Как найти среднеквадратическую погрешность


Загрузить PDF


Загрузить PDF

После сбора данных их нужно проанализировать. Обычно нужно найти среднее значение, квадратичное отклонение и погрешность. Мы расскажем вам, как это сделать.

  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 1

    1

    Запишите числовые значения, которые вы собираетесь анализировать. Мы проанализируем случайно подобранные числовые значения в качестве примера.

    • Например, 5 школьникам был предложен письменный тест. Их результаты (в баллах по 100 бальной системе): 12, 55, 74, 79 и 90 баллов.

    Реклама

  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 2

    1

    Для того чтобы посчитать среднее значение, нужно сложить все имеющиеся числовые значения и разделить получившееся число на их количество.

    • Среднее значение (μ) = Σ/N, где Σ сумма всех числовых значений, а N количество значений.
    • То есть, в нашем случае μ равно (12+55+74+79+90)/5 = 62.
  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 3

    1

    Мы будем считать среднее отклонение. Среднее отклонение = σ = квадратный корень из [(Σ((X-μ)^2))/(N)].

    • Для вышеуказанного примера это квадратный корень из [((12-62)^2 + (55-62)^2 + (74-62)^2 + (79-62)^2 + (90-62)^2)/(5)] = 27,4. (Обратите внимание, что если это выборочное среднеквадратическое отклонение, то делить нужно на N-1, где N количество значений.)

    Реклама

  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 4

    1

    Считаем среднюю погрешность (среднего значения). Это оценка того, насколько сильно округляется общее среднее значение. Чем больше числовых значений, тем меньше средняя погрешность, тем точнее среднее значение. Для расчета погрешности надо разделить среднее отклонение на корень квадратный от N. Стандартная погрешность = σ/кв.корень(n).

    • Если в нашем примере 5 школьников, а всего в классе 50 школьников, и среднее отклонение, посчитанное для 50 школьников равно 17 (σ = 21), средняя погрешность = 17/кв. корень(5) = 7.6.

Советы

  • Расчеты среднего значения, среднего отклонения и погрешности годятся для анализа равномерно распределенных данных. Среднее отклонение математического среднего значения распределения относится приблизительно к 68% данных, 2 средних отклонения – к 95% данных, а 3 – к 99.7% данных. Стандартная погрешность же уменьшается при увеличении количества значений.
  • Простой в использовании калькулятор для расчета среднего отклонения.

Реклама

Предупреждения

  • Считайте дважды. Все делают ошибки.

Реклама

Об этой статье

Эту страницу просматривали 66 314 раз.

Была ли эта статья полезной?

После
выполненных измерений всегда необходимо
оценить их точ­ность. Оценку точности
можно сделать только тогда, когда есть
пов­торные или избыточные измерения.
Существуют различные критерии точности.
Наиболее удобным и естественным критерием
является дисперсия D
, характеризующая меру рассеяния
результатов измерений. Поскольку на
практике число повторных измерений
всегда конечно, приходится ограничиваться
приближенным значением ее, носящим
наз­вание оценки дисперсии. Она
вычисляется по формуле

(13)

где 1
, 2 , … , n
-случайные погрешности в результатах
измере­ний одной и той же величины. В
математической статистике доказыва­ется,
что оценка (13) является состоятельной,
эффективной и несме­щенной. Определенным
неудобством в использовании этой оценки
явля­ется её квадратическая размерность
по сравнению с результатами из­мерений.
Для избежания этого неудобства используют
критерий точ­ности

или
(14)

носящей название
средней квадратической погрешности.
Она обладает рядом достоинств.

I. При
числе измерений n
9 величина т изменяется очень мало
и, следовательно, значение т близко
к её теоретическому аналогу — стандарту
. При числе
измерений n<9 критерий
точности т сле­дует считать
ненадёжным.

2. Из
опыта установлено, что в ряду, состоящем
из 1000 изме­рений, лишь три случайные
погрешности превосходят величину 3m.
Следовательно, её можно принять за
предельную погрешность Δпред
, т.е.

Δпред = 3m
.

Величина
3m и является тем
пределом, о котором речь шла в первом
свойстве случайных погрешностей.
Предельная погрешность играет важную
роль при установлении допусков в
различных нормативных до­кументах,
так как 3m принимают
за допустимую погрешность Δдоп
, т.е.

Δдоп = Δпред = 3m
.

При
увеличении числа измерений надёжность
найденной по форму­ле (14) погрешности
возрастает. В теории погрешностей
измерений до­казывается, что погрешность
тm определения
самой погрешности приб­лижённо можно
найти по формуле

В
заключение подчеркнем, что погрешность
m служит критерием
точности одного измерения, характерного
для всей группы выполнен­ных измерений

3.3. Формула Бесселя

Критерий
точности m, введённый
по формуле (14), на прак­тике имеет
ограниченное применение, так как
случайные погрешности Δi
остаются неизвестными. Для той же самой
средней квадратической погрешности
m можно вывести
формулу с использованием арифметичес­кой
средины x0

(15)

где vi
=
li
x0 ,
x0 = (l1
+
l2 + …
+
ln)/n
,
li
результаты измерений. Формула (15)
носит название формулы Бесселя и
применяется на практике для оценки
точности.

3.4. Средняя квадратическая погрешность функций измеренных величин

Выше
был рассмотрен вопрос об оценке точности
непосредственно измеренных величин.
На практике часто для получения
интересующей нас величины измеряют
другие величины, а нужную нам величину
затем вычисляют по известным аналитическим
формулам. При этом, естествен­но,
неизбежные случайные погрешности в
непосредственно измеренных величинах
повлияют на точность окончательного
результата. Возника­ет задача
нахождения средней квадратической
погрешности этого окончательного
результата как функции погрешностей
отдельных из­мерений. Например, для
определения площади фигуры, имеющей
форму прямоугольника, измеряют его
стороны а и b,
а затем вычисляют площадь S
=
a·b
. Погрешности в измеренных сторонах тa
и mb
могут быть найдены по формуле (15). Они
внесут некоторую погреш­ность в
найденное значение площади S.
Определению погрешностей функций
измеренных величин и посвящается данный
раздел.

В самом
общем виде функция многих независимых
переменных име­ет вид f(х,
у,
z,…, t).
Погрешности mx
,
my
,
mz
, … ,
mt
известны заранее или вычислены из
многократных измерений по формуле
Бесселя. В теории погрешностей измерений
доказывается, что средняя квадратическая
погрешность mf
функции f будет равна

(16)

где
суть частные
производные,

конечно, при условии
их существования. Применим общую формулу
(16) для вычисления погрешностей некоторых
частных видов функций.

1. f
=
kx ( k
=
Const);


тогда

или (17)

  1. f
    =
    k1x
    +
    k2y
    +
    k3z
    + … +
    knt
    ;

тогда
(18)

В
рассмотренном нами примере вычисления
площади

и

Применим
формулу (18) для вычисления средней
квадратической погрешности среднего
арифметического

и найдем

Поскольку
каждое измерение li
выполнено с одинаковой точностью ml
,
т.е.

(19)

Как
и следовало ожидать, точность среднего
арифметического ока­залась
выше точности одного измерения ml
,
причем выше в раз.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

4.1.1. Определения основных терминов

4.1.2. Точность, разрешающая способность и порог чувствительности

4.1.3. Функция автокорреляции

4.1.4. Коэффициент корреляции

4.1.5. Точечные и интервальные оценки погрешности

4.1.6. Погрешность метода измерений

4.1.7. Погрешность программного обеспечения

4.1.8. Достоверность измерений

4.1.1. Определения основных терминов

Метрология использует понятия, которые требуют точных и однозначных определений. С течением времени происходит уточнение понятий и их определения закрепляются в стандартах, рекомендациях по стандартизации и метрологических инструкциях. Основные термины и определения современной метрологии установлены в рекомендациях по метрологии РМГ 29-99 [РМГ], введенных в действие 1 января 2001 г. взамен ГОСТ 16263-70.

Измерение — это совокупность операций, обеспечивающих нахождение соотношения измеряемой величины с ее единицей измерения и получение значения этой величины. Измерение выполняется с помощью технического средства, хранящего единицу физической величины.

Контроль — это операции по определению соответствия характеристик изделия установленным нормам. Контроль включает в себя проведение измерений, испытаний или проверки характеристик изделия. Результатом контроля является заключение о соответствии или несоответствии. Может быть получено несколько градаций состояния соответствия. Контроль характеризуется достоверностью, т.е. степенью доверия к его результатам. Если контроль выполняется с помощью средств измерений, он называется измерительным контролем.

Индикатор — это техническое средство, предназначенное для установления наличия какой-либо физической величины или превышения уровня ее порогового значения. Например, индикатор может выдавать сигнал о превышении уровня загазованности котельной порогового значения.

Измерительная система — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта и т.п. с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях.

Примером измерительной системы может быть радионавигационная система для определения местоположения различных объектов, состоящая из ряда измерительно-вычислительных комплексов, разнесенных в пространстве на значительное расстояние друг от друга.

В зависимости от назначения измерительные системы разделяют на измерительные информационные, измерительные контролирующие, измерительные управляющие и др.

Измерительно-вычислительный комплекс (ИВК) — функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

Измерительный канал — совокупность технических средств измерительной системы, которая выполняет законченную функцию от восприятия измеряемой величины до получения результата измерения, выраженного числом или соответствующим ему кодом.

Точность измерений — основная характеристика качества средств измерений, которая характеризует степень близости результата измерения к истинному значению измеряемой величины. Точность можно представить как величину, обратную модулю относительной погрешности, однако количественное выражение точности используется редко, обычно говорят «высокая точность, низкая точность», а для численного описания точности используют понятие погрешности.

Погрешность измерений — величина отклонения результата измерения от истинного значения измеряемой величины.

Предел допускаемой погрешности — границы зоны, за которую не должна выходить погрешность с вероятностью, равной единице. Параметр средства измерений.

Косвенные измерения — измерения, при которых результат определяется по известной зависимости между искомой величиной (т. е. величиной, которую надо найти) и измеряемыми величинами. Например, измерение сопротивления путем измерения напряжения и тока с последующим нахождением их отношения является косвенным измерением.

Совместные измерения — проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Например, измерение вольтамперной характеристики диода. Для определения параметров зависимости обычно используют метод наименьших квадратов.

Совокупные измерения — проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Пример: измерение сопротивления двух резисторов по результатам измерения измерений суммарного сопротивления их последовательного и параллельного соединения.

Инструментальная, или аппаратная погрешность — погрешность средства измерения. Делится на основную и дополнительную.

Основная погрешность измеряется и нормируется в нормальных условиях эксплуатации (при температуре 20 ºС, атмосферном давлении 760 мм. рт. ст., относительной влажности 60 % — по ГОСТ 8.395 [ГОСТ]).

Дополнительная погрешность учитывает влияние внешних факторов — температуры, давления, напряжения источника питания, влажности, утечки входных каскадов измерительного преобразователя и др.

Погрешность метода измерений (методическая погрешность) — Составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений. Погрешность метода иногда называют теоретической погрешностью.

Динамическая погрешность возникает, когда измеряемая величина не постоянна во времени. Для ее описания используют, например, импульсную или переходную характеристику средства измерения или их изображения по Лапласу и Фурье. Увеличивается при приближении частоты измеряемого сигнала к границе полосы пропускания измерительного канала.

Систематическая погрешность — погрешность, величина которой остается постоянной от измерения к измерению и которая может быть обнаружена с помощью поверки или калибровки и затем скомпенсирована. Примером является погрешность нелинейности термопары, которая компенсируются с помощью таблиц поправок в контроллере измерительного модуля.

Систематические погрешности обычно изменяются с течением времени (дрейфуют), что делает необходимым периодическую калибровку измерительных приборов. Эти изменения вызваны процессами старения и износа элементов измерительных устройств. Старение может привести к увеличению погрешности в 1,25…2,5 раза [Новицкий]. Систематические погрешности выявляются путем сравнения результатов измерений с аналогичными результатами, выполненными образцовым прибором или путем измерений с помощью других приборов, работающих на иных физических принципах.

Систематическая погрешность являются случайной величиной на множестве приборов одного типа и детерминированной для отдельного образца средства измерений. Поэтому в паспорте прибора она может быть указана в виде математического ожидания и среднеквадратического отклонения.

Случайные погрешности не могут быть предсказаны, т.е. являются случайными величинами. Они обнаруживаются в виде различия результатов отдельных измерений при многократных измерениях. Основной их причиной являются помехи внутри измерительного прибора и собственные шумы электронных компонентов. В эксплуатационной документации указывают среднеквадратическое отклонение случайной составляющей погрешности или, для более точного описания, нормализованную автокорреляционную функцию или функцию спектральной плотности. Некоррелированные случайные погрешности могут быть уменьшены путем усреднения результатов многократных измерений.

Промах — погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Иногда вместо термина «промах» применяют термин «грубая ошибка« измерений.

Абсолютная погрешность измерительного прибора определяется как разность между измеренным с его помощью и точным значением измеряемой величины. Абсолютная погрешность имеет размерность измеряемой величины.

Относительная погрешность выражается в процентах от текущего значения измеряемой величины.

Порог чувствительности — наименьшее значения физической величины, начиная с которого может осуществляться ее измерение данным средством.

Приведенная погрешность — это отношение абсолютной погрешности к верхнему пределу диапазона измерений для симметричных диапазонов измерений или к ширине диапазона для несимметричных.

Если абсолютная погрешность не изменяется при изменении измеряемой величины, то для ее учета она складывается с результатом измерений. Такая погрешность называется аддитивной. Примером аддитивной погрешности является погрешность, вызванная смещением нуля операционного усилителя.

Погрешность может увеличиваться с ростом значений измеряемой величины. Такую погрешность учитывают путем умножения результата измерений на величину погрешности и называют мультипликативной. Примером мультипликативной погрешности является погрешность коэффициента передачи измерительного преобразователя. Мультипликативная относительная погрешность является постоянной величиной. Мультипликативная и аддитивная погрешности обычно являются параметрами линейной зависимости, позволяющей рассчитать результирующую погрешность средства измерений. Итоговая абсолютная погрешность измерений находится по формуле

,

(4.1)

где — мультипликативная погрешность, — аддитивная погрешность, — значение измеряемой величины.

Приведенную погрешность тоже можно представить состоящей из мультипликативной и аддитивной компоненты:

,

(4.2)

где — верхний предел диапазона измерений для симметричных диапазонов измерений или ширина диапазона для несимметричных.

Аналогично можно представить и относительную погрешность:

.

(4.3)

При малых значениях измеряемой величины погрешность измерений определяется абсолютной погрешностью, при больших — относительной.

В некоторых случаях зависимость погрешности от значения измеряемой величины является более сложной, чем это можно учесть с помощью формулы (4.1). Тогда используют более сложные зависимости. Например, для мегаомметра максимальная точность оказывается не у верхнего предела измерений, а посередине диапазона, поскольку с ростом значений измеряемой величины (сопротивления) растет входное сопротивление прибора, следовательно, с увеличением растет и погрешность измерений. В таких случаях формула для погрешности приобретает вид

, .

(4.4)

где — верхний порог чувствительности.

Нормированное значение погрешности — это величина погрешности, которая учитывает технологический разброс серии изготавливаемых измерительных приборов и является предельной для всех приборов данного типа. Погрешность любого прибора из данной серии может быть меньше предельной, но не может превышать ее. Нормированное значение погрешности заносится в паспорт прибора.

Номинальная характеристика — распространяющаяся на все средства измерений данного типа, в отличие от индивидуальной характеристики, которая распространяется только на конкретный экземпляр прибора.

Класс точности указывает нормированное значение погрешности в процентах. Однако класс точности учитывает целую совокупность метрологических характеристик, таких как, например, нестабильность погрешности в течение года, сопротивление изоляции, и др. [ГОСТ]. Класс точности 0,1 может быть присвоен прибору, имеющему погрешность 0,1%. Для указания мультипликативной погрешности класс точности помещается в кружок, для указания аддитивной погрешности указывается просто число без дополнительных символов.

Вариация показаний измерительного прибора — разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе к этой точке со стороны меньших и больших значений измеряемой величины.

Диапазон измерений — область значений измеряемой величины, в пределах которых нормированы допускаемые пределы погрешности средства измерений.

Динамический диапазон — это отношение предела измерения к порогу чувствительности, обычно выражается в децибелах. Для измерений в широком динамическом диапазоне используют измерительные приборы с переключаемыми диапазонами измерений. Во время переключения диапазонов происходит изменение схемы соединения элементов, при которой динамический диапазон сдвигается в сторону больших или меньших значений измеряемой величины. В автоматизированных системах переключение диапазонов измерений выполняется автоматически, по программе, записанной в компьютер или контроллер. В качестве примера см. руководство на модуль NL-8AI .

Воспроизводимость результатов измерений характеризует близость результатов измерений, выполненных различными средствами в разное время в разных местах. Оценка воспроизводимости позволяет выявить грубые ошибки в процессе измерений или некорректно поставленные методики измерений, влияние трудно учитываемых внешних факторов.

Калибровка — совокупность операций, позволяющих определить поправки к показаниям средства измерений или оценить погрешность этих средств.

Поверка — установление официально уполномоченным органом пригодности средства измерений к применению. Поверке подвергают средства измерений, подлежащие государственному метрологическому контролю и надзору.

4.1.2. Точность, разрешающая способность и порог чувствительности

При выборе модулей ввода-вывода аналоговых сигналов по критерию точности, разрешающей способности и чувствительности необходимо понимать различие этих терминов. Типовое заблуждение состоит в том, что «если модуль ввода имеет погрешность ±0,05%, то разрядность его АЦП более чем 12 бит плюс знак является бесполезной». Покажем, что это не так.

Точность (погрешность) характеризует степень отличия результата измерения от точного значения, связанного с эталоном единицы физической величины. Разрешающая же способность показывает, какое минимальное отклонение измеряемой величины может быть зарегистрировано измерительным прибором. Например, если модуль ввода в диапазоне измерений -10…+10 В имеет погрешность ±0,05%, то его порог чувствительности равен ±5 мВ. Однако, благодаря наличию 16-разрядного АЦП этот модуль может различить два входных сигнала, отличающихся на =0,3 мВ, т.е. его разрешающая способность в ±5/0,3=±16 раз выше порога чувствительности. Отметим, что это справедливо при условии, что уровень собственных шумов модуля ввода ниже величины младшего значащего разряда (МЗР), т.е. погрешность является чисто систематической. При большой случайной погрешности можно предпринять меры для ее уменьшения, например, с помощью усреднения результатов многократных измерений (см. раздел «Повышение точности путем усреднения результатов измерений»).

Порог чувствительности, который определяется погрешностью измерений, может быть гораздо больше, чем разрешающая способность, поскольку при определении погрешности учитывают:

  • нелинейность измерительного прибора во всем диапазоне измерений;
  • динамику процесса старения прибора;
  • технологический разброс метрологических параметров от прибора к прибору;
  • не только систематическую, но и случайную некоррелированную компоненту погрешности, которая может быть уменьшена до уровня МЗР путем многократных измерений с последующим усреднением результатов.

Разрешающая способность не зависит от перечисленных выше факторов и это объясняет ее отличие от порога чувствительности и погрешности.

Приведем несколько примеров, когда требования к погрешности на несколько порядков могут отличаться от требований к разрешающей способности.

Пример 1

Предположим, имеется релейный регулятор, который в соответствии с алгоритмом своей работы должен определить знак разности между температурой в печи и значением уставки. Если для измерения температуры используется термопара с датчиком температуры холодного спая, с погрешностью измерений 2 ºС, то для измерения температуры в диапазоне 0…100 ºС достаточно 50 уровней квантования, что может быть обеспечено 6-разрядным АЦП. Если же использовать 16-разрядный АЦП, то разрешающая способность по температуре составит =0,0015 ºС. В случае применения 6-разрядного АЦП колебания температуры в процессе регулирования не могут быть менее 2 ºС, в то время как при использовании 16-разрядного АЦП амплитуда колебаний приближается к 0,0015 ºС. Такой регулятор используется, когда важна стабильность во времени, а не точность соответствия уставке. Например, стабильность (а не точность) важна для термостатов, которые используются при калибровке термодатчиков методом сличения с показаниями образцового прибора. Напомним, что альтернативным вариантом является калибровка с помощью калибратора (задатчика), который должен иметь высокую точность (и одновременно стабильность) задания температуры.

Пример 2

В элеваторах для хранения растительного сырья наблюдается эффект самосогревания, связанный, в основном, с деятельностью микроорганизмов. Для обеспечения качества зерна абсолютное значение температуры достаточно знать с погрешностью в несколько градусов, но факт ее роста желательно фиксировать с разрешающей способностью 0,1…0,01 ºС. Высокая разрешающая способность позволяет предупредить развитие очага самосогревания на ранней стадии и расположить датчики температуры на большом расстоянии один от другого.

Пример 3

Если требуется обнаружить момент времени начала химической реакции по признаку начала роста температуры, то необходим прибор с высокой разрешающей способностью, но необязательно высокой точностью.

Пример 4

Пусть требуется оценить параметры колебательного процесса (декремент затухания колебаний, период колебаний, коэффициент нелинейных искажений, длительность переходного процесса, величину помехи на фоне полезного сигнала) — во всех перечисленных случаях находится соотношение ординат или абсцисс функции в разных ее точках, т. е. пропорции между отдельными частями графика, которые не зависят от самого значения функции. Поэтому такие измерения могут быть выполнены прибором, имеющим низкую точность, но высокую разрешающую способность. Дополнительным требованием в этом примере является достаточная линейность измерительного канала в рассматриваемом диапазоне.

Для улучшения разрешающей способности при низкой точности используется «электронная лупа» (аналогичный термин в фотоаппаратах называется «zoom»). В основе принципа работы электронной лупы лежит свойство любых нелинейностей приближаться к линейным зависимостям

(4.5)

при малых , что обеспечивает отсутствие нелинейных искажений формы исследуемого сигнала. Работа электронной лупы состоит в том, что из исследуемого сигнала вычитается некоторый постоянный уровень , а разность усиливается с помощью аналогового усилителя или квантуется АЦП с высокой разрядностью. При этом величина постоянного уровня может быть задана с низкой точностью, поскольку целью является измерение соотношений отдельных участков сигнала между собой, а не относительно единицы физической величины.

Отметим, что понятие «разрешающая способность» отсутствует в РМГ 29-99 [РМГ]. Причина, вероятно, в том, что это понятие не связано с измерением как операцией сличения с эталоном, но связано с оценкой отношений между физическими величинами, ни одна из которых не является эталоном, что не относится к измерениям в смысле РМГ 29-9911.

Точность, разрешающая способность и порог чувствительности в общем случае выше у АЦП с большим числом двоичных разрядов, хотя прямой связи здесь нет. АЦП с высокой разрядностью может иметь большой уровень шумов, высокую нестабильность источника опорного напряжения и связанную с ними низкую точность.

4.1.3. Функция автокорреляции

Погрешности измерений, обусловленные наведенными помехами и собственными шумами электронных приборов, описываются с помощью математической теории, получившей название «теория случайных процессов». Напомним основные понятия этой теории, которые мы будем использовать в дальнейшем изложении и которые используются ГОСТ 8.009 [ГОСТ] при нормировании случайной составляющей погрешности измерений.

Отличительной чертой случайного процесса является невозможность предсказания его мгновенного значения. Поэтому отдельные реализации случайного процесса описываются случайными функциями , значения которых в любой момент времени являются случайными величинами. Запись мгновенных значений случайного процесса на некоторый носитель информации (например, на жесткий диск компьютера) дает нам только одну реализацию случайного процесса, поскольку его повторные записи в тех же самых условиях показывают совсем другую функцию времени. Набор реализаций случайного процесса называется ансамблем. Невозможность аналитического описания случайных функций времени по причине чрезмерной их громоздкости делает необходимым применение статистического описания случайных процессов.

Случайный процесс называется стационарным, если его статистические характеристики (математическое ожидание, среднеквадратическое отклонение и корреляционная функция) не изменяются с течением времени. Например, мгновенную погрешность средства измерений при постоянной температуре окружающей среды приближенно можно считать стационарным случайным процессом, поскольку среднеквадратическое отклонение и математическое ожидание погрешности не изменяются с течением времени, по крайней мере, в пределах межповерочного интервала.

В дальнейшем мы будем использовать только понятие стационарного эргодического случайного процесса, если иное специально не оговорено. Для эргодического процесса усреднение по ансамблю реализаций можно заменить усреднением по времени на интервале времени . Поэтому математическое ожидание эргодического случайного процесса определяется формулой

,

(4.6)

среднеквадратическое отклонение —

.

(4.7)

автокорреляционная функция —

.

(4.8)

Коэффициент корреляции случайного процесса по определению равен

.

(4.9)

Как видно из определения, функция автокорреляции равна усредненному произведению реализации центрированного случайного процесса (т.е. процесса, из которого удалена постоянная составляющая ) на свою копию, сдвинутую по времени на величину . Поэтому при она равна дисперсии случайного процесса (сравните выражения (4.8) и (4.7)):

.

(4.10)

Если реализация случайного процесса имеет ограниченный по частоте спектр, то при растяжении ее графика во времени наступает момент, когда он начинает выглядеть не как шум, а как извилистая гладкая кривая. Поэтому вероятность того, что при достаточно малом сдвиге значения функции будут различаться сильно, становится пренебрежимо малой. При увеличении сдвига эта вероятность возрастает. Поэтому при малых автокорреляционная функция всегда мало отличается от , а коэффициент корреляции — от единицы.

Часто используется понятие «интервал корреляции« или «время корреляции«, под которыми понимается величина временного сдвига , при превышении которого корреляцией можно пренебречь в условиях конкретного эксперимента. Обычно интервал корреляции определяют как .

Рис. 4.1. Коррелированный (вверху) и некоррелированный (внизу) случайный процесс (погрешность измерений)

Если интервал корреляции равен нулю, то случайный процесс называют некоррелированным, или белым шумом. В противном случае случайный процесс является коррелированным. В качестве примера на рис. 4.1 приведен пример коррелированного (вверху) и некоррелированного (внизу) случайного процесса. Реальные процессы все являются коррелированными, поскольку имеют ограниченную мощность и, следовательно, ограниченную полосу частот. Однако на определенном интервале времени (частот) их можно приближенно считать некоррелированными.

Определения (4.6)-(4.9) используются только при теоретическом анализе случайных процессов, поскольку при реальных измерениях значения случайной величины всегда дискретны и количество измерений ограничено. Поэтому вместо математического ожидания, среднеквадратического отклонения и корреляционной функции используют соответствующие им выборочные значения, или оценки соответствующих статистических параметров, которые определяется по формулам:

оценка математического ожидания

,

(4.11)

оценка среднеквадратического отклонения

.

(4.12)

оценка автокорреляционной функции

.

(4.13)

В пределе, при приведенные оценки параметров стремятся к их истинным значениям. В приведенных формулах для оценок параметров и самих параметров использованы одни и те же обозначения, поскольку в дальнейшем мы будем использовать только оценки, если иное не оговорено специально.

Отдельно взятая реализация случайного процесса является детерминированной (неслучайной) функцией, поэтому для нее можно найти спектральную характеристику с помощью преобразования Фурье:

.

(4.14)

Однако функция на практике не используется, поскольку она также сложна в описании, как и . Вместо нее используют понятие спектральной плотности мощности (энергетического спектра):

.

(4.15)

В соответствии с этим определением, спектральная плотность мощности шума измеряется в или , и т. п. Отметим, что в теории случайных процессов понятие мощности отличается от общепринятого: предполагается, что энергия шума выделяется на сопротивлении в 1 Ом, но размерность не указывается, поэтому вместо размерности мощности используется , . Аналогично, энергия измеряется не в , а в .

Автокорреляционная функция и спектральная плотность мощности связаны между собой преобразованием Фурье (теорема Винера-Хинчина [Баскаков]):

;

(4.16)

,

(4.17)

т. е. спектральная плотность мощности является Фурье-изображением корреляционной функции.

Поскольку (см. (4.10)), подставив в формулу (4.16), получим

.

(4.18)

Здесь коэффициент 2 используется, когда нижний предел интегрирования заменяется на 0. Это возможно благодаря тому, что спектральная плотность мощности любого реального случайного процесса описывается четной функцией частоты [Букингем].

Если энергетический спектр лежит в диапазоне частот от >0 до , например, благодаря применению фильтра, то можно считать, что за пределами указанного диапазона частот его значения равны нулю и это позволяет изменить пределы интегрирования в (4.16):

.

(4.19)

При использовании формул (4.16) и (4.19) надо помнить, что в ней применен двусторонний энергетический спектр (симметричный относительно начала оси ординат). В случае одностороннего спектра , заданного в диапазоне частот , коэффициент «2» должен отсутствовать:

.

(4.20)

Это выражение позволяет найти среднеквадратическую погрешность измерения (например, напряжения [Вольт]) в диапазоне частот как

.

(4.21)

В зарубежной справочной литературе на графиках спектральной плотности мощности шума транзисторов, операционных усилителей и др. обычно по оси ординат откладывается корень квадратный из спектральной плотности мощности шума , имеющий размерность , и т. п. В этом случае напряжение шума (среднеквадратическое значение) можно найти как

.

(4.22)

Для белого шума и предыдущее выражение упрощается:

.

(4.23)

Эффективной шириной энергетического спектр называется величина , определяемая по формуле

,

(4.24)

где — максимальное значение функции . Таким образом, эффективной шириной энергетического спектра называют диапазон частот, в котором заключена такая же энергия, как и в диапазоне при условии, что в диапазоне энергия имеет величину и распределена равномерно.

В дальнейшем понятие случайного процесса будет использоваться для описания случайной погрешности измерений.

4.1.4. Коэффициент корреляции

При расчете погрешности измерительного канала возникает задача суммирования погрешностей средств измерений, которые являются случайными величинами. Способ суммирования будет различным в зависимости от того, являются ли случайные величины статистически зависимыми. Понятие статистической зависимости иллюстрируется рис. 4.2: если с ростом одной случайной величины Х в среднем увеличивается (или уменьшается) и вторая (Y), то между этими величинами имеется статистическая зависимость. Для ее количественного описания используется понятие ковариации или коэффициента корреляции.

Рассмотрим суммирование двух случайных погрешностей и с нулевым математическим ожиданием (т. е. центрированных случайных величин). Дисперсия суммы двух случайных величин по определению равна математическому ожиданию квадрата их суммы:

= ,

(4.25)

где и операторы дисперсии и математического ожидания; , среднеквадратические отклонения случайных величин и . Величина

(4.26)

называется ковариацией («совместной вариацией») случайных величин и .

Ковариацию дискретных случайных величин можно оценить по их дискретным значениям и с помощью формулы среднего арифметического:

.

(4.27)

Коэффициентом корреляции называют отношение ковариации к произведению среднеквадратических отклонений и случайных величин и :

.

(4.28)

Когда случайные величины независимы, их коэффициент корреляции равен нулю, [Гмурман] и такие величины называются некоррелированными. Если коэффициент корреляции равен единице , то между величинами и имеется не статистическая, а функциональная зависимость.

Используя понятие среднеквадратического отклонения , уравнение (4.25) можно записать в виде

.

(4.29)

Здесь знак «-» используется когда случайные величины вычитаются, например, если находится разность напряжений двух измерительных каналов. При этом наличие корреляции между каналами частично уменьшает погрешность разности.

В случае, когда случайные величины статистически независимы (), предыдущее выражение упрощается:

.

(4.30)

Такое суммирование называют геометрическим, поскольку оно выполняется аналогично нахождению гипотенузы прямоугольного треугольника.

Если коэффициент корреляции , то

.

(4.31)

Если коэффициент корреляции равен , то

,

(4.32)

т.е. при нахождении суммы случайных величин отрицательный коэффициент корреляции уменьшает итоговую погрешность, а при нахождении разности — увеличивает.

Если случайные величины не центрированы и имеют математические ожидания и , то коэффициент корреляции можно оценить как

.

(4.33)

На рис. 4.2 показаны примеры статистической зависимости между случайными величинами при сильной (а) и слабой (б) корреляции. Точки на графике (значения случайной величины) могут группироваться очень близко к прямой линии, которая аппроксимирует эту зависимость, и тогда статистическая зависимость приближается к детерминированной. Степень отличия статистической зависимости от детерминированной характеризуют коэффициентом корреляции .

(а)

(б)

Рис. 4.2. Примеры сильной (а), и слабой (б), корреляции случайных величин и . Показана также прямая линия среднеквадратической регрессии

Прямая линия, проведенная таким образом, что сумма квадратов отклонений значений случайной величины от этой линии минимальна, называется линией среднеквадратической регрессии. Тангенс угла наклона линии называется коэффициентом регрессии. Уравнение линии регрессии можно получить методом наименьших квадратов; оно имеет вид [Кремер]

,

где коэффициент регрессии. Коэффициент регрессии вычисляется через коэффициент корреляции и среднеквадратические отклонения и как

.

(4.34)

Коэффициент корреляции приобретает ясный физический смысл, если статистические переменные центрировать (вычесть математическое ожидание) и нормировать на величину среднеквадратического отклонения. Поскольку среднеквадратические отклонения нормированных величин равны единице, то коэффициент корреляции (4.33) становится равен тангенсу наклона линии среднеквадратической регрессии.

Статистическая зависимость между погрешностями средств измерений в общем случае нелинейная, однако этой нелинейностью обычно пренебрегают.

4.1.5. Точечные и интервальные оценки погрешности

Рис. 4.3. Иллюстрация понятий доверительного интервала и доверительной вероятности

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относится математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью . Эта вероятность называется доверительной или надежностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности, равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Смысл интервальной оценки погрешности иллюстрируется рис. 4.3. Здесь использованы следующие обозначения: — погрешность измерения; — плотность распределения погрешностей ; — функция распределения погрешностей, . Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины описывается функцией , где — среднеквадратическая погрешность.

Если погрешность измерения находится внутри интервала , то вероятность этого события вычисляется как

.

(4.35)

В наиболее типичном случае симметричных границ () получим

.

(4.36)

Здесь использовано свойство симметрии функции распределения для закона Гаусса.

Таким образом, если задан интервал , который содержит в себе погрешность измеряемого параметра , то вероятность того, что погрешность не выходит за границы интервала, можно найти по формуле (4.36) для нормального закона распределения. Вероятность называют также надежностью оценки погрешности и обозначают символом :

.

(4.37)

Для вычисления функции распределения удобно использовать пакеты MathCAD, Matlab. С их помощью из формулы (4.37) несложно найти величину доверительного интервала , если задана величина надежности .

Для доверительная вероятность =68,3%; для =95,3%; для =99,7% и для = 99,994%.

Для увеличения надежности оценки погрешности измерений или для сужения доверительного интервала при заданной надежности можно использовать усреднение результатов многократных измерений. Поскольку оценка среднеквадратической погрешности результата усреднения равна (см. (3.2)), где — среднеквадратическая погрешность средства измерений, — количество однократных измерений, то, подставив в (4.37) вместо величину , получим

.

(4.38)

Эта формула позволяет найти количество однократных измерений , которое необходимо усреднить для получения требуемого доверительного интервала при заданной надежности или требуемой надежности при заданном доверительном интервале . Поскольку формула (4.38) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

Следует иметь в виду, что повышение точности путем усреднения результатов многократных измерений имеет множество ограничений (см. п. «Многократные измерения»).

Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге [Тутубалин]. Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учете факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

4.1.6. Погрешность метода измерений

Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

  • сопротивление кабелей;
  • соотношение между входным импедансом средства измерений и выходным импедансом датчика;
  • качество экранирования и заземления, мощность источников помех;
  • погрешность метода косвенных, совместных или совокупных измерений;
  • наличие внешних влияющих факторов, если они не учтены в дополнительной погрешности средства измерений;
  • погрешность обработки результатов измерений программным обеспечением.

Все погрешности, которые не могут быть учтены в процессе сертификационных испытаний и внесены в паспорт средства измерений, а появляются в конкретных условиях применения, относятся к методическим. В отличие от них, инструментальные погрешности нормируются в процессе производства измерительного прибора и заносятся в его эксплуатационную документацию. Таким образом, если в состав смонтированной автоматизированной измерительной системы входят средства измерений с нормированными погрешностями, то погрешность, вызванная перечисленными выше факторами, является методической. Если же выполняется сертификация всей измерительной системы, то методические погрешности могут быть учтены в погрешности всей системы и тогда они переходят в разряд инструментальных.

Для расчета или измерения методической погрешности трудно дать общие рекомендации. Каждый конкретный случай требует отдельного рассмотрения.

4.1.7. Погрешность программного обеспечения

Погрешность программного обеспечения (ПО) [МИ, МИ] оценивается как разность между результатами измерений, полученных данным ПО и эталонным ПО. Под эталонным понимается программное обеспечение, высокая точность которого доказана многократными испытаниями и тестированием. Понятие эталонного ПО является условным и определяется соглашением между заказчиком аттестации и исполнителем. В качестве эталонного может быть использовано ранее аттестованное ПО.

К основным источниками погрешностей ПО относятся:

  • ошибки записи исходного текста программы и ошибки трансляции программы в объектный код;
  • ошибки в алгоритме решения измерительной задачи;
  • ошибки в таблицах для линеаризации нелинейных характеристик преобразования;
  • применение неустойчивых или медленно сходящихся алгоритмов при решении плохо обусловленных измерительных задач;
  • ошибки преобразования форматов данных;
  • ошибки округления и др.

Надежность (достоверность) ПО обеспечивается средствами защиты от несанкционированных изменений, которые могут явиться причиной появления не учтенных при аттестации погрешностей.

4.1.8. Достоверность измерений

В процессе выполнения измерений могут появиться грубые ошибки (промахи), которые делают измерения недостоверными несмотря на применение очень точных измерительных приборов. Здесь под достоверностью понимается степень доверия к полученным результатам. Достоверность может быть низкая при наличии погрешностей, о существовании которых экспериментатор не догадывается. Достоверность при использовании автоматизированных измерительных систем снижается с ростом их сложности и существенно зависит от квалификации персонала проектирующей и монтажной организации.

Главным методом обеспечения достоверности является сопоставление результатов измерения одной и той же величины разными, не связанными друг с другом способами. Например, после монтажа системы измерения температуры в силосе элеваторе следует сравнить показания автоматизированной системы и автономного контрольного термометра, чтобы убедиться в правильности показаний автоматизированной системы.

Приведем несколько примеров, иллюстрирующих случаи, когда, несмотря на применение точных средств измерений, получаются совершенно ошибочные данные, вводящие человека в заблуждение.

Пример 1. Для измерения температуры воздуха в теплице использован датчик температуры с погрешностью ±0,5 ºС. Однако датчик установлен таким образом, что в некоторые часы на него падают прямые лучи солнца, которые нагревают датчик, но не изменяют температуру воздуха. При этом погрешность измерения температуры воздуха может составить +5 ºС, что позволяет квалифицировать результат измерения как недостоверный.

Пример 2. Для измерения температуры в силосах элеватора установлены точные датчики и сделан тщательный монтаж, но расположенный на крыше элеватора ретранслятор сотовой связи оказался незамеченным и не было принято достаточных мер для защиты от помех. При этом погрешность измерения температуры может составить ±10 ºС вследствие помех, наведенных передатчиком на сигнальных кабелях системы.

Пример 3. В автоматизированной системе для измерения параметров продукции использован модуль ввода с погрешностью ±0,05%, однако при наладке системы программист по ошибке установил частоту помехоподавляющего режекторного фильтра не 50, а 60 Гц. Объем проведенных приемо-сдаточных испытаний системы не позволил выявить эту ошибку. В результате погрешность измерений вследствие наведенной помехи с частотой 50 Гц может повыситься до ±10% вместо ожидаемых ±0,05%.

Пример 4. Во время выполнения измерений ваш коллега разговаривал по сотовому телефону. Наводка сигнала от передатчика сотового телефона может повысить погрешность измерений в несколько раз.

Пример 5. При монтаже системы заземлили экран сигнального кабеля с двух сторон. Объем проведенных приемо-сдаточных испытаний не позволил выявить эту ошибку. Погрешность может увеличиться в несколько раз по сравнению с ожидаемой.

Пример 6. В процессе эксплуатации системы нарушился контакт в цепи заземления, что привело к эпизодическому повышению уровня помех в измерительной цепи. В статье [Burleson] приводится пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которого искали несколько лет.

Пример 7. При расчете погрешности средств измерений была проигнорирована динамическая погрешность, поскольку исходные данные для ее расчета не были указаны в эксплуатационной документации на средство измерения и не были выявлены в процесс приемосдаточных испытаний ввиду сложности постановки эксперимента, отсутствия времени и приборов для контроля величины погрешности. Во время эксплуатации системы фактическая погрешность в несколько раз превышает расчетную.

В приведенных примерах сложно обнаружить наличие погрешности в процессе сдачи системы в эксплуатацию или она появляется в процессе эксплуатации. Это приводит к снижению достоверности измерений несмотря на высокую инструментальную точность использованных технических средств.

Общий подход к решению проблемы заключается в применении второй, независимой системы или методики измерений для обнаружения ошибок. Можно использовать также целый комплекс мер, включая подбор персонала, соблюдение графика поверки, тщательность выполнения типовых и сертификационных испытаний системы, соблюдение методики измерений и обслуживания измерительной системы.

Термин «достоверность» иногда используется во втором его значении — для указания вероятности того, что измеренное значение находится в заданном доверительном интервале [Новицкий] при условии, что все промахи и ошибки измерительной системы и методики измерений исключены. Количественным выражением достоверности в данном случае является доверительная вероятность. Следует различать эти два значения одного и того же термина.

Результат любого измерения не определён однозначно и имеет случайную составляющую.
Поэтому адекватным языком для описания погрешностей является язык вероятностей.
Тот факт, что значение некоторой величины «случайно», не означает, что
она может принимать совершенно произвольные значения. Ясно, что частоты, с которыми
возникает те или иные значения, различны. Вероятностные законы, которым
подчиняются случайные величины, называют распределениями.

2.1 Случайная величина

Случайной будем называть величину, значение которой не может быть достоверно определено экспериментатором. Чаще всего подразумевается, что случайная величина будет изменяться при многократном повторении одного и того же эксперимента. При интерпретации результатов измерений в физических экспериментах, обычно случайными также считаются величины, значение которых является фиксированным, но не известно экспериментатору. Например смещение нуля шкалы прибора. Для формализации работы со случайными величинами используют понятие вероятности. Численное значение вероятности того, что какая-то величина примет то или иное значение определяется либо как относительная частота наблюдения того или иного значения при повторении опыта большое количество раз, либо как оценка на основе данных других экспериментов.

Замечание. 
Хотя понятия вероятности и случайной величины являются основополагающими, в литературе нет единства в их определении. Обсуждение формальных тонкостей или построение строгой теории лежит за пределами данного пособия. Поэтому на начальном этапе лучше использовать «интуитивное» понимание этих сущностей. Заинтересованным читателям рекомендуем обратиться к специальной литературе: [5].

Рассмотрим случайную физическую величину x, которая при измерениях может
принимать непрерывный набор значений. Пусть
P[x0,x0+δ⁢x] — вероятность того, что результат окажется вблизи
некоторой точки x0 в пределах интервала δ⁢x: x∈[x0,x0+δ⁢x].
Устремим интервал
δ⁢x к нулю. Нетрудно понять, что вероятность попасть в этот интервал
также будет стремиться к нулю. Однако отношение
w⁢(x0)=P[x0,x0+δ⁢x]δ⁢x будет оставаться конечным.
Функцию w⁢(x) называют плотностью распределения вероятности или кратко
распределением непрерывной случайной величины x.

Замечание. В математической литературе распределением часто называют не функцию
w⁢(x), а её интеграл W⁢(x)=∫w⁢(x)⁢𝑑x. Такую функцию в физике принято
называть интегральным или кумулятивным распределением. В англоязычной литературе
для этих функций принято использовать сокращения:
pdf (probability distribution function) и
cdf (cumulative distribution function)
соответственно.

Гистограммы.

Проиллюстрируем наглядно понятие плотности распределения. Результат
большого числа измерений случайной величины удобно представить с помощью
специального типа графика — гистограммы.
Для этого область значений x, размещённую на оси абсцисс, разобьём на
равные малые интервалы — «корзины» или «бины» (англ. bins)
некоторого размера h. По оси ординат будем откладывать долю измерений w,
результаты которых попадают в соответствующую корзину. А именно,
пусть k — номер корзины; nk — число измерений, попавших
в диапазон x∈[k⁢h,(k+1)⁢h]. Тогда на графике изобразим «столбик»
шириной h и высотой wk=nk/n.
В результате получим картину, подобную изображённой на рис. 2.1.

Рис. 2.1: Пример гистограммы для нормального распределения (x¯=10,
σ=1,0, h=0,1, n=104)

Высоты построенных столбиков будут приближённо соответствовать значению
плотности распределения w⁢(x) вблизи соответствующей точки x.
Если устремить число измерений к бесконечности (n→∞), а ширину корзин
к нулю (h→0), то огибающая гистограммы будет стремиться к некоторой
непрерывной функции w⁢(x).

Самые высокие столбики гистограммы будут группироваться вблизи максимума
функции w⁢(x) — это наиболее вероятное значение случайной величины.
Если отклонения в положительную и отрицательную стороны равновероятны,
то гистограмма будет симметрична — в таком случае среднее значение ⟨x⟩
также будет лежать вблизи этого максимума. Ширина гистограммы будет характеризовать разброс
значений случайной величины — по порядку величины
она, как правило, близка к среднеквадратичному отклонению sx.

Свойства распределений.

Из определения функции w⁢(x) следует, что вероятность получить в результате
эксперимента величину x в диапазоне от a до b
можно найти, вычислив интеграл:

Px∈[a,b]=∫abw⁢(x)⁢𝑑x. (2.1)

Согласно определению вероятности, сумма вероятностей для всех возможных случаев
всегда равна единице. Поэтому интеграл распределения w⁢(x) по всей области
значений x (то есть суммарная площадь под графиком w⁢(x)) равен единице:

Это соотношение называют условием нормировки.

Среднее и дисперсия.

Вычислим среднее по построенной гистограмме. Если размер корзин
h достаточно мал, все измерения в пределах одной корзины можно считать примерно
одинаковыми. Тогда среднее арифметическое всех результатов можно вычислить как

Переходя к пределу, получим следующее определение среднего значения
случайной величины:

где интегрирование ведётся по всей области значений x.
В теории вероятностей x¯ также называют математическим ожиданием
распределения.
Величину

σ2=(x-x¯)2¯=∫(x-x¯)2⁢w⁢𝑑x (2.3)

называют дисперсией распределения. Значение σ есть
срекднеквадратичное отклонение в пределе n→∞. Оно имеет ту
же размерность, что и сама величина x и характеризует разброс распределения.
Именно эту величину, как правило, приводят как характеристику погрешности
измерения x.

Доверительный интервал.

Обозначим как P|Δ⁢x|<δ вероятность
того, что отклонение от среднего Δ⁢x=x-x¯ составит величину,
не превосходящую по модулю значение δ:

P|Δ⁢x|<δ=∫x¯-δx¯+δw⁢(x)⁢𝑑x. (2.4)

Эту величину называют доверительной вероятностью для
доверительного интервала |x-x¯|≤δ.

2.2 Нормальное распределение

Одним из наиболее примечательных результатов теории вероятностей является
так называемая центральная предельная теорема. Она утверждает,
что сумма большого количества независимых случайных слагаемых, каждое
из которых вносит в эту сумму относительно малый вклад, подчиняется
универсальному закону, не зависимо от того, каким вероятностным законам
подчиняются её составляющие, — так называемому нормальному
распределению
(или распределению Гаусса).

Доказательство теоремы довольно громоздко и мы его не приводим (его можно найти
в любом учебнике по теории вероятностей). Остановимся
кратко на том, что такое нормальное распределение и его основных свойствах.

Плотность нормального распределения выражается следующей формулой:

w𝒩⁢(x)=12⁢π⁢σ⁢e-(x-x¯)22⁢σ2. (2.5)

Здесь x¯ и σ
— параметры нормального распределения: x¯ равно
среднему значению x, a σ —
среднеквадратичному отклонению, вычисленным в пределе n→∞.

Как видно из рис. 2.1, распределение представляет собой
симметричный
«колокол», положение вершины которого
соответствует x¯ (ввиду симметрии оно же
совпадает с наиболее вероятным значением — максимумом
функции w𝒩⁢(x)).

При значительном отклонении x от среднего величина
w𝒩⁢(x)
очень быстро убывает. Это означает, что вероятность встретить отклонения,
существенно большие, чем σ, оказывается пренебрежимо
мала
. Ширина «колокола» по порядку величины
равна σ — она характеризует «разброс»
экспериментальных данных относительно среднего значения.

Замечание. Точки x=x¯±σ являются точками
перегиба графика w⁢(x) (в них вторая производная по x
обращается в нуль, w′′=0), а их положение по высоте составляет
w⁢(x¯±σ)/w⁢(x¯)=e-1/2≈0,61
от высоты вершины.

Универсальный характер центральной предельной теоремы позволяет широко
применять на практике нормальное (гауссово) распределение для обработки
результатов измерений, поскольку часто случайные погрешности складываются из
множества случайных независимых факторов. Заметим, что на практике
для приближённой оценки параметров нормального распределения
случайной величины используются выборочные значения среднего
и дисперсии: x¯≈⟨x⟩, sx≈σx.

x-x0σ2=2w⁢(x)σ1=1

Рис. 2.2: Плотность нормального распределения

Доверительные вероятности.

Вычислим некоторые доверительные вероятности (2.4) для нормально
распределённых случайных величин.

Замечание. Значение интеграла вида ∫e-x2/2⁢𝑑x
(его называют интегралом ошибок) в элементарных функциях не выражается,
но легко находится численно.

Вероятность того, что результат отдельного измерения x окажется
в пределах x¯±σ оказывается равна

P|Δ⁢x|<σ=∫x¯-σx¯+σw𝒩⁢𝑑x≈0,68.

Вероятность отклонения в пределах x¯±2⁢σ:

а в пределах x¯±3⁢σ:

Иными словами, при большом числе измерений нормально распределённой
величины можно ожидать, что лишь треть измерений выпадут за пределы интервала
[x¯-σ,x¯+σ]. При этом около 5%
измерений выпадут за пределы [x¯-2⁢σ;x¯+2⁢σ],
и лишь 0,27% окажутся за пределами
[x¯-3⁢σ;x¯+3⁢σ].

Пример. В сообщениях об открытии бозона Хиггса на Большом адронном коллайдере
говорилось о том, что исследователи ждали подтверждение результатов
с точностью «5 сигма». Используя нормальное распределение (2.5)
нетрудно посчитать, что они использовали доверительную вероятность
P≈1-5,7⋅10-7=0,99999943. Такую точность можно назвать фантастической.

Полученные значения доверительных вероятностей используются при
стандартной записи результатов измерений. В физических измерениях
(в частности, в учебной лаборатории), как правило, используется P=0,68,
то есть, запись

означает, что измеренное значение лежит в диапазоне (доверительном
интервале) x∈[x¯-δ⁢x;x¯+δ⁢x] с
вероятностью 68%. Таким образом погрешность ±δ⁢x считается
равной одному среднеквадратичному отклонению: δ⁢x=σ.
В технических измерениях чаще используется P=0,95, то есть под
абсолютной погрешностью имеется в виду удвоенное среднеквадратичное
отклонение, δ⁢x=2⁢σ. Во избежание разночтений доверительную
вероятность следует указывать отдельно.

Замечание. Хотя нормальный закон распределения встречается на практике довольно
часто, стоит помнить, что он реализуется далеко не всегда.
Полученные выше соотношения для вероятностей попадания значений в
доверительные интервалы можно использовать в качестве простейшего
признака нормальности распределения: в частности, если количество попадающих
в интервал ±σ результатов существенно отличается от 2/3 — это повод
для более детального исследования закона распределения ошибок.

Сравнение результатов измерений.

Теперь мы можем дать количественный критерий для сравнения двух измеренных
величин или двух результатов измерения одной и той же величины.

Пусть x1 и x2 (x1≠x2) измерены с
погрешностями σ1 и σ2 соответственно.
Ясно, что если различие результатов |x2-x1| невелико,
его можно объяснить просто случайными отклонениями.
Если же теория предсказывает, что вероятность обнаружить такое отклонение
слишком мала, различие результатов следует признать значимым.
Предварительно необходимо договориться о соответствующем граничном значении
вероятности. Универсального значения здесь быть не может,
поэтому приходится полагаться на субъективный выбор исследователя. Часто
в качестве «разумной» границы выбирают вероятность 5%,
что, как видно из изложенного выше, для нормального распределения
соответствует отклонению более, чем на 2⁢σ.

Допустим, одна из величин известна с существенно большей точностью:
σ2≪σ1 (например, x1 — результат, полученный
студентом в лаборатории, x2 — справочное значение).
Поскольку σ2 мало, x2 можно принять за «истинное»:
x2≈x¯. Предполагая, что погрешность измерения
x1 подчиняется нормальному закону с и дисперсией σ12,
можно утверждать, что
различие считают будет значимы, если

Пусть погрешности измерений сравнимы по порядку величины:
σ1∼σ2. В теории вероятностей показывается, что
линейная комбинация нормально распределённых величин также имеет нормальное
распределение с дисперсией σ2=σ12+σ22
(см. также правила сложения погрешностей (2.7)). Тогда
для проверки гипотезы о том, что x1 и x2 являются измерениями
одной и той же величины, нужно вычислить, является ли значимым отклонение
|x1-x2| от нуля при σ=σ12+σ22.


Пример. Два студента получили следующие значения для теплоты испарения
некоторой жидкости: x1=40,3±0,2 кДж/моль и
x2=41,0±0,3 кДж/моль, где погрешность соответствует
одному стандартному отклонению. Можно ли утверждать, что они исследовали
одну и ту же жидкость?

Имеем наблюдаемую разность |x1-x2|=0,7 кДж/моль,
среднеквадратичное отклонение для разности
σ=0,22+0,32=0,36 кДж/моль.
Их отношение |x2-x1|σ≈2. Из
свойств нормального распределения находим вероятность того, что измерялась
одна и та же величина, а различия в ответах возникли из-за случайных
ошибок: P≈5%. Ответ на вопрос, «достаточно»
ли мала или велика эта вероятность, остаётся на усмотрение исследователя.

Замечание. Изложенные здесь соображения применимы, только если x¯ и
его стандартное отклонение σ получены на основании достаточно
большой выборки n≫1 (или заданы точно). При небольшом числе измерений
(n≲10) выборочные средние ⟨x⟩ и среднеквадратичное отклонение
sx сами имеют довольно большую ошибку, а
их распределение будет описываться не нормальным законом, а так
называемым t-распределением Стъюдента. В частности, в зависимости от
значения n интервал ⟨x⟩±sx будет соответствовать несколько
меньшей доверительной вероятности, чем P=0,68. Особенно резко различия
проявляются при высоких уровнях доверительных вероятностей P→1.

2.3 Независимые величины

Величины x и y называют независимыми если результат измерения одной
из них никак не влияет на результат измерения другой. Для таких величин вероятность того, что x окажется в некоторой области X, и одновременно y — в области Y,
равна произведению соответствующих вероятностей:

Обозначим отклонения величин от их средних как Δ⁢x=x-x¯ и
Δ⁢y=y-y¯.
Средние значения этих отклонений равны, очевидно, нулю: Δ⁢x¯=x¯-x¯=0,
Δ⁢y¯=0. Из независимости величин x и y следует,
что среднее значение от произведения Δ⁢x⋅Δ⁢y¯
равно произведению средних Δ⁢x¯⋅Δ⁢y¯
и, следовательно, равно нулю:

Δ⁢x⋅Δ⁢y¯=Δ⁢x¯⋅Δ⁢y¯=0. (2.6)

Пусть измеряемая величина z=x+y складывается из двух независимых
случайных слагаемых x и y, для которых известны средние
x¯ и y¯, и их среднеквадратичные погрешности
σx и σy. Непосредственно из определения (1.1)
следует, что среднее суммы равно сумме средних:

Найдём дисперсию σz2. В силу независимости имеем

Δ⁢z2¯=Δ⁢x2¯+Δ⁢y2¯+2⁢Δ⁢x⋅Δ⁢y¯≈Δ⁢x2¯+Δ⁢y2¯,

то есть:

Таким образом, при сложении независимых величин их погрешности
складываются среднеквадратичным образом.

Подчеркнём, что для справедливости соотношения (2.7)
величины x и y не обязаны быть нормально распределёнными —
достаточно существования конечных значений их дисперсий. Однако можно
показать, что если x и y распределены нормально, нормальным
будет и распределение их суммы
.

Замечание. Требование независимости
слагаемых является принципиальным. Например, положим y=x. Тогда
z=2⁢x. Здесь y и x, очевидно, зависят друг от друга. Используя
(2.7), находим σ2⁢x=2⁢σx,
что, конечно, неверно — непосредственно из определения
следует, что σ2⁢x=2⁢σx.

Отдельно стоит обсудить математическую структуру формулы (2.7).
Если одна из погрешностей много больше другой, например,
σx≫σy,
то меньшей погрешностью можно пренебречь, σx+y≈σx.
С другой стороны, если два источника погрешностей имеют один порядок
σx∼σy, то и σx+y∼σx∼σy.

Эти обстоятельства важны при планирования эксперимента: как правило,
величина, измеренная наименее точно, вносит наибольший вклад в погрешность
конечного результата. При этом, пока не устранены наиболее существенные
ошибки, бессмысленно гнаться за повышением точности измерения остальных
величин.

Пример. Пусть σy=σx/3,
тогда σz=σx⁢1+19≈1,05⁢σx,
то есть при различии двух погрешностей более, чем в 3 раза, поправка
к погрешности составляет менее 5%, и уже нет особого смысла в учёте
меньшей погрешности: σz≈σx. Это утверждение
касается сложения любых независимых источников погрешностей в эксперименте.

2.4 Погрешность среднего

Выборочное среднее арифметическое значение ⟨x⟩, найденное
по результатам n измерений, само является случайной величиной.
Действительно, если поставить серию одинаковых опытов по n измерений,
то в каждом опыте получится своё среднее значение, отличающееся от
предельного среднего x¯.

Вычислим среднеквадратичную погрешность среднего арифметического
σ⟨x⟩.
Рассмотрим вспомогательную сумму n слагаемых

Если {xi} есть набор независимых измерений
одной и той же физической величины, то мы можем, применяя результат
(2.7) предыдущего параграфа, записать

σZ=σx12+σx22+…+σxn2=n⁢σx,

поскольку под корнем находится n одинаковых слагаемых. Отсюда с
учётом ⟨x⟩=Z/n получаем

Таким образом, погрешность среднего значения x по результатам
n независимых измерений оказывается в n раз меньше погрешности
отдельного измерения
. Это один из важнейших результатов, позволяющий
уменьшать случайные погрешности эксперимента за счёт многократного
повторения измерений.

Подчеркнём отличия между σx и σ⟨x⟩:

величина σx — погрешность отдельного
измерения
— является характеристикой разброса значений
в совокупности измерений {xi}, i=1..n. При
нормальном законе распределения примерно 68% измерений попадают в
интервал ⟨x⟩±σx;

величина σ⟨x⟩ — погрешность
среднего
— характеризует точность, с которой определено
среднее значение измеряемой физической величины ⟨x⟩ относительно
предельного («истинного») среднего x¯;
при этом с доверительной вероятностью P=68% искомая величина x¯
лежит в интервале
⟨x⟩-σ⟨x⟩<x¯<⟨x⟩+σ⟨x⟩.

2.5 Результирующая погрешность опыта

Пусть для некоторого результата измерения известна оценка его максимальной
систематической погрешности Δсист и случайная
среднеквадратичная
погрешность σслуч. Какова «полная»
погрешность измерения?

Предположим для простоты, что измеряемая величина в принципе
может быть определена сколь угодно точно, так что можно говорить о
некотором её «истинном» значении xист
(иными словами, погрешность результата связана в основном именно с
процессом измерения). Назовём полной погрешностью измерения
среднеквадратичное значения отклонения от результата измерения от
«истинного»:

Отклонение x-xист можно представить как сумму случайного
отклонения от среднего δ⁢xслуч=x-x¯
и постоянной (но, вообще говоря, неизвестной) систематической составляющей
δ⁢xсист=x¯-xист=const:

Причём случайную составляющую можно считать независимой от систематической.
В таком случае из (2.7) находим:

σполн2=⟨δ⁢xсист2⟩+⟨δ⁢xслуч2⟩≤Δсист2+σслуч2. (2.9)

Таким образом, для получения максимального значения полной
погрешности некоторого измерения нужно квадратично сложить максимальную
систематическую и случайную погрешности.

Если измерения проводятся многократно, то согласно (2.8)
случайная составляющая погрешности может быть уменьшена, а систематическая
составляющая при этом остаётся неизменной:

Отсюда следует важное практическое правило
(см. также обсуждение в п. 2.3): если случайная погрешность измерений
в 2–3 раза меньше предполагаемой систематической, то
нет смысла проводить многократные измерения в попытке уменьшить погрешность
всего эксперимента. В такой ситуации измерения достаточно повторить
2–3 раза — чтобы убедиться в повторяемости результата, исключить промахи
и проверить, что случайная ошибка действительно мала.
В противном случае повторение измерений может иметь смысл до
тех пор, пока погрешность среднего
σ⟨x⟩=σxn
не станет меньше систематической.


Замечание. Поскольку конкретная
величина систематической погрешности, как правило, не известна, её
можно в некотором смысле рассматривать наравне со случайной —
предположить, что её величина была определена по некоторому случайному
закону перед началом измерений (например, при изготовлении линейки
на заводе произошло некоторое случайное искажение шкалы). При такой
трактовке формулу (2.9) можно рассматривать просто
как частный случай формулы сложения погрешностей независимых величин
(2.7).

Подчеркнем, что вероятностный закон, которому подчиняется
систематическая ошибка, зачастую неизвестен. Поэтому неизвестно и
распределение итогового результата. Из этого, в частности, следует,
что мы не можем приписать интервалу x±Δсист какую-либо
определённую доверительную вероятность — она равна 0,68
только если систематическая ошибка имеет нормальное распределение.
Можно, конечно, предположить,
— и так часто делают — что, к примеру, ошибки
при изготовлении линеек на заводе имеют гауссов характер. Также часто
предполагают, что систематическая ошибка имеет равномерное
распределение (то есть «истинное» значение может с равной вероятностью
принять любое значение в пределах интервала ±Δсист).
Строго говоря, для этих предположений нет достаточных оснований.


Пример. В результате измерения диаметра проволоки микрометрическим винтом,
имеющим цену деления h=0,01 мм, получен следующий набор из n=8 значений:

Вычисляем среднее значение: ⟨d⟩≈386,3 мкм.
Среднеквадратичное отклонение:
σd≈9,2 мкм. Случайная погрешность среднего согласно
(2.8):
σ⟨d⟩=σd8≈3,2
мкм. Все результаты лежат в пределах ±2⁢σd, поэтому нет
причин сомневаться в нормальности распределения. Максимальную погрешность
микрометра оценим как половину цены деления, Δ=h2=5 мкм.
Результирующая полная погрешность
σ≤Δ2+σd28≈6,0 мкм.
Видно, что σслуч≈Δсист и проводить дополнительные измерения
особого смысла нет. Окончательно результат измерений может быть представлен
в виде (см. также правила округления
результатов измерений в п. 4.3.2)



d=386±6⁢мкм,εd=1,5%.


Заметим, что поскольку случайная погрешность и погрешность
прибора здесь имеют один порядок величины, наблюдаемый случайный разброс
данных может быть связан как с неоднородностью сечения проволоки,
так и с дефектами микрометра (например, с неровностями зажимов, люфтом
винта, сухим трением, деформацией проволоки под действием микрометра
и т. п.). Для ответа на вопрос, что именно вызвало разброс, требуются
дополнительные исследования, желательно с использованием более точных
приборов.


Пример. Измерение скорости
полёта пули было осуществлено с погрешностью δ⁢v=±1 м/c.
Результаты измерений для n=6 выстрелов представлены в таблице:

Усреднённый результат ⟨v⟩=162,0⁢м/с,
среднеквадратичное отклонение σv=13,8⁢м/c, случайная
ошибка для средней скорости
σv¯=σv/6=5,6⁢м/с.
Поскольку разброс экспериментальных данных существенно превышает погрешность
каждого измерения, σv≫δ⁢v, он почти наверняка связан
с реальным различием скоростей пули в разных выстрелах, а не с ошибками
измерений. В качестве результата эксперимента представляют интерес
как среднее значение скоростей ⟨v⟩=162±6⁢м/с
(ε≈4%), так и значение σv≈14⁢м/с,
характеризующее разброс значений скоростей от выстрела к выстрелу.
Малая инструментальная погрешность в принципе позволяет более точно
измерить среднее и дисперсию, и исследовать закон распределения выстрелов
по скоростям более детально — для этого требуется набрать
бо́льшую статистику по выстрелам.


Пример. Измерение скорости
полёта пули было осуществлено с погрешностью δ⁢v=10 м/c. Результаты
измерений для n=6 выстрелов представлены в таблице:

Усреднённый результат ⟨v⟩=163,3⁢м/с,
σv=12,1⁢м/c, σ⟨v⟩=5⁢м/с,
σполн≈11,2⁢м/с. Инструментальная
погрешность каждого измерения превышает разброс данных, поэтому в
этом опыте затруднительно сделать вывод о различии скоростей от выстрела
к выстрелу. Результат измерений скорости пули:
⟨v⟩=163±11⁢м/с,
ε≈7%. Проводить дополнительные выстрелы при такой
большой инструментальной погрешности особого смысла нет —
лучше поработать над точностью приборов и методикой измерений.

2.6 Обработка косвенных измерений

Косвенными называют измерения, полученные в результате расчётов,
использующих результаты прямых (то есть «непосредственных»)
измерений физических величин. Сформулируем основные правила пересчёта
погрешностей при косвенных измерениях.

2.6.1 Случай одной переменной

Пусть в эксперименте измеряется величина x, а её «наилучшее»
(в некотором смысле) значение равно x⋆ и оно известно с
погрешностью σx. После чего с помощью известной функции
вычисляется величина y=f⁢(x).

В качестве «наилучшего» приближения для y используем значение функции
при «наилучшем» x:

Найдём величину погрешности σy. Обозначая отклонение измеряемой
величины как Δ⁢x=x-x⋆, и пользуясь определением производной,
при условии, что функция y⁢(x) — гладкая
вблизи x≈x⋆, запишем

где f′≡d⁢yd⁢x — производная фукнции f⁢(x), взятая в точке
x⋆. Возведём полученное в квадрат, проведём усреднение
(σy2=⟨Δ⁢y2⟩,
σx2=⟨Δ⁢x2⟩), и затем снова извлечём
корень. В результате получим


Пример. Для степенной функции
y=A⁢xn имеем σy=n⁢A⁢xn-1⁢σx, откуда



σyy=n⁢σxx,или  εy=n⁢εx,


то есть относительная погрешность степенной функции возрастает пропорционально
показателю степени n.

Пример. Для y=1/x имеем ε1/x=εx
— при обращении величины сохраняется её относительная
погрешность.

Упражнение. Найдите погрешность логарифма y=ln⁡x, если известны x
и σx.

Упражнение. Найдите погрешность показательной функции y=ax,
если известны x и σx. Коэффициент a задан точно.

2.6.2 Случай многих переменных

Пусть величина u вычисляется по измеренным значениям нескольких
различных независимых физических величин x, y, …
на основе известного закона u=f⁢(x,y,…). В качестве
наилучшего значения можно по-прежнему взять значение функции f
при наилучших значениях измеряемых параметров:

Для нахождения погрешности σu воспользуемся свойством,
известным из математического анализа, — малые приращения гладких
функции многих переменных складываются линейно, то есть справедлив
принцип суперпозиции малых приращений:

где символом fx′≡∂⁡f∂⁡x обозначена
частная производная функции f по переменной x —
то есть обычная производная f по x, взятая при условии, что
все остальные аргументы (кроме x) считаются постоянными параметрами.
Тогда пользуясь формулой для нахождения дисперсии суммы независимых
величин (2.7), получим соотношение, позволяющее вычислять
погрешности косвенных измерений для произвольной функции
u=f⁢(x,y,…):

σu2=fx′⁣2⁢σx2+fy′⁣2⁢σy2+… (2.11)

Это и есть искомая общая формула пересчёта погрешностей при косвенных
измерениях.

Отметим, что формулы (2.10) и (2.11) применимы
только если относительные отклонения всех величин малы
(εx,εy,…≪1),
а измерения проводятся вдали от особых точек функции f (производные
fx′, fy′ … не должны обращаться в бесконечность).
Также подчеркнём, что все полученные здесь формулы справедливы только
для независимых переменных x, y, …

Остановимся на некоторых важных частных случаях формулы
(2.11).


Пример. Для суммы (или разности) u=∑i=1nai⁢xi имеем



σu2=∑i=1nai2⁢σxi2.

(2.12)



Пример. Найдём погрешность степенной функции:
u=xα⋅yβ⋅…. Тогда нетрудно получить,
что



σu2u2=α2⁢σx2x2+β2⁢σy2y2+…


или через относительные погрешности



εu2=α2⁢εx2+β2⁢εy2+…

(2.13)



Пример. Вычислим погрешность произведения и частного: u=x⁢y или u=x/y.
Тогда в обоих случаях имеем



εu2=εx2+εy2,

(2.14)


то есть при умножении или делении относительные погрешности складываются
квадратично.


Пример. Рассмотрим несколько более сложный случай: нахождение угла по его тангенсу



u=arctgyx.


В таком случае, пользуясь тем, что (arctgz)′=11+z2,
где z=y/x, и используя производную сложной функции, находим
ux′=uz′⁢zx′=-yx2+y2,
uy′=uz′⁢zy′=xx2+y2, и наконец



σu2=y2⁢σx2+x2⁢σy2(x2+y2)2.


Упражнение. Найти погрешность вычисления гипотенузы z=x2+y2
прямоугольного треугольника по измеренным катетам x и y.

По итогам данного раздела можно дать следующие практические рекомендации.

  • Как правило, нет смысла увеличивать точность измерения какой-то одной
    величины, если другие величины, используемые в расчётах, остаются
    измеренными относительно грубо — всё равно итоговая погрешность
    скорее всего будет определяться самым неточным измерением. Поэтому
    все измерения имеет смысл проводить примерно с одной и той же
    относительной погрешностью
    .

  • При этом, как следует из (2.13), особое внимание
    следует уделять измерению величин, возводимых при расчётах в степени
    с большими показателями. А при сложных функциональных зависимостях
    имеет смысл детально проанализировать структуру формулы
    (2.11):
    если вклад от некоторой величины в общую погрешность мал, нет смысла
    гнаться за высокой точностью её измерения, и наоборот, точность некоторых
    измерений может оказаться критически важной.

  • Следует избегать измерения малых величин как разности двух близких
    значений (например, толщины стенки цилиндра как разности внутреннего
    и внешнего радиусов): если u=x-y, то абсолютная погрешность
    σu=σx2+σy2
    меняется мало, однако относительная погрешность
    εu=σux-y
    может оказаться неприемлемо большой, если x≈y.

Измерительные каналы систем автоматизации могут включать в себя несколько средств измерений различных типов, например датчики, измерительные преобразователи, модули аналогового и частотного ввода и вывода [1]. Погрешность такой системы желательно определять экспериментальным путём [2], однако это не всегда возможно или целесообразно. В таких случаях используют расчётный метод.

Исходные данные для расчёта

Исходными данными для расчёта погрешности измерительных каналов являются [3]:

  • метрологические характеристики средств измерений;

  • погрешность метода измерений (методическая погрешность);

  • характеристики влияющих величин (например, окружающая температура, влажность);

  • характеристики измеряемого сигнала.

ГОСТ 8.009-84 [4] для всех типов средств измерений устанавливает следующий комплекс метрологических характеристик, который указывается в эксплуатационной документации на средства измерений:

  • систематическая составляющая основной погрешности;

  • среднеквадратическое отклонение случайной составляющей основной погрешности;

  • дополнительная погрешность для каждой из влияющих величин;

  • динамическая погрешность.

Некоторые средства измерений обладают гистерезисом – для них, кроме перечисленных погрешностей, указывается случайная составляющая основной погрешности, вызванной гистерезисом.

Основная погрешность может быть указана без разделения её на части (на систематическую, случайную и погрешность от гистерезиса), и этот вариант является наиболее распространённым. Случайную составляющую указывают в случае, когда она больше 10% от систематической [4].

Дополнительная погрешность указывается в виде функции влияния внешнего фактора на основную погрешность или её составляющие: систематическую и случайную. Обычно эта функция представляет собой линейную зависимость, и тогда указывается только коэффициент влияния, например 0,05%/°С.

Динамическая погрешность указывается с помощью одной из следующих характеристик: импульсная, переходная, амплитудно-частотная и фазочастотная, амплитудно-фазовая характеристика, передаточная функция. Для минимально-фазовых цепей указывается только амплитудно-частотная характеристика, поскольку фазочастотная однозначно может быть получена из амплитудно-частотной характеристики.

Для расчёта методической погрешности могут быть указаны сопротивления проводов, среднеквадратическое значение или спектральная плотность помех в них, ёмкость, индуктивность и сопротивление источника сигнала, а также другие факторы, которые возникают при создании системы, включающей средства и объект измерений.

Характеристики измеряемого сигнала задаются в виде функции от времени или функции спектральной плотности. Для случайного входного сигнала задаётся спектральная плотность мощности или автокорреляционная функция. Во многих случаях для оценки погрешности бывает достаточно знания скорости нарастания входного сигнала.

Коэффициент корреляции

При расчёте погрешности измерительного канала возникает задача суммирования погрешностей средств измерений, которые являются случайными величинами. Способ суммирования будет различным в зависимости от того, являются ли случайные величины статистически зависимыми. Понятие статистической зависимости иллюстрирует рис. 1: если с ростом одной случайной величины X в среднем увеличивается (или уменьшается) и вторая (Y), то между этими величинами имеется статистическая зависимость. Для её количественного описания используются понятия ковариации или коэффициента корреляции.

Рассмотрим суммирование двух случайных погрешностей X и Y с нулевым математическим ожиданием (то есть центрированных случайных величин). Дисперсия суммы двух случайных величин по определению равна математическому ожиданию квадрата их суммы:

 

где D[•] и M[•] – операторы дисперсии и математического ожидания; σx, σy – среднеквадратические отклонения случайных величин X и Y. Величина

называется ковариацией («совместной вариацией») случайных величин X и Y.

Ковариацию дискретных случайных величин можно оценить по их дискретным значениям X = {x1,…xN} и Y = {y1,…yN} с помощью формулы среднего арифметического:

Коэффициентом корреляции Rxy называют отношение ковариации к произведению среднеквадратических отклонений σx и σy случайных величин X и Y:

Когда случайные величины независимы, их коэффициент корреляции равен нулю (Rxy = 0), и такие величины называются некоррелированными. Если коэффициент корреляции равен единице (Rxy = 1), то между величинами X и Y имеется не статистическая, а функциональная зависимость.

Используя понятие среднеквадратического отклонения σx = √D[X], уравнение (1) можно записать в виде:

Здесь знак минус используется, когда случайные величины вычитаются, например, если находится разность напряжений двух измерительных каналов. При этом наличие корреляции между каналами частично уменьшает погрешность разности.

В случае когда случайные величины статистически независимы (Rxy = 0), выражение (5) упрощается:

Такое суммирование называют геометрическим, поскольку оно выполняется аналогично нахождению гипотенузы прямоугольного треугольника.

Если коэффициент корреляции Rxy = +1, то

Если коэффициент корреляции равен Rxy = –1, то

это означает, что при нахождении суммы случайных величин отрицательный коэффициент корреляции уменьшает итоговую погрешность, а при нахождении разности – увеличивает.

Если случайные величины не центрированы и имеют математические ожидания mx и my, то коэффициент корреляции можно оценить как

На рис. 1 показаны примеры статистической зависимости между случайными величинами при сильной (а) и слабой (б) корреляции. Точки на графике (значения случайной величины) могут группироваться очень близко к прямой линии, которая аппроксимирует эту зависимость, и тогда статистиче­ская зависимость приближается к детерминированной. Степень отличия статистической зависимости от детерминированной характеризуют коэффициентом корреляции Rxy.

Прямая линия, проведённая таким образом, что сумма квадратов отклонений значений случайной величины от этой линии минимальна, называется линией среднеквадратической регрессии. Тангенс угла наклона этой линии называется коэффициентом регрессии. Уравнение линии регрессии можно получить методом наименьших квадратов; оно имеет вид [1]:

y = A(x – mx) + my,                                                                      

где A – коэффициент регрессии. Коэффициент регрессии вычисляется через коэффициент корреляции Rxy и среднеквадратические отклонения σy и σx как

Коэффициент корреляции приобретает ясный физический смысл, если статистические переменные центрировать (вычесть математическое ожидание) и нормировать на величину среднеквадратического отклонения. Поскольку среднеквадратические отклонения нормированных величин равны единице, то коэффициент корреляции (9) становится равен тангенсу наклона линии среднеквадратической регрессии.

Статистическая зависимость между погрешностями средств измерений в общем случае нелинейная, однако этой нелинейностью обычно пренебрегают.

Точечные и интервальные оценки погрешности

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относятся математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью P. Она называется доверительной вероятностью, или надёжностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности, равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Смысл интервальной оценки погрешности иллюстрирует рис. 2. Здесь использованы следующие обозначения: ∆ – по-грешность измерения; р(∆) – плотность распределения по-грешностей; Φ(∆) – функция распределения погрешностей,

 

Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины ∆ описывается функцией

где σ – среднеквадратическая погрешность.

Если погрешность измерения ∆ находится внутри интервала ∆1 < ∆ < ∆2, то вероятность этого события вычисляется как

В наиболее типичном случае симметричных границ (–∆0 < ∆ < ∆0) получим

Здесь использовано свойство симметрии функции распределения для закона Гаусса.

Таким образом, если задан интервал –∆0 < ∆ < ∆0, который содержит в себе погрешность измеряемого параметра ∆, то вероятность того, что погрешность ∆ не выходит за границы интервала, можно найти по формуле (12) для нормального закона распределения. Вероятность P(–∆0 < ∆ < ∆0) называют также надёжностью оценки погрешности и обозначают символом γ:

Для вычисления функции распределения удобно использовать пакеты Mathcad, MATLAB. С их помощью из формулы (13) несложно найти величину доверительного интервала [–∆0, +∆0], если задана величина надёжности γ.

Для ∆0 = σ доверительная вероятность равна γ = 68,3%, для ∆0 = 2σ она уже равна γ = 95,3%, для ∆0 = 3σ составляет γ = 99,7% и для ∆0 = 4σ достигает γ = 99,994%.

Для увеличения надёжности оценки погрешности измерений или для сужения доверительного интервала при заданной надёжности можно использовать усреднение результатов многократных измерений. Поскольку оценка среднеквадратической погрешности результата усреднения σср равна    [1], где σx – среднеквадратическая погрешность средства измерений, N – количество однократных измерений, то, подставив в (13) вместо σ величину σср, получим

Эта формула позволяет найти количество однократных измерений N, которое необходимо усреднить для получения требуемого доверительного интервала [–∆0, +∆0] при заданной надёжности γ или требуемой надёжности γ при заданном доверительном интервале [–∆0, +∆0]. Поскольку формула (14) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

Следует иметь в виду, что повышение точности путём усреднения результатов многократных измерений имеет множество ограничений [1].

Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге [5]. Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учёте факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

Погрешность метода измерений

Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

  • сопротивление кабелей;

  • соотношение между входным импедансом средства измерений и выходным импедансом датчика;

  • качество экранирования и заземления, мощность источников помех;

  • погрешность метода косвенных, совместных или совокупных измерений;

  • наличие внешних влияющих факторов, если они не учтены в дополнительной погрешности средства измерений;

  • погрешность обработки результатов измерений программ­ным обеспечением.

Все погрешности, которые не могут быть учтены в процессе сертификационных испытаний и внесены в паспорт средства измерений, а появляются в конкретных условиях применения, относятся к методическим. В отличие от них, инструментальные погрешности нормируются в процессе производства измерительного прибора и заносятся в его эксплуатационную документацию. Таким образом, если в состав смонтированной автоматизированной измерительной системы входят средства измерений с нормированными погрешностями, то погрешность, вызванная ранее перечисленными факторами, является методической. Если же выполняется сертификация всей измерительной системы, то методические погрешности могут быть учтены в погрешности всей системы, и тогда они переходят в разряд инструментальных.

Для расчёта или измерения методической погрешности трудно дать общие рекомендации. Каждый конкретный случай требует отдельного рассмотрения.

Погрешность программного обеспечения

Погрешность программного обеспечения (ПО) [6, 7] оценивается как разность между результатами измерений, полученными данным ПО и эталонным ПО. Под эталонным по-нимается программное обеспечение, высокая точность которого доказана многократными испытаниями и тестированием. Понятие эталонного ПО является условным и определяется соглашением между заказчиком аттестации и исполнителем. В качестве эталонного может быть использовано ра-нее аттестованное ПО.

К основным источникам погрешностей ПО отно­сятся:

  • ошибки записи исходного текста программы и ошибки трансляции программы в объектный код;

  • ошибки в алгоритме решения измерительной задачи;

  • ошибки в таблицах для линеаризации нелинейных характеристик преобразования;

  • применение неустойчивых или медленно сходящихся алгоритмов при решении плохо обусловленных измерительных задач;

  • ошибки преобразования форматов данных;

  • ошибки округления и др.

Надёжность (достоверность) ПО обеспечивается средствами защиты от несанкционированных изменений, которые могут явиться причиной появления не учтённых при аттестации погрешностей.

Достоверность измерений

В процессе выполнения измерений могут появиться грубые ошибки (промахи), которые делают измерения недостоверными, несмотря на применение очень точных измерительных приборов. Здесь под достоверностью понимается степень доверия к полученным результатам. Достоверность может быть низкая при наличии погрешностей, о существовании которых экспериментатор не догадывается. Достоверность при использовании автоматизированных измерительных систем снижается с ростом их сложности и существенно зависит от квалификации персонала проектирующей и монтажной организаций.

Главным методом обеспечения достоверности является сопоставление результатов измерения одной и той же величины разными, не связанными друг с другом способами. На­пример, после монтажа системы измерения температуры в силосе элеватора следует сравнить показания автоматизированной системы и автономного контрольного термометра, чтобы убедиться в правильности показаний автоматизированной системы.

Приведём несколько примеров, иллюстрирующих случаи, когда, несмотря на применение точных средств измерений, получаются совершенно ошибочные данные, вводящие человека в заблуждение.

Пример 1. Для измерения температуры воздуха в теплице использован датчик температуры с погрешностью ±0,5°С. Однако датчик установлен таким образом, что в некоторые часы на него падают прямые лучи солнца, которые нагревают датчик, но не изменяют температуру воздуха. При этом погрешность измерения температуры воздуха может составить +5°С, что позволяет квалифицировать результат измерения как недостоверный.

Пример 2. Для измерения температуры в силосах элеватора установлены точные датчики и сделан тщательный монтаж, но расположенный на крыше элеватора ретранслятор сотовой связи оказался незамеченным, и не было принято достаточных мер для защиты от помех. При этом погрешность измерения температуры может составить ±10°С вслед­-ствие помех, наведённых передатчиком в сигнальных кабелях системы.

Пример 3. В автоматизированной системе для измерения па­раметров продукции использован модуль ввода с погрешностью ±0,05%, однако при наладке системы программист по ошибке установил частоту помехоподавляющего режекторного фильтра не 50, а 60 Гц. Проведённые приёмо-сдаточные испытания системы не позволили выявить эту ошибку.

В результате погрешность измерений вследствие наведённой помехи с частотой 50 Гц может повыситься до ±10% вместо ожидаемых ±0,05%.

Пример 4. Во время выполнения измерений ваш коллега разговаривал по сотовому телефону. Наводка сигнала от передатчика сотового телефона может повысить погрешность измерений в несколько раз.

Пример 5. При монтаже системы заземлили экран сигнального кабеля с двух сторон. Проведённые приёмо-сдаточные испытания не позволили выявить эту ошибку. Погрешность может увеличиться в несколько раз по сравнению с ожидаемой.

Пример 6. В процессе эксплуатации системы нарушился контакт в цепи заземления, что привело к эпизодическому повышению уровня помех в измерительной цепи. В статье [8] описан пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которых искали несколько лет.

Пример 7. При расчёте погрешности средств измерений была проигнорирована динамическая погрешность, поскольку исходные данные для её расчёта не были указаны в эксплуатационной документации на средство измерения и не были выявлены в процессе приёмо-сдаточных испытаний ввиду сложности постановки эксперимента, отсутствия времени и приборов для контроля величины погрешности. Во время эксплуатации системы фактическая погрешность в несколько раз превысила расчётную.

В приведённых примерах сложно обнаружить наличие погрешности в процессе сдачи системы в эксплуатацию, она может появляться в особых условиях эксплуатации. Это приводит к снижению достоверности измерений, несмотря на высокую инструментальную точность использованных технических средств.

Общий подход к решению проблемы заключается в применении второй, независимой системы или методики измерений для обнаружения ошибок. Можно использовать также целый комплекс мер, включая подбор персонала, соблюдение графика поверки, тщательность выполнения типовых и сертификационных испытаний системы, соблюдение методики измерений и обслуживания измерительной системы.

Термин «достоверность» иногда используется во втором его значении – для указания вероятности того, что измеренное значение находится в заданном доверительном интервале [9] при условии, что все промахи и ошибки измерительной системы и методики измерений исключены. Количественным выражением достоверности в данном случае является доверительная вероятность [1]. Следует различать эти два значения одного и того же термина.

Методы суммирования погрешностей

Перед суммированием все погрешности делятся на следующие группы:

  • систематические и случайные;

  • в группе случайных – на коррелированные и некоррелированные;

  • аддитивные и мультипликативные;

  • основные и дополнительные.

Такое деление необходимо потому, что систематические и случайные погрешности, а также коррелированные и некоррелированные суммируются по-разному, а аддитивные по-грешности нельзя складывать с мультипликативными.

Если некоторые погрешности указаны в виде доверительных интервалов, то перед суммированием их нужно представить в виде среднеквадратических отклонений [1].

Дополнительные погрешности могут складываться с основными либо перед суммированием погрешностей, либо на заключительном этапе, в зависимости от поставленной задачи. Второй вариант часто предпочтительнее, поскольку он позволяет оценивать погрешность всего измерительного канала в зависимости от величины внешних влияющих факторов в конкретных условиях эксплуатации.

При последовательном соединении нескольких средств измерений погрешности, проходя через измерительный канал с передаточной функцией (функцией преобразования) f(x), могут усиливаться или ослабляться. Для учёта этого эффекта используют коэффициенты влияния, которые определяются как .

 

Все погрешности перед суммированием приводят к выходу (или входу) измерительного канала путём умножения (деления) на коэффициент влияния. В дальнейшем будем предполагать, что такое приведение уже выполнено.

Погрешности средств измерений являются случайными величинами, поэтому при их суммировании в общем случае необходимо учитывать соответствующие законы распределения. На практике пользуются более грубыми упрощёнными методами, разработанными математической статистикой.

Математическое ожидание погрешностей средств измерений, как правило, равно нулю. Если это не так, то его (в виде поправки) складывают с систематической составляющей погрешности. В средствах автоматизации введение поправки выполняется автоматически с помощью микроконтроллера, входящего в состав средств измерений. Математическое ожидание случайной составляющей всегда равно нулю, поскольку при нормировании метрологических характеристик его относят к систематической составляющей.

Наиболее полное определение итоговой погрешности измерительного канала состояло бы в нахождении функции распределения суммы нескольких погрешностей измерения. Однако функция распределения суммы случайных величин находится с помощью операции свёртки [10], что приводит к значительным практическим трудностям. Поэтому для оценки итоговой погрешности ограничиваются только суммированием дисперсий погрешностей.

Погрешности суммируют по однородным группам, затем находят общую погрешность, используя геометрическое суммирование для случайных погрешностей и алгебраическое для детерминированных.

Существует три способа суммирования погрешностей:

  • алгебраический      (15)

    где i – номер погрешности, N – их количество;

  • геометрический

    где σi – среднеквадратическое значение i-й погрешности;

  • с учётом корреляции
     

В этой формуле j ≠ i потому, что члены с j = i уже учтены в сумме NΣi=1 σi2 , а граница j < i установлена для того, чтобы суммировать только члены, лежащие ниже диагонали корреляционной матрицы, поскольку вследствие её симметричности Rijσiσj + Rjiσjσi = 2Rijσiσj.

При Rij = +1 выражение (17) переходит в формулу алгебраического суммирования:

где σi складываются со своими знаками, то есть коррелированные погрешности с противоположными знаками частично взаимно компенсируются, если их коэффициент корреляции равен единице.

При Rij = –1 погрешности вычитают попарно в соответствии с (8):

то есть при отрицательной корреляции погрешности частично компенсируются, если они имеют один и тот же знак.

Учитывая, что получить удовлетворительные оценки коэффициентов корреляции довольно трудно, используют следующий приём: при |Rij| ≥ 0,7 считают, что |Rij| = 1, при |Rij| < 0,7 полагают |Rij| = 0 [9, 10].

Систематические погрешности

В наиболее типовом случае систематические составляющие основных погрешностей средств измерений суммируются геометрически по формуле (16), поскольку они являются случайными величинами.

Формулы геометрического суммирования были получены для среднеквадратических погрешностей [1]. Поэтому, если комплекс метрологических характеристик средств измерений включает предел допускаемых значений систематической составляющей основной погрешности ∆os без указания среднеквадратического значения (по ГОСТ 8.009-84 [4]), то соответствующее ему среднеквадратическое значение находят в соответствии с рекомендациями РД 50-453-84 [11] по формуле

Эта формула справедлива, если нет оснований полагать, что функция распределения данной погрешности является несимметричной и имеет несколько максимумов.

Метрологическая инструкция МИ 2232-2000 [12] рекомендует иную формулу – половину предела допускаемой погрешности.

Выбор способа суммирования систематических составляющих основных погрешностей не является однозначным, и это связано с отсутствием полной информации о законе распределения. Дело в том, что причиной существования основной погрешности является как технологический разброс параметров электронных компонентов, так и нескомпенсированная нелинейность. Технологический разброс обычно является случайным, и на этом основании систематическая составляющая погрешности может рассматриваться как случайная величина на множестве средств измерений одного и того же типа. Поэтому в формулах для расчёта погрешностей она учитывается геометрически. Однако нелинейность передаточной характеристики средства измерений (нелинейность АЦП, нормирующих усилителей, термопар) у всех экземпляров приборов одного типа будет иметь примерно один и тот же вид, величину и знак. Например, погрешность, вызванная нелинейностью, в начале шкалы может быть положительной, в середине шкалы – отрицательной, у верхнего предела шкалы – опять положительной, и так для всех экземпляров приборов одного типа. Поэтому погрешности, обусловленные нелинейностью, должны суммироваться алгебраически.

В современных модулях аналогового ввода используется автоматическая калибровка, позволяющая уменьшить случайную компоненту систематической погрешности, и в этом случае преобладающей является детерминированная погрешность нелинейности.

Поскольку ГОСТ 8.009-84 [4] не предусматривает нормирование таких тонких нюансов поведения погрешностей, выбор способа суммирования начинает зависеть не от технических, а от политических факторов. Если фактическая погрешность окажется выше расчётной и это повлечёт за собой угрозу жизни людей, большой экономический ущерб, техногенную катастрофу и т. п. [12], то суммирование погрешностей выполняют алгебраически, причём используют не среднеквадратические отклонения, а пределы допустимых значений погрешности.

Если известен знак систематической погрешности, то его учитывают при суммировании.

Для наиболее ответственных применений следует использовать средства измерений, для которых указана погрешность без разделения на случайную и систематическую компоненты, поскольку в этом случае погрешность указана с доверительной вероятностью, равной единице. Если же ис-пользуются средства измерений, для которых указана случайная составляющая, то для них рассчитывают величину погрешности при доверительной вероятности, равной единице. Это условие существенно завышает требования к точности средства измерений.

Алгебраическое суммирование часто даёт слишком завышенную оценку погрешности. Поэтому МИ 2232-2000 [12] предусматривает промежуточный вариант между формулами геометрического и алгебраического суммирования:

где K – поправочный коэффициент, равный 1,2 для наиболее важных параметров устройств аварийной защиты и блокировки, контроля за соблюдением требований техники безопасности и экологической безопасности, контроля характеристик готовой продукции [12].

Для конкретных экземпляров приборов могут быть указаны не номинальные характеристики (имеющие одну и ту же величину для всех приборов данного типа), а индивидуальные. В этом случае систематическая погрешность является не случайной, а детерминированной величиной, поэтому должна учитываться в итоговой погрешности измерительного канала алгебраически.

Случайные составляющие погрешностей

Случайные составляющие основной погрешности средств измерений по ГОСТ 8.009-84 [4] задаются своими среднеквадратическими отклонениями, поэтому их суммирование выполняется непосредственно по формуле геометрического суммирования (16).

Если случайная погрешность является коррелированным случайным процессом [1] и задана в виде функции автокорреляции R(t) или спектральной плотности мощности S(f), то сначала находят среднеквадратическое значение случайной составляющей погрешности. Для этого используют формулу:

где fв – верхняя граничная частота полосы пропускания всего измерительного канала или цифрового фильтра, используемого при обработке полученных данных. Если задана функция автокорреляции, то спектральную плотность мощности находят по формуле, учитывающей корреляцию [1].

Случайная составляющая погрешности может быть уменьшена в несколько раз (в зависимости от величины фликкер-шума) путём усреднения результатов многократных измерений [1].

Дополнительные погрешности

Дополнительные погрешности задаются в виде функции влияния внешних факторов (температуры, влажности, напряжения питания) на основную погрешность измерения, или, в случае линейной функции влияния, они характеризуются коэффициентом влияния. Например, может быть задано, что основная погрешность увеличивается на +0,05% при изменении напряжения питания на +20%.

Если задан диапазон изменения влияющих величин, в качестве их математического ожидания для расчётов с помощью функции влияния берут их среднее значение [11].

Среднеквадратическое отклонение дополнительной погрешности для линейной функции влияния находят по формуле [11]:

где Kξ – коэффициент влияния внешнего фактора; ξ1, ξ2 – нижняя и верхняя границы изменения влияющей величины.

Дополнительная погрешность может увеличивать как систематическую, так и случайную составляющую основной погрешности. Для этого функции влияния задаются раздельно на каждую составляющую.

Если известно, что дополнительные погрешности нескольких средств измерений коррелируют (например, синхронно возрастают при увеличении напряжения питания в сети или температуры окружающей среды), то такие погрешности суммируют как коррелированные величины с учётом коэффициента корреляции в соответствии с (17) – (19).

Дополнительные погрешности считаются несущественными, если их сумма составляет менее 17% от наибольшего возможного значения инструментальной погрешности в рабочих условиях эксплуатации [4].

Динамические погрешности

Динамическая погрешность при известном входном сигнале является детерминированной. Она обычно приводит к занижению показаний измерительного прибора. Суммирование таких погрешностей выполняется алгебраически.

Подробнее об оценке динамической погрешности см. [1, 10].

Динамическая погрешность считается несущественной, если она составляет менее 17% от наибольшего возможного значения инструментальной погрешности в рабочих условиях эксплуатации [4].

Нахождение итоговой погрешности

После суммирования погрешностей по группам, как это было описано ранее, результат измерения обычно выражают в виде:

где x0 – измеренное значение; ∆ – сумма всех погрешностей, которые складывались алгебраически, то есть детерминированных погрешностей (детерминированные погрешности могут быть прибавлены к измеренной величине в качестве поправки); σ – сумма всех случайных погрешностей, которые складывались геометрически, в том числе с учётом корреляционных связей: 

где σΣсист – сумма всех систематических погрешностей измерительного канала; σΣслуч – сумма всех случайных погрешностей; σΣдоп – сумма всех дополнительных погрешностей; σΣметод – сумма всех случайных составляющих методических погрешностей, включая погрешность программного обеспечения. Детерминированные составляющие методических погрешностей учитываются в слагаемом ∆.

Вместо среднеквадратического отклонения может быть указан предел допустимых значений. Однако должно быть явно указано, какая именно оценка погрешности использована, поскольку доверительные вероятности для предела допустимых значений (единица) и для среднеквадратического отклонения (0,68) существенно отличаются.

Случайная, систематическая и дополнительная погрешности могут быть указаны раздельно. МИ 1317-2004 [13] рекомендует «вместе с результатом измерений представлять характеристики его погрешности или их статистические оценки». Поэтому состав характеристик погрешности может быть выбран в каждом конкретном случае индивидуально, в зависимости от смысла решаемой задачи.

При выполнении многократных измерений результат должен также содержать указание на количество измерений, использованных при усреднении, и интервал времени, в течение которого были выполнены измерения [13].

Поскольку выражение для суммы дисперсий случайных величин (1) получено независимо от закона распределения, геометрическое суммирование погрешностей даёт правильное значение дисперсии независимо от законов распределения отдельных составляющих. Однако при этом ничего нельзя сказать о функции распределения суммарной погрешности, в том числе о надёжности (доверительной вероятности) полученного результата. Тем не менее, поскольку при суммировании пяти и более погрешностей закон распределения суммы близок к нормальному независимо от законов распределения отдельных слагаемых [10], то, зная среднеквадратическое отклонение итоговой погрешности, можно использовать нормальный закон распределения для указания доверительного интервала и доверительной вероятности результата измерений.

Нахождение погрешности измерительного канала в условиях недостатка исходных данных

При оценке погрешности измерительных каналов средств автоматизации следует по возможности использовать экспериментальный метод. Однако в случаях когда это невозможно или экономически нецелесообразно, делают расчёт по изложенной ранее методике. Типичной проблемой, которая при этом возникает, является отсутствие некоторых исходных данных. В этой ситуации метрологическая инструкция МИ 2232-2000 [12] рекомендует использовать следующие «значения по умолчанию»:

  • среднеквадратическое значение погрешности принимается равным половине предела допускаемых значений погрешности;

  • математическое ожидание основной и дополнительной погрешности принимается равным нулю;

  • корреляция между отдельными составляющими погрешности отсутствует;

  • случайная составляющая погрешности измерений является некоррелированной случайной величиной (белым шумом) или вырождается в систематическую погрешность;

  • функции распределения внешних влияющих величин предполагаются равномерными или нормальными;

  • считается, что инерционные свойства средств измерений не оказывают влияния на погрешность измерений. ●

Литература

  1. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. – М. : Горячая линия – Телеком, 2009. – 608 с.

  2. МИ 2440-97. ГСИ. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов (взамен МИ 2313-94).

  3. ГОСТ 23222-88. Характеристики точности выполнения предписанной функции средств автоматизации. Требования к нормированию. Общие методы контроля.

  4. ГОСТ 8.009-84. Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений.

  5. Тутубалин В.Н. Теория вероятностей и случайных процессов. Основы математического аппарата и прикладные аспекты. – М. : Изд-во МГУ, 1992. – 400 с.

  6. МИ 2955-2005. ГСИ. Типовая методика аттестации программного обеспечения средств измерений и порядок её проведения.

  7. МИ 2891-2004. ГСИ. Общие требования к программному обеспечению средств измерений.

  8. Burleson J. Wiring and grounding to prevent power quality problems with industrial equipment // Textile, Fiber and Film Industry Technical Conference, 8–9 May 1991. – Pp. 5/1–5/6.

  9. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. – Л. : Энергоатомиздат, 1991. – 304 с.

  10. Орнатский П.П. Теоретические основы информационно-измерительной техники. – 2-е изд. – Киев : Вища школа, 1983. – 455 с.

  11. РД 50-453-84. Методические указания. Характеристики погрешности средств измерений в реальных условиях эксплуатации. Методы расчёта.

  12. МИ 2232-2000. ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

  13. МИ 1317-2004. ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров (взамен ГОСТ 8.011-72, МИ 1317-86).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как мне найти контейнер
  • Как найти умный браслет через телефон
  • Как составить дефектный акт на ремонт школы
  • Как найти районы на глобусе антарктиду
  • Как найти единственное число или множественное число

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии