно, наш ответ 14 минут.

Ответ: 14

pазбирался: Даниил Романович | обсудить разбор

Задание OM1405

В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля?


В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Составим формулу для наших а12 и а7, а затем подставим в нее данные: d=a12a7127; d=852777127=15. Теперь по этой же формуле найдем а25, связывая его с а12: d=a25a122512; 15=a2585213; найдем отсюда а25, а25=15∙13+852=1047.

Ответ: 1047

pазбирался: Даниил Романович | обсудить разбор

Задание OM1404

Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.


В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn=а1+аn2n, куда мы и подставим все данные: 176=6+а11211.

Разделим обе части на 11, получим 16= 6+а112 ; умножим 16 на 2 (правило пропорции): 32=6+а11. Отсюда найдем а11=32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.

Ответ: 26

pазбирался: Даниил Романович | обсудить разбор

Задание OM1403

Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут?


Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

Ответ: 5

pазбирался: Даниил Романович | обсудить разбор

Задание OM1402

Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам.


Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

Sn=а1+аn2n, имеем 60=7,5  n2. Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.

Ответ: 16

pазбирался: Даниил Романович | обсудить разбор

Задание OM1401

При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции.


При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

Ответ: 1,4

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 8.2k

Арифметической прогрессией называют числовую последовательность, каждый следующий член которой получается из предыдущего прибавлением к нему постоянного числа. Это число называют разностью арифметической прогрессии и обозначают буквой (d).

Например, последовательность (2); (5); (8); (11); (14)… является арифметической прогрессией, потому что каждый следующий элемент отличается от предыдущего на три (может быть получен из предыдущего прибавлением тройки):

Пример арифметической прогрессии

В этой прогрессии разность (d) положительна (равна (3)), и поэтому каждый следующий член больше предыдущего. Такие прогрессии называются возрастающими.

Однако (d) может быть и отрицательным числом. Например, в арифметической прогрессии (16); (10); (4); (-2); (-8)… разность прогрессии (d) равна минус шести.

убывающая арифметическая прогрессия

И в этом случае каждый следующий элемент будет меньше, чем предыдущий. Эти прогрессии называются убывающими.

Обозначение арифметической прогрессии

Прогрессию обозначают маленькой латинской буквой.

Числа, образующие прогрессию, называют ее членами (или элементами).

Их обозначают той же буквой что и арифметическую прогрессию, но с числовым индексом, равным номеру элемента по порядку.

Например, арифметическая прогрессия (a_n = left{ 2; 5; 8; 11; 14…right}) состоит из элементов (a_1=2); (a_2=5); (a_3=8) и так далее.

Иными словами, для прогрессии (a_n = left{2; 5; 8; 11; 14…right})

порядковый номер элемента (1) (2) (3) (4) (5)
обозначение элемента (a_1) (a_2) (a_3) (a_4) (a_5)
значение элемента (2) (5) (8) (11) (14)

Решение задач на арифметическую прогрессию

В принципе, изложенной выше информации уже достаточно, чтобы решать практически любую задачу на арифметическую прогрессию (в том числе из тех, что предлагают на ОГЭ).

Пример (ОГЭ). Арифметическая прогрессия задана условиями (b_1=7; d=4). Найдите (b_5).
Решение:

начало арифметической прогрессии

В этой задаче нам дано начало цепочки (первый элемент) и шаг (разность). Зная их, мы легко можем восстановить прогрессию до любого нужного нам члена (в нашем случае – пятого).

найдите 5 член прогрессии

Вот и все. Нужное нам значение найдено.

Ответ:   (b_5=23)

Пример (ОГЭ). Даны первые три члена арифметической прогрессии: (62; 49; 36…) Найдите значение первого отрицательного члена этой прогрессии..
Решение:

Найдите значение первого отрицательного члена прогрессии

Нам даны первые элементы последовательности и известно, что она – арифметическая прогрессия. То есть, каждый элемент отличается от соседнего на одно и то же число. Узнаем на какое, вычтя из следующего элемента предыдущий: (d=49-62=-13).

нахождение разности прогрессии

Теперь мы можем восстановить нашу прогрессию до нужного нам (первого отрицательного) элемента.

находим первый отрицательный член прогрессии

Готово. Можно писать ответ.

Ответ:   (-3)

Пример (ОГЭ). Даны несколько идущих подряд элементов арифметической прогрессии: (…5; x; 10; 12,5…) Найдите значение элемента, обозначенного буквой (x).
Решение:

найдите элемент прогрессии

Чтоб найти (x), нам нужно знать на сколько следующий элемент отличается от предыдущего, иначе говоря – разность прогрессии. Найдем ее из двух известных соседних элементов: (d=12,5-10=2,5).

находим разность прогрессии 

А сейчас без проблем находим искомое: (x=5+2,5=7,5).

находим элемент прогрессии

Готово. Можно писать ответ.

Ответ:   (7,5).

Пример (ОГЭ). Арифметическая прогрессия задана следующими условиями: (a_1=-11); (a_{n+1}=a_n+5) Найдите сумму первых шести членов этой прогрессии.
Решение:

найдите сумму первых шести членов прогрессии

Находим элементы прогрессии

Нам нужно найти сумму первых шести членов прогрессии. Но мы не знаем их значений, нам дан только первый элемент. Поэтому сначала вычисляем значения по очереди, используя данное нам рекуррентное соотношение:

(n=1);   (a_{1+1}=a_1+5=-11+5=-6)
(n=2);   (a_{2+1}=a_2+5=-6+5=-1)
(n=3);   (a_{3+1}=a_3+5=-1+5=4)
А вычислив нужные нам шесть элементов — находим их сумму.

(S_6=a_1+a_2+a_3+a_4+a_5+a_6=)
(=(-11)+(-6)+(-1)+4+9+14=9)

Искомая сумма найдена.

Ответ:   (S_6=9).

Пример (ОГЭ).В арифметической прогрессии (a_{12}=23);   (a_{16}=51). Найдите разность этой прогрессии.
Решение:

Построим цепочку из элементов

Мы знаем (12)-ый и (16)-ый элементы – и больше ничего. Однако этого достаточно для того, чтобы найти разность. Нужно просто посмотреть на схему слева и понять, что мы можем получить (16)-ый элемент из (12)-го, «сделав 4 шага», то есть четыре раза прибавив разность прогрессии. Иными словами: (a_{12}+d+d+d+d=a_{16}).

(a_{12}+4d=a_{16})

Подставляем известные величины.

(23+4d=51)

Теперь решаем линейное уравнение, и без проблем находим (d). Переносим (23), поменяв знак.

(4d=51-23)

Вычисляем правую часть…

(4d=28)

…и делим на коэффициент перед неизвестной.

(d=7)

Готов ответ.

Ответ:   (d=7).

Важные формулы арифметической прогрессии

Как видите, многие задачи по арифметической прогрессии можно решать, просто поняв главное – то, что арифметическая прогрессия есть цепочка чисел, и каждый следующий элемент в этой цепочке получается прибавлением к предыдущему одного и того же числа (разности прогрессии).

Однако порой встречаются ситуации, когда решать «в лоб» весьма неудобно. Например, представьте, что в самом первом примере нам нужно найти не пятый элемент (b_5), а триста восемьдесят шестой (b_{386}). Это что же, нам (385) раз прибавлять четверку? Или представьте, что в предпоследнем примере надо найти сумму первых семидесяти трех элементов. Считать замучаешься…

Поэтому в таких случаях «в лоб» не решают, а используют специальные формулы, выведенные для арифметической прогрессии. И главные из них это формула энного члена прогрессии и формула суммы (n) первых членов.

Формула (n)-го члена: (a_n=a_1+(n-1)d),  где   (a_1) – первый член прогрессии;
                                                                                (n) – номер искомого элемента;
                                                                                (d) – разность прогрессии;  
                                                                                (a_n) – член прогрессии с номером (n).

Эта формула позволяет нам быстро найти хоть трехсотый, хоть миллионный элемент, зная только первый и разность прогрессии.

Пример. Арифметическая прогрессия задана условиями: (b_1=-159); (d=8,2). Найдите (b_{246}).
Решение:

(b_1=-159); (d=8,2)
(b_{246}=?)

Больше двухсот раз прибавлять (8,2) к (-159) – перспектива не самая радужная. Лучше воспользуемся формулой, подставив вместо (n) номер искомого элемента.

(n=246); (b_{246}=-159+(246-1)·8,2=)
(=-159+245·8,2=)
(=-159+2009=1850)

Можно писать ответ.

Ответ:   (b_{246}=1850).

Формула суммы n первых членов: (S_n=frac{a_1+a_n}{2} cdot n), где 


(S_n) – искомая сумма (n) первых элементов;
(a_1) – первый суммируемый член;
(a_n) – последний суммируемый член;  
(n) – количество элементов в сумме.

Пример (ОГЭ).Арифметическая прогрессия задана условиями (a_n=3,4n-0,6). Найдите сумму первых (25) членов этой прогрессии.
Решение:

(S_{25}=)(frac{a_1+a_{25}}{2 })(cdot 25)

Чтобы вычислить сумму первых двадцати пяти элементов, нам нужно знать значение первого и двадцать пятого члена.
Наша прогрессия задана формулой энного члена в зависимости от его номера (подробнее смотри здесь). Давайте вычислим первый элемент, подставив вместо (n) единицу.

(n=1;) (a_1=3,4·1-0,6=2,8)

Теперь найдем двадцать пятый член, подставив вместо (n) двадцать пять.

(n=25;) (a_{25}=3,4·25-0,6=84,4)

Ну, а сейчас без проблем вычисляем искомую сумму.

(S_{25}=)(frac{a_1+a_{25}}{2})(cdot 25=)
(=) (frac{2,8+84,4}{2})(cdot 25 =)(1090)

Ответ готов.

Ответ:   (S_{25}=1090).

Для суммы (n) первых членов можно получить еще одну формулу: нужно просто в (S_{25}=)(frac{a_1+a_{25}}{2})(cdot 25) вместо (a_n) подставить формулу для него (a_n=a_1+(n-1)d). Получим:

Формула суммы n первых членов: (S_n=)(frac{2a_1+(n-1)d}{2})(cdot n), где 


(S_n) – искомая сумма (n) первых элементов;
(a_1) – первый суммируемый член;
(d) – разность прогрессии;
(n) – количество элементов в сумме.

Пример .Найдите сумму первых (33)-ех членов арифметической прогрессии: (17); (15,5); (14)…
Решение:

(S_{33}=)(frac{2a_1+(33-1)d}{2})(cdot 33)

Для решения задачи воспользуемся последней формулой. Первый элемент известен, нужно найти только разность прогрессии (d). Вычисляем ее как разность двух соседних элементов.

(d=a_2-a_1=15,5-17=-1,5)

Теперь можно посчитать сумму (33)-ех элементов.

(S_{33}=)(frac{2 cdot 17+(33-1)(-1,5)}{2})(cdot 33=)

Готово. Быстро и просто, почти как Доширак.  Но гораздо менее вредно.

(=)(frac{34-32·1,5}{2})(cdot 33)(=-231)

Ответ готов.

Ответ:   (S_{33}=-231).

Более сложные задачи на арифметическую прогрессию

Теперь у вас есть вся необходимая информация для решения практически любой задачи на арифметическую прогрессию. Завершим тему рассмотрением задач, в которых надо не просто применять формулы, но и немного думать (в математике это бывает полезно ☺)

Пример (ОГЭ).Найдите сумму всех отрицательных членов прогрессии: (-19,3); (-19); (-18,7)…
Решение:

(S_n=)(frac{2a_1+(n-1)d}{2})(cdot n)

Задача очень похожа на предыдущую. Начинаем решать также: сначала найдем (d).

(d=a_2-a_1=-19-(-19,3)=0,3)

Теперь бы подставить (d) в формулу для суммы… и вот тут всплывает маленький нюанс – мы не знаем (n). Иначе говоря, не знаем сколько членов нужно будет сложить. Как это выяснить? Давайте думать. Мы прекратим складывать элементы тогда, когда дойдем до первого положительного элемента. То есть, нужно узнать номер этого элемента. Как? Запишем формулу вычисления любого элемента арифметической прогрессии: (a_n=a_1+(n-1)d) для нашего случая.

(a_n=a_1+(n-1)d)

(a_n=-19,3+(n-1)·0,3)

Нам нужно, чтоб (a_n) стал больше нуля. Выясним, при каком (n) это произойдет.

(-19,3+(n-1)·0,3>0)

Решаем полученное неравенство. Переносим (-19,3) через знак сравнения.

((n-1)·0,3>19,3)           (|:0,3)

Делим обе части неравенства на (0,3).

(n-1>)(frac{19,3}{0,3})

Переносим минус единицу, не забывая менять знаки

(n>)(frac{19,3}{0,3})(+1)

Вычисляем…

(n>65,333…)

…и выясняется, что первый положительный элемент будет иметь номер (66). Соответственно, последний отрицательный имеет (n=65). На всякий случай, проверим это.

(n=65;)      (a_{65}=-19,3+(65-1)·0,3=-0,1)
(n=66;)      (a_{66}=-19,3+(66-1)·0,3=0,2)

Таким образом, нам нужно сложить первые (65) элементов.

(S_{65}=)(frac{2 cdot (-19,3)+(65-1)0,3}{2})(cdot 65)
(S_{65}=)({-38,6+19,2}{2})(cdot 65=-630,5)

Ответ готов.

Ответ:   (S_{65}=-630,5).

Пример (ОГЭ).Арифметическая прогрессия задана условиями: (a_1=-33); (a_{n+1}=a_n+4). Найдите сумму от (26)-го до (42) элемента включительно.
Решение:

(a_1=-33;) (a_{n+1}=a_n+4)

В этой задаче также нужно найти сумму элементов, но начиная не с первого, а с (26)-го. Для такого случая у нас формулы нет. Как решать?
Легко — чтобы получить сумму с (26)-го до (42)-ой, надо сначала найти сумму с (1)-ого по (42)-ой, а потом вычесть из нее сумму с первого до (25)-ого (см картинку).

сумма арифметической прогрессии

Для нашей прогрессии (a_1=-33), а разность (d=4) (ведь именно четверку мы добавляем к предыдущему элементу, чтоб найти следующий). Зная это, найдем сумму первых (42)-ух элементов.

(S_{42}=)(frac{2 cdot (-33)+(42-1)4}{2})(cdot 42=)
(=)(frac{-66+164}{2})(cdot 42=2058)

Теперь сумму первых (25)-ти элементов.

(S_{25}=)(frac{2 cdot (-33)+(25-1)4}{2})(cdot 25=)
(=)(frac{-66+96}{2})(cdot 25=375)

Ну и наконец, вычисляем ответ.

(S=S_{42}-S_{25}=2058-375=1683)

Ответ:   (S=1683).

Для арифметической прогрессии существует еще несколько формул, которые мы не рассматривали в данной статье ввиду их малой практической полезности. Однако вы без труда можете найти их здесь.

Смотрите также:  

Числовая последовательность
Геометрическая прогрессия

Калькулятор суммы членов арифметической прогрессии поможет найти сумму членов по двум формулам. Первая формула применяется если вам известны первый член прогрессии, n-й член и количество суммируемых элементов. Вторая формула используется если вы знаете первый член, разность и количество элементов для суммирования.

Формулы суммы членов арифметической прогрессии

Чтобы найти сумму первых членов арифметической прогрессии, можно воспользоваться одной из нижеприведенных формул:

1) {S_n=dfrac {a_1+a_n}{2} cdot n},

2) {S_n=dfrac {2a_1+d(n-1)}{2} cdot n}

a1 — первый член прогрессии,

an — член прогрессии под номером n,

d — разность прогрессии (разница между членами прогрессии),

n — номер члена

Примеры нахождения суммы арифметической прогрессии

Задача 1

Дана арифметическая прогрессия: -4; -2; 0… Найдите сумму первых десяти ее членов.

Решение

Первый член прогрессии a1 = -4.

Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 — a1 = -2 — (-4) = 2.

Количество суммируемых членов равно 10, т. е. n = 10. Подставим значения во вторую формулу и получим результат:

S_n=dfrac {2a_1+d(n-1)}{2} cdot n = dfrac {2 cdot -4+2(10-1)}{2} cdot 10 = dfrac {-8+18}{2} cdot 10 = 50

Ответ: 50

Используем калькулятор для проверки.

Задача 2

Найдите сумму первых 10 членов арифметической прогрессии -23; -20;…

Решение

Первый член прогрессии a1 = -23.

Найдем шаг прогрессии: d = a2 — a1 = -20 — (-23) = 3.

Найдем десятый член прогрессии по формуле: a_n=a_1+(n-1)cdot d = -23 + (10-1) cdot 3 = -23 + 27 = 4

Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 — a1 = -2 — (-4) = 2.

Подставим значения в первую формулу и получим результат:

S_n=dfrac {a_1+a_n}{2} cdot n = dfrac {-23+4}{2} cdot 10 = dfrac {-19}{2} cdot 10 = -9.5 cdot 10 = -95

Ответ: -95

Проверим ответ на калькуляторе .

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти среднее гармоническое трех чисел
  • Как составит претензию на оказание юридических услуг
  • Как найти на компьютере презентацию powerpoint
  • Как найти путь в тронный зал
  • Как найти галерею эффектов в инстаграм

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии