Как найти сумму целых положительных решений неравенства

Найти сумму целых решений неравенства:|x+2|*(x²+3x-4)<0

Решение:
Рассмотрим первый множитель произведения левой части неравенства 
                                    |x+2|
≥0 для всех значений х∈R
                                         х+2=0 при х=-2
Следовательно при х=-2 неравенство не имеет смысла.
Поэтому можно записать, что
                                           x² + 3x — 4 < 0
Решим неравенство по методу интервалов. Разложим квадратный трехчлен на множителя решив квадратное уравнение
                                          x² + 3x — 4 = 0
                             D =3²-4*(-4) = 9 + 16 = 25
х₁=(-3-5)/2=-4
х₂=(-3+5)/2=1
Поэтому                 x² + 3x — 4 =(х+4)(x-1)
Заново запишем неравенство
                                      (х + 4)(x — 1) < 0
На числовой прямой отобразим точки где левая часть неравенства меняет свои знаки. По методу подстановки определим знаки левой части неравенства и отобразим их на числовой прямой. Например при х=0   (х + 4)(x — 1)=4*(-1)=-4<0

       +               0            —              0           +
———————!————————!—————
                       -4                           1
Следовательно  x² + 3x — 4 < 0 при х∈(-4;1)
Учитывая что х≠-2 можно записать что исходное неравенство
 |x+2|*(x²+3x-4)<0 истинно для всех значений х∈(-4;-2)U(-2;1).
Целых решений неравенства три: -3; -1; 0.
Сумма целых решений неравенства равна 0 — 1 — 3 = -4

Ответ:-4

Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.

 Алгебраические неравенства.

Квадратные неравенства. Рациональные неравенства высших степеней.

Дробно-рациональные неравенства.

Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.

  1. I. Квадратные неравенства, то есть неравенства вида

ax2 + bx + c > 0 (< 0), a ≠ 0.

Будем считать, что a>0. Если это не так, то умножив обе части неравенства на -1 и изменив знак неравенства на противоположный, получим желаемое.

Чтобы решить неравенство можно:

  1. Квадратный трехчлен разложить на множители, то есть неравенство записать в виде

a (x — x1) (x — x2) > 0 (< 0).

  1. Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
  2. Определить знак a (x — x1) (x — x2) в каждом промежутке и записать ответ.

Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.

Примеры:

  • Решить неравенство. x2 + x — 6 > 0.

Решение.

Разложим квадратный трехчлен на множители (x + 3) (x — 2) > 0

Ответ: x  (-∞; -3)  (2; +∞).

2) (x — 6)2 > 0

Решение:

Это неравенство верно при любом х, кроме х = 6.

Ответ: (-∞; 6)  (6; +∞).      

3) x² + 4x + 15 < 0.

Решение:

Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.

Ответ: x Î Ø.

Решить неравенства:

  1. 1 + х — 2х² < 0.                              Ответ:
  2. 3х² — 12х + 12 ≤ 0. Ответ:
  3. 3х² — 7х + 5 ≤ 0. Ответ:
  4. 2х² — 12х + 18 > 0.          Ответ:
  5. При каких значениях a неравенство

      x² — ax >  выполняется для любых х?               Ответ:

  1. II. Рациональные неравенства высших степеней, то есть неравенства вида

anxn + an-1xn-1 + … + a1x + a0 > 0 (<0), n>2.

Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде

an (x — x1) (x — x2) ·…· (x — xn) > 0 (<0).

Отметить на числовой оси точки, в которых многочлен обращается в нуль.

Определить знаки многочлена на каждом промежутке.

Примеры:

1) Решить неравенство x4 — 6x3 + 11x2 — 6x < 0.

Решение:

x4 — 6x3 + 11x2 — 6x = x (x3 — 6x2 + 11x -6) = x (x3 — x2 — 5x2 + 5x +6x — 6) =x (x — 1)( x2 -5x + 6) =

x (x — 1) (x — 2) (x — 3). Итак, x (x — 1) (x — 2) (x — 3)<0

Ответ: (0; 1)  (2; 3).

2) Решить неравенство  (x -1)5 (x + 2) (x — ½)7 (2x + 1)4 <0.

Решение:

Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х =  ½, х = — ½.

В точке х = — ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1)4 не меняет знак при переходе через точку х = — ½.

Ответ: (-∞; -2)  (½; 1).

3) Решить неравенство: х2 (х + 2) (х — 3) ≥ 0.

Решение:

Данное неравенство равносильно следующей совокупности

 Решением (1) является х  (-∞; -2)  (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2]  {0}  [3; +∞).

Ответ: х  (-∞; -2]  {0}  [3; +∞).

Решить неравенства:

  1. (5х — 1) (2 — 3х) (х + 3) > 0. Ответ:
  2. x3 + 5x2 +3x — 9 ≤ 0. Ответ:
  3. (x — 3) (x — 1)² (3x — 6 — x²) < 0. Ответ:
  4. (x² -x)² + 3 (x² — x) + 2 ≥ 0. Ответ:

III. Дробно-рациональные неравенства.

При решении таких неравенств можно придерживаться следующей схемы.

  1. Перенести все члены неравенства в левую часть.
  2. Все члены неравенства в левой части привести к общему знаменателю, то есть неравенство записать в виде

 > 0 (<0).

  1. Найти значения х, при которых функция y=может менять свой знак. Это корни уравнений
  2. Нанести найденные точки на числовую ось. Эти точки разбивают множество действительных чисел на промежутки, в каждом их которых функция будет знакопостоянной.
  3. Определить знак в каждом промежутке, вычисляя, например, значение данного отношения в произвольной точке каждого промежутка.
  4. Записать ответ, обращая особое внимание на граничные точки промежутков. При решении строгого неравенства >0 (<0) граничные точки в ответ не включаются. При решении нестрогого неравенства ≥ 0 ( ≤ 0), если точка является корнем знаменателя, то она не включается в ответ (даже если она одновременно является корнем числителя). Если же точка является корнем одного числителя, то она включается в ответ.

Примеры.

1). Решить неравенство .

Решение:  > 0, > 0,  > 0

Найдем нули числителя и знаменателя. Это х = 3, х = 5, х=1. Наносим найденные точки на числовую ось и определяем знаки  в каждом промежутке   

Выбираем любой х(5; +), например х = 10. Тогда  < 0.

               Выбираем х = 4 (3; 5).

Получаем  > 0. При х = 2 (1; 3). Получаем > 0.

Наконец, при х = 0 (-; 1). Вычисляем   < 0.

Ответ: х (1; 3)  (3; 5).

2). Найти сумму целых решений неравенства.

Решение. Найдем нули числителя и знаменателя дроби. Это х = -1, х=8, х = 3, х= 5.

Нанесем найденные точки на числовую ось и определим знак дроби в каждом промежутке, вычисляя значение этой дроби в произвольной точке каждого промежутка.

Решением исходного неравенства является

х [-1, 3)  (3; 5)  {8}. Найдем сумму целых решений: -1 +1+0+ 2 + 4 + 8 = =14.

Ответ: 14.

Что значит найдите сумму целых решений неравенства

Обновлено 5 марта, 2022

Сумма целых решений неравенства

Нужно найти сумму целых решений неравенства , удовлетворяющих условию x >= -1

Не пойму с чего начать. И не пойму как выразить x 🙁

Допустим знак корня распространяется на оба множителя
Замена 7–3x=u
√((u+2)(u–2)) ≥ 0
(u+2)(u–2) ≥ 0
u ≤ –2 ∨ u ≥ 2
7–3x ≤ –2 ∨ 7–3x ≥ 2
–3x ≤ –9 ∨ –3x ≥ –5
x ≥ 3 ∨ x ≤ 5/3
Если добавить условие x ≥ -1, то решение будет составлять множество [-1;5/3]∪[3;+∞), в котором бесконечно много целых решений.
При таком условии вопрос некорректен.

Значит имелось в виду, что знак корня распространяется только на первый множитель
√(u+2) (u-2) ≥ 0
число под корнем должно быть неотрицательным
второй множитель может быть отрицательным, только если первый равен нулю
u+2 ≥ 0 ∧ ((u–2) ≥ 0 ∨ u+2 = 0)
u ≥ –2 ∧ (u ≥ 2 ∨ u = –2)
(u ≥ –2 ∧ u = –2) ∨ (u ≥ –2 ∧ u ≥ 2)
u=–2 ∨ u ≥ 2
7–3x = –2 ∨ 7–3x ≥ 2
–3x=–9 ∨ –3x ≥ –5
x=3 ∨ x ≤ 5/3
с добавлением условия x≥–1 решение будет составлять множество [–1;5/3]∪ <3>
целые решения это числа –1,0,1,3
их сумма равна 2
!поправочка, их сумма равна 3, конечно

Выпишите ОДЗ: x ≤ 3; Затем методом интервалов найдите решения. Должно получиться так:

Сумма целых решений, удовлетворяющих условию: -1 + 0 + 1 + 3 = 3

Источник

Раскрывая скобки и приводя подобные члены, приходим к неравенству 28*x≤224, или x≤8. Целыми положительными решениями этого неравенства являются числа 1,2,3,4,5,6,7,8, а их сумма S=36. Ответ: 36. 

Отмена




Глеб Куреев


Отвечено 13 августа 2019

  • Комментариев (0)

Добавить

Отмена

 Задание. Найдите сумму всех
целых решений неравенства |
x2-3x-13|>x2-3x-13

Варианты ответов:

1)   
-9;

2)   
9;

3)   
0;

4)   
-12;

5)   
12.

Анализ

Обратим внимание, что
выражение под модулем и выражение в правой части – равные многочлены, поэтому
проанализируем, при каких
a верно
неравенство |
a|>a. Понятно, что нам
нужно рассмотреть случаи, когда
a
отрицательное, положительное и равное нулю. Подставляем любые значения
a и
смотрим, верно ли неравенство:

При a=-1: |-1|>-1 – верно;

При a=0: |0|>0 – неверно.

При a=1: |1|>1 – неверно.

Решение

То есть, неравенство
верно, когда под модулем стоит отрицательное выражение, поэтому исходное
неравенство равносильно неравенству
x2-3x-13<0
– квадратное неравенство.

Рассмотрим функцию y= x2-3x-13.
График – парабола, ветви направлены вверх, нули:
D=9+4∙13=61. Корни находим приблизительно:
x1=(3-7,8)/2=-2,2;
x2=(3+7,8)/2=5,4
.
Строим схематично график:

Решение неравенства xϵ(-2,2; 5,4). Целые значения переменной
-2; -1; 0; 1; 2; 3; 4; 5. Сумма 3+4+5=12.

Ответ. 5

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти ответы на тест по информатике
  • Как найти спутник мтс с помощью телефона
  • Как на своем участке найти монеты
  • Как найти невестку для сына
  • Как найти на телефоне память устройства

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии