Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей — проводников.
Для начала давайте вспомним, что такое проводник? Проводник — это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:
ρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
Более подробно об этом я писал здесь.
Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.
Последовательное соединение проводников
Сопротивление при последовательном соединении проводников
Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.
Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.
Получается, можно записать, что
Пример
У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.
Решение
Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.
То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .
показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:
Сила тока через последовательное соединение проводников
Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.
Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .
Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .
Напряжение при последовательном соединении проводников
Давайте еще раз рассмотрим цепь с тремя резисторами
Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?
Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.
Пусть у нас будет цепь с такими параметрами.
Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.
Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.
Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?
Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.
Следовательно,
UR1 = IR1 =1×2=2 Вольта
UR2 = IR2 = 1×3=3 Вольта
UR3 = IR3 =1×5=5 Вольт
Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.
Получается
U=UR1+UR2+UR3
Мы получили самый простой делитель напряжения.
Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.
Параллельное соединение проводников
Параллельное соединение проводников выглядит вот так.
Ну что, думаю, начнем с сопротивления.
Сопротивление при параллельном соединении проводников
Давайте пометим клеммы как А и В
В этом случае общее сопротивление RAB будет находиться по формуле
Если же мы имеем только два параллельно соединенных проводника
То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.
Напряжение при параллельном соединении проводников
Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.
Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn
Сила тока при параллельном соединении проводников
Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.
Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.
Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
В этом случае, сила тока в цепи будет равна:
Задача
Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.
Решение
Воспользуемся формулами, которые приводили выше.
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
Следовательно,
I1 = U/R1 = 10/2=5 Ампер
I2 = U/R2 = 10/5=2 Ампера
I3 = U/R3 = 10/10=1 Ампер
Далее, воспользуемся формулой
чтобы найти силу тока, которая течет в цепи
I=I1 + I2 + I3 = 5+2+1=8 Ампер
2-ой способ найти I
I=U/Rобщее
Чтобы найти Rобщее мы должны воспользоваться формулой
Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них — «калькулятор резисторов«. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.
I=U/Rобщее = 10/1,25=8 Ампер.
Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.
Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.
Подробное объяснение на видео:
Прикольный набор радиолюбителя по ссылке <<<
Похожие статьи по теме «последовательное и параллельное соединение»
Закон Ома
Проводник (электрический проводник)
Что такое резистор
Делитель напряжения
Делитель тока
Что такое напряжение
Что такое сила тока
Правило Кирхгофа
1 Найти разность потенциалов между точками а и b в схеме, изображенной на рис. 118. Э. д. с. источников тока ε1= 1 В и ε1 =1,3 В, сопротивления резисторов R1 = 10 Ом и R2 = 5 Ом.
Решение:
Поскольку ε2>ε1 то ток I будет идти в направлении, указанном на рис. 118, при этом разность потенциалов между точками а и b
2 Два элемента с э. д. с. ε1 = 1,5 B и ε2 = 2 В и внутренними сопротивлениями r1=0,6 Ом и r2 = 0,4 Ом соединены по схеме, изображенной на рис. 119. Какую разность потенциалов между точками а и b покажет вольтметр, если сопротивление вольтметра велико по сравнению с внутренними сопротивлениями элементов?Решение:
Поскольку ε2>ε1, то ток I будет идти в направлении, указанном на рис. 119. Током через вольтметр пренебрегаем ввиду
того, что его сопротивление велико по сравнению с внутренними сопротивлениями элементов. Падение напряжения на внутренних сопротивлениях элементов должно равняться разности э. д. с. элементов, так как они включены навстречу друг другу:
отсюда
Разность потенциалов между точками а и b (показание вольтметра)
3 Два элемента с э. д. с. ε1=1.4B и ε2 = 1,1 В и внутренними сопротивлениями r =0,3 Ом и r2 = 0,2 Ом замкнуты разноименными полюсами (рис. 120). Найти напряжение на зажимах элементов. При каких условиях разность потенциалов между точками а и b равна нулю?
Решение:
4 Два источника тока с одинаковыми э. д. с. ε = 2 В и внутренними сопротивлениями r1 =0,4 Ом и r2 = 0,2 Ом соединены последовательно. При каком внешнем сопротивлении цепи R напряжение на зажимах одного из источников будет равным нулю?
Решение:Ток в цепи
(рис.361). Напряжения на зажимах источников тока
Решая первые два уравнения при условии V1=0, получим
Условие V2=0 неосуществимо, так как совместное решение первого и третьего уравнений приводит к значению R<0.
5 Найти внутреннее сопротивление r1 первого элемента в схеме, изображенной на рис. 121, если напряжение на его зажимах равно нулю. Сопротивления резисторов R1 = 3 Ом, R2 = 6 0м, внутреннее сопротивление второго элемента r2 = 0,4 Ом, э. д. с. элементов одинаковы.
Решение:
Ток в общей цепи
где внешнее сопротивление цепи
По условию задачи напряжение на зажимах первого элемента
отсюда
6 При каком соотношении между сопротивлениями резисторов R1, R2, R3 и внутренними сопротивлениями элементов r1, r2 (рис. 122) напряжение на зажимах одного из элементов будет равно нулю? Э. д. с. элементов одинаковы.
Решение:
7 Два генератора с одинаковыми э. д. с. ε = 6 В и внутренними сопротивлениями r1 =0,5 Ом и r2 = 0,38 Ом включены по схеме, изображенной на рис. 123. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 7 Ом. Найти напряжения V1 и V2 на зажимах генераторов.
Решение:
Ток в общей цепи
где внешнее сопротивление цепи
Напряжения на зажимах первого и второго генератора
напряжение на зажимах второго генератора
8 Три элемента с э. д. с. ε1 = 2,2 В, ε2 = 1,1 В и ε3 = 0,9 В и внутренними сопротивлениями r1 = 0,2 Ом, r2 = 0,4 Ом и r3 = 0,5 Ом включены в цепь последовательно. Внешнее сопротивление цепи R=1 Ом. Найти напряжение на зажимах каждого элемента.
Решение:
По закону Ома для полной цепи ток
Напряжение на зажимах каждого элемента равно разности э. д. с. и падения напряжения на внутреннем сопротивлении элемента:
Напряжение на зажимах батареи элементов равно падению напряжения на внешнем сопротивлении цепи:
Напряжение на зажимах третьего элемента оказалось отрицательным, так как ток определяется всеми сопротивлениями цепи и суммарной э.д.с, а падение напряжения на внутреннем сопротивлении r3 больше, чем э.д.с. ε3.
9 Батарея из четырех последовательно включенных в цепь элементов с э. д. с. ε = 1,25 В и внутренним сопротивлением r = 0,1 Ом питает два параллельно соединенных проводника с сопротивлениями R1 = 50 Ом и R2 = 200 Ом. Найти напряжение на зажимах батареи.
Решение:
10 Сколько одинаковых аккумуляторов с э. д. с. ε = 1,25B и внутренним сопротивлением r = 0,004 Ом нужно взять, чтобы составить батарею, которая давала бы на зажимах напряжение V=115 В при токе I=25 А?
Решение:
Напряжение на зажимах батареи
Следовательно,
11 Батарея из n= 40 последовательно включенных в цепь аккумуляторов с э. д. с. ε = 2,5 В и внутренним сопротивлением r = 0,2 Ом заряжается от сети с напряжением V=121 В. Найти зарядный ток, если последовательно в цепь введен проводник с сопротивлением R = 2 Ом.
Решение:
12 Два элемента с э. д. с. ε1 = 1,25 В и ε2 = 1,5 В и одинаковыми внутренними сопротивлениями r = 0,4 Ом соединены параллельно (рис. 124). Сопротивление резистора R= 10 Ом. Найти токи, текущие через резистор и каждый элемент.
Решение:
Падение напряжения на резисторе, если токи текут в направлениях, указанных на рис. 124,
Учитывая, что I=I1+I2, находим
Заметим, что I1<0. Это значит, что направление тока противоположно указанному на рис. 124.
13 Два элемента с э. д. с. ε1 =6 В и ε2 = 5 В и внутренними сопротивлениями r1 = 1 Ом и r2 = 20м соединены по схеме, изображенной на рис. 125. Найти ток, текущий через резистор с сопротивлением R= 10 Ом.
Решение:Выбрав направления токов, указанные на рис. 362, составим уравнения Кирхгофа. Для узла b имеем I1+I2-I=0; для контура abef (обход по часовой стрелке)
и для контура bcde (обход против часовой стрелки)
Из этих уравнений найдем
14 Три одинаковых элемента с э. д. с. ε = 1,6 В и внутренним сопротивлением r=0,8 Ом включены в цепь по схеме, изображенной на рис. 126. Миллиамперметр показывает ток I=100 мА. Сопротивления резисторов R1 = 10Ом и R2 = 15 0м, сопротивление резистора R неизвестно. Какое напряжение V показывает вольтметр? Сопротивление вольтметра очень велико, сопротивление миллиамперметра пренебрежимо мало.
Решение:
Внутреннее сопротивление элементов
Сопротивление параллельно включенных резисторов
Общая э. д. с. элементов e0=2e Согласно закону Ома для полной цепи
15 Сопротивления резисторов R1 и R2 и э. д. с. ε1 и ε2 источников тока в схеме, изображенной на рис. 127, известны. При какой э.д.с. ε3 третьего источника ток через резистор R3 не течет?
Решение:Выберем направления токов I1, I2 и I3 через резисторы R1, R2 и R3, указанные на рис. 363. Тогда I3=I1+I2. Разность потенциалов между точками а и b будет равна
Если
Исключая I1 находим
16 Цепь из трех одинаковых последовательно соединенных элементов с э.д.с. ε и внутренним сопротивлением r замкнута накоротко (рис. 128). Какое напряжение покажет вольтметр, подключенный к зажимам одного из элементов?
Решение:Рассмотрим ту же схему без вольтметра (рис. 364). Из закона Ома для полной цепи находим
Из закона Ома для участка цепи между точками а и b получим
Подключение вольтметра к точкам, разность потенциалов между которыми равна нулю, ничего не может изменить в цепи. Поэтому вольтметр будет показывать напряжение, равное нулю.
17 Источник тока с э.д.с. ε0 включен в схему, параметры которой даны на рис. 129. Найти э.д.с. ε источника тока и направление его подключения к выводам а и b, при которых ток через резистор с сопротивлением R2 не идет.
Решение:Подключим источник тока к выводам а и b и выберем направления токов, указанные на рис. 365. Для узла е имеем I=I0+I2. При обходе контуров aefb и ecdf по часовой стрелке получим
Используя условие I2 = 0, находим
Знак минус показывает, что полюсы источника тока на рис. 365 нужно поменять местами.
18 Два элемента с одинаковыми э.д.с. ε включены в цепь последовательно. Внешнее сопротивление цепи R = 5 Ом. Отношение напряжения на зажимах первого элемента к напряжению на зажимах второго элемента равно 2/3. Найти внутренние сопротивления элементов r1 и r2, если r1=2r2.
Решение:
19 Два одинаковых элемента с э.д.с. ε=1,5 В и внутренним сопротивлением r = 0,2 Ом замкнуты на резистор, сопротивление которого составляет в одном случае R1=0,2 Oм, В другом — R2 = 20 Ом. Как нужно соединить элементы (последовательно или параллельно) в первом и во втором случаях, чтобы получить наибольший ток в цепи?
Решение:
При параллельном соединении двух элементов внутреннее сопротивление и э.д.с. равны r/2 и ε при последовательном соединении они равны 2r и 2ε. Через резистор R при этом текут токи
Отсюда видно, что I2>I1, если R/2+r<R+r/2, т. е. если r1=r; следовательно, токи при параллельном и последовательном соединениях одинаковы. Во втором случае R2>r.Поэтому ток больше при последовательном соединении.
20 Два элемента с э.д.с. ε1=4В и ε2 = 2В и внутренними сопротивлениями r1 = 0,25 Ом и r2 = 0,75 Ом включены в схему, изображенную на рис. 130. Сопротивления резисторов R1 = 1 Ом и R2 = 3 Ом, емкость конденсатора С=2 мкФ. Найти заряд на конденсаторе.
Решение:
21 К батарее из двух параллельно включенных элементов с э.д.с. ε1 и ε2 и внутренними сопротивлениями r1 и r2 подключен резистор с сопротивлением R. Найти ток I, текущий через резистор R, и токи I1 и I2 в первом и втором элементах. При каких условиях токи в отдельных цепях могут быть равными нулю или изменять свое направление на обратное?
Решение:Выберем направления токов, указанные на рис. 366. Для узла b имеем I-I1-I2=0. При обходе контуров abef и bcde по часовой стрелке получим
Из этих уравнений находим
Ток I=0 тогда, когда изменена полярность включения одного из элементов и, кроме того, выполнено условие
Ток I1=0 при
а ток I2 = 0 при
Токи I1 и I2 имеют направления, указанные на рис.366, если
Они меняют свое направление при
22 Батарея из n одинаковых аккумуляторов, соединенных в одном случае последовательно, в другом— параллельно, замыкается на резистор с сопротивлением R. При каких условиях ток, текущий через резистор, в обоих случаях будет один и тот же?
Решение:
При n(R-r) = R-r. Если R=r, то число элементов произвольно; если R№r, задача не имеет решения (n=1).
23 Батарея из n = 4 одинаковых элементов с внутренним сопротивлением r=2 Ом, соединенных в одном случае последовательно, в другом — параллельно, замыкается на резистор с сопротивлением R=10Ом. Во сколько раз показание вольтметра н одном случае отличается от показания вольтметра в другом случае? Сопротивление вольтметра велико по сравнению с R и r.
Решение:
где V1 — показание вольтметра при последовательном соединении элементов, V2-при параллельном.
24 Как изменится ток, текущий через резистор с сопротивлением R = 2 Ом, если n =10 одинаковых элементов, соединенных последовательно с этим резистором, включить параллельно ему? Э.д.с. элемента ε = 2 В, его внутреннее сопротивление r = 0,2 Ом.
Решение:
25 Батарея составлена из N=600 одинаковых элементов так, что n групп соединены последовательно и в каждой из них содержится т элементов, соединенных параллельно. Э.д.с. каждого элемента ε = 2 В, его внутреннее сопротивление r = 0,4 Ом. При каких значениях n и m батарея, будучи замкнута на внешнее сопротивление R = 0,6 Ом, отдаст во внешнюю цепь максимальную мощность? Найти при этом ток, текущий через сопротивление R.
Решение:Общее число элементов N=nm (рис. 367). Ток во внешней цепи
где r/m— внутреннее сопротивление группы из т параллельно соединенных элементов, а nr/m — внутреннее сопротивление n групп, соединенных последовательно. Максимальная мощность отдается во внешнюю цепь при равенстве сопротивления R внутреннему сопротивлению батареи элементов nr/m, т. е.
При этом через сопротивление R течет точек I=46 А.
26 Емкость аккумулятора Qo=80А⋅ч. Найти емкость батареи из n = 3 таких аккумуляторов, включенных последовательно и параллельно.
Решение:
При последовательном соединении через все аккумуляторы батареи течет один и тот же ток, поэтому все они разрядятся в течение одного и того же времени. Следовательно, емкость батареи будет равна емкости каждого аккумулятора:
При параллельном соединении n аккумуляторов через каждый из них течет 1/n часть общего тока; поэтому при том же разрядном токе в общей цепи батареи будет разряжаться в n раз дольше, чем один аккумулятор, т. е. емкость батареи в п раз больше емкости отдельного аккумулятора:
Заметим, однако, что энергия
отдаваемая батареей в цепь, и при последовательном и при параллельном соединении n аккумуляторов в n раз больше энергии, отдаваемой одним аккумулятором. Это происходит потому, что при последовательном соединении э. д. с. батареи в n раз больше э. д. с. одного аккумулятора, а при параллельном соединении э.д.с. батареи остается той же, что и для каждого аккумулятора, но Q увеличивается в n раз.
27 Найти емкость батареи аккумуляторов, включенных по схеме, изображенной на рис.131. Емкость каждого аккумулятора Q0=64 А⋅ч.
Решение:
Каждая группа из пяти аккумуляторов, включенных последовательно, имеет емкость
Три параллельно включенные группы дают общую емкость батареи
28 Мост для измерения сопротивлений сбалансирован так, что ток через гальванометр не идет (рис. 132). Ток в правой ветви I=0,2 А. Найти напряжение V на зажимах источника тока. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 1 Ом.
Решение:
29 Найти токи, протекающие в каждой ветви цепи, изображенной на рис. 133. Э.д.с. источников тока ε1 = 6,5 В и ε2 = 3,9 В. Сопротивления резисторов R1=R2=R3=R4=R5=R6=R=10 Ом.
Решение:
Составляем уравнения Кирхгофа в соответствии с направлениями токов, указанными на рис. 133: I1 + I2 — I3 = 0 для узла b;
I3 — I4 — I5 =0 для узла h; I5 — I1 — I6 = 0 для узла f: при этом
Для контура abfg (обход по часовой стрелке),
Для контура bcdh (обход против часовой стрелки) и
для контура hdef (обход по часовой стрелке). Решая эту систему уравнений с учетом, что все сопротивления одинаковы и равны R=10 Ом, получим
Отрицательные значения токов I2, I4 и I6 показывают, что при данных э.д.с. источников и сопротивлениях резисторов эти токи текут в стороны, противоположные указанным на рис. 133.
На прошлом уроке мы рассмотрели последовательное соединение проводников. При нем сила тока на всех участках цепи одинакова ($I = I_1 = I_2 = … = I_n$), а сопротивление всей цепи складывается из сопротивлений всех проводников, составляющих ее ($R = R_1 + R_2 + … + R_n$). Напряжение (подобно сопротивлению) всей цепи рассчитывается сложением напряжений на концах всех элементов, составляющих такую электрическую цепь ($U = U_1 + U_2 + … + U_n$).
На данном уроке мы рассмотрим другой вид соединения проводников — параллельный. Так мы подсоединяли вольтметр, когда измеряли напряжение на каком-либо участке цепи. Сейчас же мы рассмотрим закономерности для силы тока, сопротивления и напряжения в цепи для такого типа соединения.
Параллельное включение элементов в электрическую цепь
Какое соединение проводников называют параллельным?
Соберем электрическую цепь с таким соединением. Цепь будет состоять из источника тока, ключа и двух электроламп. Электролампы включены в цепь параллельно (рисунок 1).
Схема этой электрической цепи изображена на рисунке 2.
На схеме обозначены две точки A и B. Важный момент:
При параллельном соединении все входящие в него проводники одним своим концом присоединяются к точке A, а вторым концом — к другой точке B.
Так мы можем подключить еще несколько ламп или некоторое количество других потребителей электроэнергии. Поэтому все закономерности, которые мы рассмотрим далее, будут справедливы для любого количества параллельно подключенных в цепь проводников между точками A и B.
Напряжение в цепи при параллельном соединении проводников
Вольтметр подсоединяется в цепь параллельно. Взгляните на рисунок 3.
Можно ли сказать, что мы измеряем напряжение только на одной из ламп? Нет. Получается, что одновременно мы измеряем напряжения и на одной, и на другой лампе. Мы приходим к следующему заключению.
Напряжение на участке цепи AB и на концах всех параллельно соединенных проводников одно и то же:
$U = U_1 = U_2 = … = U_n$.
Значит, напряжение — это электрическая величина, которая одинакова для всех проводников, соединенных параллельно.
По этой причине в быту и технике очень удобно применять параллельный тип соединения проводников. Почему?
Во-первых, в таком случае все потребители электроэнергии изготавливаются в расчете на одну и ту же величину напряжения. Во-вторых, если исключить из цепи один потребитель, то другие продолжат работать. Цепь останется замкнутой.
Сила тока в цепи при параллельном соединении проводников
Теперь рассмотрим, что происходит с силой тока при параллельном подключении.
Взгляните на рисунок 4, а. В точке B ток разветвляется на два тока: $I_1$ и $I_2$.
Эти два тока сходятся снова в точке A. По смыслу этот момент очень похож на разветвление реки (рисунок 4, б) на два потока воды, которые через какое-то расстояние вновь сходятся в одно русло.
Как выражается сила тока в цепи до ее разветвления через силы токов в отдельных ветвях разветвления?
Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединенных проводниках:
$I = I_1 + I_2 + … + I_n$.
Сопротивление в цепи при параллельном соединении проводников
Перейдем к сопротивлению. При параллельном соединении можно представить все проводники как один. Этот один проводник будет явно больше в диаметре, чем каждый из них по отдельности. Получается, что площадь поперечного сечения проводника как бы увеличивается при таком соединении.
Сопротивление рассчитывается по формуле $R = frac{rho l}{S}$. Чем больше поперечное сечение, тем меньше сопротивление.
Значит, общее сопротивление цепи уменьшается. Оно становится меньше сопротивления каждого из проводников, которые входят в такую электрическую цепь.
В цепи на рисунке 1 у нас две одинаковые лампы с сопротивлениями $R_1$. Общее сопротивление цепи $R$ будет в два раза меньше сопротивления каждой лампы: $R = frac{R_1}{2}$.
Общее сопротивление цепи при параллельном соединении проводников рассчитывается по формуле:
$frac{1}{R} = frac{1}{R_1} + frac{1}{R_2} + … + frac{1}{R_n}$.
Как изменяется общее сопротивление разветвления после увеличения числа проводников в разветвлении?
Очевидно, что чем больше проводников будет в разветвлении, тем меньше будет общее сопротивление цепи.
Пример параллельного соединения проводников
Взгляните на рисунок 5. Здесь изображена часть схемы электрической цепи. Здесь параллельно включены электрические лампы, нагревательные приборы и электродвигатель.
Где может использоваться такая схема соединения?
Например, в жилых помещениях. В точках A и B провода вводятся в квартиру.
Также в наших квартирах все стандартные розетки находятся под одинаковым напряжением в $220 space В$. Большинство производителей техники изготавливают приборы как раз под это напряжение.
Использовать параллельное подключение к одной и той же цепи очень удобно, поскольку в нее могут быть включены самые разные потребители энергии (рисунок 6).
Благодаря такому способу подключения, выключая свет в своей квартире, мы не выключаем его и у наших соседей. Любые электроприборы могут работать независимо от подключения или отключения в сеть других.
На практике также часто можно увидеть смешанное соединение проводников. В таких цепях присутствует и последовательный тип соединении, и параллельный.
Пример задачи
В осветительную сеть комнаты включены две электрические лампы, сопротивления которых равны $200 space Ом$ и $300 space Ом$. Напряжение в сети составляет $120 space В$. Определите силу тока в каждой лампе, силу тока в проводящих проводах (то есть силу тока до разветвления), общее сопротивление участка, состоящего из двух ламп.
Подразумевается, что лампы подключены в сеть параллельно. Запишем условие задачи и решим ее.
Дано:
$R_1 = 200 space Ом$
$R_2 = 300 space Ом$
$U = 120 space В$
$I_1 — ?$
$I_2 — ?$
$I — ?$
$R — ?$
Решение:
Запишем закон Ома для участка цепи с первой лампой:
$I_1 = frac{U_1}{R_1}$.
Значение сопротивления нам известно. Что с напряжением на этом участке?
Так как лампы подсоединены параллельно, то напряжение на каждой будет равно напряжению во всей цепи:
$U_1 = U_2 = U = 120 space В$
Тогда мы можем рассчитать силу тока в каждой лампе.
Сила тока в первой лампе:
$I_1 = frac{U}{R_1}$,
$I_1 = frac{120 space В}{200 space Ом} = 0.6 space А$.
Сила тока во второй лампе:
$I_2 = frac{U}{R_2}$,
$I_2 = frac{120 space В}{300 space Ом} = 0.4 space А$.
Сила тока до разветвления будет равна сумме сил этих двух токов в лампах:
$I = I_1 + I_2$,
$I = 0.6 space А + 0.4 space А = 1 space А$.
Общее сопротивление цепи мы можем определить двумя способами.
Способ №1
Используя закон Ома для участка цепи, состоящего из двух параллельно соединенных ламп:
$I = frac{U}{R}$,
$R = frac{U}{I}$,
$R = frac{120 space В}{1 space А} = 120 space Ом$.
Способ №2
Используя формулу для расчета сопротивления при параллельном соединении проводников:
$frac{1}{R} = frac{1}{R_1} + frac{1}{R_2}$,
$frac{1}{R} = frac{1}{200 space Ом} + frac{1}{300 space Ом} = frac{5}{600 space Ом} = frac{1}{120 space Ом}$.
Отсюда, $R = frac{1}{frac{1}{120 space Ом}} = 120 space Ом$.
При решении этой задачи мы убедились, что общее сопротивление цепи меньше сопротивления каждого из параллельно подключенных проводников: $R < R_1 < R_2$.
Ответ: $I_1 = 0.6 space А$, $I_2 = 0.4 space А$, $I = 1 space А$, $R = 120 space Ом$.
Упражнения
Упражнение №1
Два проводника сопротивлением $10 space Ом$ и $15 space Ом$ соединены параллельно и подключены к напряжению в $12 space В$. Определите силу тока в каждом проводнике и силу тока до разветвления.
Дано:
$R_1 = 10 space Ом$
$R_2 = 15 space Ом$
$U = 12 space В$
$I_1 — ?$
$I_2 — ?$
$I — ?$
Показать решение и ответ
Скрыть
Решение:
Напряжение будет одинаковое как во всей цепи, так и на концах каждого из двух проводников.
Запишем закон Ома для первого проводника и рассчитаем силу тока в нем:
$I_1 = frac{U}{R_1}$,
$I_1 = frac{12 space В}{10 space Ом} = 1.2 space А$.
То же самое сделаем для второго проводника:
$I_2 = frac{U}{R_2}$,
$I_2 = frac{12 space В}{15 space Ом} = 0.8 space А$.
Сила тока до разветвления в цепи будет равна сумме сил тока в каждом проводнике:
$I = I_1 + I_2$,
$I = 1.2 space А + 0.8 space А = 2 space А$.
Ответ: $I_1 = 1.2 space А$, $I_2 = 0.8 space А$, $I = 2 space А$.
Упражнение №2
Почему бытовые приборы в помещении необходимо соединять параллельно?
Потому что бытовые приборы рассчитаны на то же напряжение, которое подается от городской сети — $220 space В$. При параллельном соединении это напряжение будет одинаковым на всех участках цепи.
Также параллельное соединение позволяет включать и выключать приборы независимо друг от друга, что невозможно при последовательном соединении.
Упражнение №3
Три потребителя с сопротивлениями $20 space Ом$, $40 space Ом$ и $24 space Ом$ соединены параллельно. Напряжение на концах этого участка цепи равно $24 space В$. Определите силу тока в каждом потребителе, общую силу тока в участке цепи и сопротивление участка цепи.
Дано:
$R_1 = 20 space Ом$
$R_2 = 40 space Ом$
$R_3 = 24 space Ом$
$U = 24 space В$
$I_1 — ?$
$I_2 — ?$
$I_3 — ?$
$I — ?$
$R — ?$
Показать решение и ответ
Скрыть
Решение:
Напряжение на концах этого участка цепи будет равно напряжению на концах каждого потребителя, так как они соединены параллельно: $U_1 = U2 = U_3 = U = 24 space В$.
Используя закон Ома для участка цепи, рассчитаем силу тока на каждом потребителе электроэнергии.
Для первого потребителя:
$I_1 = frac{U}{R_1}$,
$I_1 = frac{24 space В}{20 space Ом} = 1.2 space А$.
Для второго потребителя:
$I_2 = frac{U}{R_2}$,
$I_2 = frac{24 space В}{40 space Ом} = 0.6 space А$.
Для третьего потребителя:
$I_3 = frac{U}{R_3}$,
$I_3 = frac{24 space В}{24 space Ом} = 1 space А$.
Сила тока до разветвления в цепи будет равна сумме сил тока в каждом потребителе электроэнергии:
$I = I_1 + I_2 + I_3$,
$I = 1.2 space А + 0.6 space А + 1 space А = 2.8 space А$.
Теперь используем закон Ома, представляя участок цепи с тремя потребителями как единый участок цепи:
$I = frac{U}{R}$,
$R = frac{U}{I}$,
$R = frac{24 space В}{2.8 space А} approx 8.6 space Ом$.
Ответ: $I_1 = 1.2 space А$, $I_2 = 0.6 space А$, $I_3 = 1 space А$, $I = 2.8 space А$, $R approx 8.6 space Ом$.
Упражнение №4
Два проводника имеют сопротивления, равные $5 space Ом$ и $500 space Ом$. Почему при последовательном соединении этих проводников их общее сопротивление будет больше $500 space Ом$, а при параллельном соединении меньше $5 space Ом$?
При последовательном соединении проводников общее сопротивление цепи будет равно сумме сопротивлений составляющих ее проводников.
Общее сопротивление при последовательном соединении:
$R = R_1 + R_2 = 5 space Ом + 500 space Ом = 505 space Ом$.
Это значение действительно больше, чем $500 space Ом$.
При параллельном соединении общее сопротивление мы рассчитываем следующим образом:
$frac{1}{R} = frac{1}{R_1} + frac{1}{R_2}$,
$frac{1}{R} = frac{1}{5 space Ом} + frac{1}{500 space Ом} = frac{101}{500 space Ом}$,
$R = frac{1}{frac{101}{500 space Ом}} = frac{500 space Ом}{101} approx 5 space Ом$.
Согласитесь, что $5 space Ом$ намного меньше, чем $500 space Ом$.
Можно посмотреть на этот вопрос и с другой стороны. Сопротивление рассчитывается по формуле $R = frac{rho l}{S}$. Оно прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения.
При последовательном соединении проводников мы можем сказать, что длина проводника увеличивается. Значит, увеличивается и сопротивление. Общее сопротивление будет больше, чем сопротивление каждого отдельного проводника.
А при параллельном соединении увеличивается площадь поперечного сечения. Значит, сопротивление будет уменьшаться. Получается, что общее сопротивление такой цепи будет меньше сопротивления каждого из проводников.
Упражнение №5
На рисунке 7 изображена схема смешанного соединения проводников, сопротивления которых: $R_1 = 4 space Ом$, $R_2 = 6 space Ом$, $R_3 = 12 space Ом$, $R_4 = 2 space Ом$. Амперметр показывает силу тока $1 space А$. Определите напряжение между точками В и С и силу тока в каждом проводнике.
Дано:
$R_1 = 4 space Ом$
$R_2 = 6 space Ом$
$R_3 = 12 space Ом$
$R_4 = 2 space Ом$
$I_3 = 1 space А$
$U — ?$
$I_1 — ?$
$I_2 — ?$
$I_4 — ?$
Показать решение и ответ
Скрыть
Решение:
Амперметр подсоединен последовательно с проводником $R_3$. Он показывает силу тока $I_3 = 1 space А$. Это сила тока после разветвления.
Используя закон Ома для этого проводника, рассчитаем напряжение на его концах:
$I_3 = frac{U_3}{R_3}$,
$U_3 = I_3R_3$,
$U_3 = 1 space А cdot 12 space Ом = 12 space В$.
Так как проводники $R_3$ и $R_2$ подключены в цепь параллельно, то напряжение на каждом из этих проводников будет равно напряжению на участке цепи, который их включает. Это и есть напряжение между точками B и C:
$U = U_3 = 12 space В$.
По закону Ома рассчитаем силу тока на проводнике $R_2$:
$I_2 = frac{U}{R_2}$,
$I_2 = frac{12 space В}{6 space Ом} = 2 space А$.
Теперь мы можем рассчитать силу тока до его разветвления — на проводниках $R_1$ и $R_4$. При этом $I_1 = I_4 = I$, потому что эти проводники включены в цепь последовательно. Это значит, что сила тока в любом участке такой цепи будет одинаковой. В нашем случае на проводнике $R_1$ и $R_4$.
Рассчитаем эту силу тока, используя величины, полученные с параллельно соединенных проводников. Сила тока до разветвления будет равна сумме сил тока в каждом проводнике после разветвления:
$I = I_2 + I_3$,
$I = 1 space А + 2 space А = 3 space А$.
Ответ: $U = 12 space В$, $I_1 = I_4 = I = 3 space А$, $I_2 = 2 space А$, $I_3 = 1 space А$.
Загрузить PDF
Загрузить PDF
Нужно вычислить сопротивление последовательной, параллельной или комбинированной цепей? Нужно, если вы не хотите сжечь плату! В этой статье мы расскажем вам, как это сделать. Перед чтением, пожалуйста, уясните, что у резисторов нет «начала» и нет «конца». Эти слова вводятся для облегчения понимания изложенного материала.
-
1
Определение. В последовательной цепи резисторы подключены один за другим: начало одного крепится к концу другого и так по цепочке. Каждый следующий резистор в цепи добавляет некоторое сопротивление к общему сопротивлению цепи.[1]
- Формула для вычисления общего сопротивления последовательной цепи: Req = R1 + R2 + …. Rn где n — общее количество резисторов в цепи, соединенных последовательно. Таким образом, сопротивления всех резисторов просто суммируются. Например, найдем сопротивление цепи, показанной на рисунке.[2]
- В этом примере резисторы R1 = 100 Ом и R2 = 300 Ом соединены последовательно. Req = 100 Ом + 300 Ом = 400 Ом
Реклама
- Формула для вычисления общего сопротивления последовательной цепи: Req = R1 + R2 + …. Rn где n — общее количество резисторов в цепи, соединенных последовательно. Таким образом, сопротивления всех резисторов просто суммируются. Например, найдем сопротивление цепи, показанной на рисунке.[2]
-
1
Определение. Параллельное соединение резисторов — цепь, у которой начала всех резисторов соединены между собой и концы всех резисторов соединены между собой.[3]
- Формула для вычисления сопротивления параллельной цепи:
Req = 1/{(1/R1)+(1/R2)+(1/R3)..+(1/Rn)} где n — общее количество резисторов в цепи, соединенных параллельно.[4]
- Допустим, даны резисторы с сопротивлениями R1 = 20 Ом, R2 = 30 Ом, and R3 = 30 Ом.
- Тогда общее сопротивление цепи для 3 резисторов, соединенных параллельно: Req = 1/{(1/20)+(1/30)+(1/30)} = 1/{(3/60)+(2/60)+(2/60)} = 1/(7/60) = 60/7 Ом = 8,57 Ом (примерно).
- Формула для вычисления сопротивления параллельной цепи:
-
1
Определение. Комбинированная цепь — соединение последовательной и параллельной цепей между собой.[5]
Например, найдем сопротивление комбинированной цепи, показанной на рисунке.- Резисторы R1 и R2 соединены последовательно. Поэтому их общее сопротивление (обозначим его Rs) равно: Rs = R1 + R2 = 100 Ом + 300 Ом = 400 Ом.
- Резисторы R3 и R4 соединены параллельно. Поэтому их общее сопротивление (обозначим его Rp1) равно: Rp1 = 1/{(1/20)+(1/20)} = 1/(2/20)= 20/2 = 10 Ом
- Резисторы R5 и R6 также соединены параллельно. Поэтому их общее сопротивление (обозначим его Rp2) равно: Rp2 = 1/{(1/40)+(1/10)} = 1/(5/40) = 40/5 = 8 Ом
- Мы получили цепь с четырьмя резисторами Rs, Rp1, Rp2 и R7, которые соединены последовательно. Поэтому вам нужно просто сложить их сопротивления для вычисления общего сопротивления. Сопротивление R7 нам известно изначально. Req = 400 Ом + 10 Ом + 8 Ом + 10 Ом = 428 Ом.
Реклама
Некоторые факты
- Каждый электропроводный материал имеет некоторое сопротивление, являющееся сопротивляемостью материала электрическому току.
- Сопротивление измеряется в Омах. Символ единицы измерения Ом — Ω.
- Разные материалы имеют разные значения сопротивления.
- Например, сопротивление меди 0.0000017 Ом/см3
- Сопротивление керамики около 1014 Ом/см3
- Чем больше значение сопротивления, тем выше сопротивляемость электрическому току. Медь, которая часто используется в электрических проводах, имеет очень малое сопротивление. С другой стороны, сопротивление керамики очень велико, что делает ее прекрасным изолятором.
- Работа всей цепи зависит от того, какой тип соединения вы выберете для подключения резисторов в этой цепи.
- U=IR. Это закон Ома, установленный Георгом Омом в начале 1800-х. Если вам даны любые две из этих переменных, вы легко найдете третью.
- U=IR. Напряжение (U) есть результат умножения силы тока (I) * на сопротивление (R).
- I=U/R. Сила тока есть частное от напряжение (U) ÷ сопротивление (R).
- R=U/I. Сопротивление есть частное от напряжение (U) ÷ сила тока (I).
Советы
- Запомните: при параллельном соединении существует несколько путей прохождения тока по цепи, поэтому в такой цепи общее сопротивление будет меньше сопротивления каждого отдельного резистора. При последовательном соединении ток проходит через каждый резистор в цепи, поэтому сопротивление каждого отдельного резистора добавляется к общему сопротивлению.
- Общее сопротивление в параллельной цепи всегда меньше сопротивления одного резистора с самым низким сопротивлением в этой цепи. Общее сопротивление в последовательной цепи всегда больше сопротивления одного резистора с самым высоким сопротивлением в этой цепи.
- Чтобы закрепить материал, рассчитайте сопротивление по закону Ома:
- U = R * I
- P = U * I, где U можно заменить на RI
- P = RI * I
- P = R I^2
- Пример: дана лампа на 75 Вт, рассчитанная на напряжение в 220 В. Как найти ее сопротивление?
- P = U * I
- I = P/U => 75/220 = 0,34 Ом
- P = RI^2
- 75 Вт = R * 0,34^2
- R = 75/0,1156 = 648 A
- А теперь давайте проверим наш ответ с помощью другой формулы:
- U = R * I
- R = U/I
- R = 220/0,34 = 647 A. Ответы практически совпадают.
Реклама
Об этой статье
Эту страницу просматривали 161 357 раз.
Была ли эта статья полезной?
Все мы знаем, что напряжение в бытовой розетке 220 В (стоит помнить, что не во всех странах). Но ведь оно иногда может быть больше или меньше и возникает логичный вопрос — а как померять напряжение? Для этого нам и нужен вольтметр.
И так, вольтметр — это прибор, который измеряет разность потенциалов (в Вольтах) или напряжение. Принцип работы классического вольтметра довольно прост — ток, который индуцируется в катушке при подключении к источнику напряжения, создает вращающий момент, который перемешает стрелку электроизмерительного прибора. Отклонение стрелки всегда прямо пропорционально разности потенциалов между измеряемыми точками. Стоит помнить, что вольтметр ВСЕГДА подключается параллельно к цепи, в которой ведется измерение напряжения.
Почему вольтметр всегда подключен параллельно?
Сопротивление у идеального вольтметра равно бесконечности. Но это у идеального, у реального оно значительно меньше, но все еще очень высоко. Поэтому при подключении измерительного прибора в цепь последовательно его показания не будут иметь ничего общего с правдой, а его внутреннее сопротивление окажет существенное влияние на электрическую цепь (практически разрыв цепи из-за большого внутреннего сопротивления).
Вольтметр всегда подключается параллельно цепи, так что падение напряжения на измерительном приборе никак не влияет на работу электрической цепи. Также если измерительный прибор является многопредельным (например 3, 15, 75 и 150 В), при переключении предела последовательно катушке измерения вводится добавочное сопротивление (как правило оно уже установлено в корпусе прибора, но стоит уточнить это в техпаспорте), которое предохраняет измерительную катушку электрического прибора от токов выше номинального и обеспечивают точность измерения.
Что будет если вольтметр подключить последовательно
Содержание
Амперметр, подключенный параллельно нагрузке, будет измерять ток, который течет через амперметр, а не через нагрузку.) Кроме того, максимально точными будут показания амперметра, внутреннее сопротивление которого стремится к нулю. Если мы попробуем подключить амперметр параллельно нагрузке, то ток, идущий по пути наименьшего сопротивления, пойдет через амперметр, практически минуя нагрузку. Получаем, тем самым, короткое замыкание в цепи и, как следствие, выход амперметра из строя (в лучшем случае. а если напряжение источника питания достаточно велико, то этот процесс может сопровождаться различными световыми и шумовыми эффектами, типа фейерверка.)
Поэтому амперметр подключается только последовательно с нагрузкой.
Другое дело – вольтметр. Его-то как раз подключают параллельно нагрузке. Обладая большим внутренним сопротивлением (стремящимся, в идеале, к бесконечности) вольтметр при параллельном подключении к нагрузке не влияет на параметры электрической цепи
Напряжение – с этим термином мы довольно часто сталкиваемся в повседневной жизни. Иногда нам нужно измерить напряжение в сети, чтобы понять, почему какое-либо устройство работает неудовлетворительно или лампа накаливания горит довольно тускло. Для данного рода измерений используют вольтметры. Вольтметр подключается к измеряемому устройству только параллельно, почему это так?
Как известно электрическое напряжение – это отношение работы, совершенной электрическим полем по перемещению заряда А, к величине заряда q, U=A/q. Также оно характеризует электрическое поле, которое возникает при прохождении электрического тока.
В системе международных обозначений СИ обозначается как U и измеряют в вольтах (1 В = 1 Дж/Кл). Для того чтобы измерять напряжение на устройстве необходимо параллельно к нему подключить вольтметр.
Для того, чтоб при параллельном включении снизить ток, потребляемый вольтметром и соответственно потери электрической энергии внутри устройства, внутреннее измерительное сопротивление выбирается как можно больше . Если включить вольтметр в цепь последовательно, то в связи с большим внутренним сопротивлением получим фактически разрыв цепи. То есть потери при измерении напряжения будет слишком большими, что неприемлемо, а также измерения будут некорректными. Поэтому вольтметр подключают только параллельно:
Читать также: Температура пламя горелки пропана
Если измеряется постоянное напряжение от 1 до 1000 мкВ могут использовать компенсаторами постоянного тока, но чаше пользуются цифровыми вольтметрами . Значения от десятков милливольт до сотен вольт измеряют приборами таких систем как: электромагнитной, электродинамической, магнитоэлектрической. Также не брезгуют и электронными аналоговыми и цифровыми вольтметрами. Также при измерении могут использовать добавочные сопротивления:
Где Rv – это внутреннее сопротивление вольтметра, Rдоб1…3 – добавочные сопротивления, UmV – максимальное которое может измерять сам вольтметр, а U1…3 – которые он может измерять с добавочными сопротивлениями.
Сопротивления добавочных резисторов определяется по формуле:
Где m – масштабный коэффициент.
Если проводят измерения постоянных напряжений в несколько киловольт, то в большинстве случаев используют вольтметры электростатические, реже используют измерительные устройства других систем подключаемых через делитель:
Где резисторы R1, R2 — резисторы выполняющие роль делителя, Rизм. – измерительное сопротивление, с которого снимается напряжение.
Если измеряют переменные напряжения до единиц вольт, то используют аналоговыми, выпрямительными и цифровыми устройствами. От единиц до сотен вольт и частотном диапазоне до нескольких десятков килогерц применяют выпрямительные системы, электромагнитные, электродинамические приборы. Если частота достигает нескольких десятков мегагерц, то в таком случае напряжение измеряют термоэлектрическими и электростатическими приборами.
В действующих значениях, как правило градуируют шкалы приборов для измерения величин переменного тока. Поэтому при измерении необходимо это учитывать (если необходимо измерять амплитудные и средние значения, то их как правило пересчитывают по соответствующим формулам).
При проведении измерении в сетях переменного тока напряжением выше 1000 В могут использоваться как делители, так и трансформаторы напряжения или измерительные трансформаторы. Чаще используют трансформаторы, так как трансформатор не только понижает значение напряжения, но потенциально разделяет измерительную цепь от силовой. Измерения могут проводится теми же приборами, что и в выше описанных случаях. Схема включения приведена ниже:
Читать также: Измельчитель веток своими руками из болгарки
Где FU1, FU2 – предохранители, защищающие измерительную цепь от короткого замыкания.
Внешний вид трансформатора однофазного:
Как видим, при проведении измерение различного рода напряжений могут использоваться как различного рода приборы (цифровые, аналоговые и т.д.), так и устройства (делители, трансформаторы). При проведении измерений важно учитывать каждый способ проведения измерений, для получения как можно более точного результата, а также корректного проведения измерительных работ.
Почему вольтметр имеет большое сопротивление?
Вольтметр имеет очень высокое внутреннее сопротивление, потому что он измеряет разность потенциалов между двумя точками цепи. Вольтметр не влияет на ток измеряемой цепи.
Если измерительный прибор имеет низкое сопротивление, через него будет проходить ток (согласно первому закону Кирхгофа ток будет распределяться между двумя ветвями цепи — часть тока будет протекать через нагрузку, а часть через вольтметр, именно поэтому его сопротивление должно быть как можно больше — чтоб минимизировать ток), и на выходе мы получим неверный результат. Большое сопротивление вольтметра не позволяет току проходить через него (разрыв цепи), и, таким образом, получают показания напряжения.
Какие бывают типы вольтметров
Вольтметры, как и любые другие электроизмерительные приборы, классифицируются в зависимости от назначения и конструкции. Более подробно на рисунке ниже:
Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC)
Такой прибор работает по магнитоэлектрическому принципу. В двух словах это означает следующее — в постоянное магнитное поле помещается катушка измерительного прибора, которая подключается к электрической цепи, в которой проводится измерение. При протекании тока через катушку электромагнитная сила создаст вращающий момент, который повернет стрелку измерительного прибора на определенный угол.
Вольтметр с подвижной катушкой и с постоянными магнитами (PMMC) используется только в сетях постоянного тока. Такой тип устройства имеет очень низкое энергопотребление и очень высокую точность. Единственным его недостатком является стоимость.
Электромагнитный вольтметр (MI вольтметр)
Электромагнитный вольтметр может использоваться для измерения как постоянного, так и переменного напряжения. В таком типе приборов отклонение стрелки зависит от напряжения катушки. Электромагнитные вольтметры разделяют на два типа:
- электромагнитный измерительный прибор с плоской катушкой.
- электромагнитный измерительный прибор с круглой катушкой.
Электродинамический вольтметр
Электродинамический вольтметр используется для измерения напряжения цепи переменного и постоянного тока. В приборах этого типа калибровка одинакова как для измерения переменного, так и постоянного тока.
Вольтметр с выпрямительной системой
Такой тип прибора используется в цепях переменного тока для измерения напряжения. Выпрямитель преобразует переменный ток в постоянный ток, после чего сигнал постоянного тока измеряется прибором с подвижной катушкой и с постоянными магнитами.
Аналоговый вольтметр
Аналоговый вольтметр используется для измерения переменного и постоянного напряжения. Он отображает показания через указатель, который зафиксирован на калиброванной шкале. Отклонение указателя зависит от крутящего момента, действующего на него. Величина развиваемого крутящего момента прямо пропорциональна измеряемому напряжению.
Цифровой вольтметр
Вольтметр, который отображает показания в числовой форме, известен как цифровой вольтметр. Цифровой вольтметр дает достаточно точный результат.
Прибор, который измеряет постоянное напряжение, известен как вольтметр постоянного напряжения, а вольтметр переменного напряжения используется в цепи переменного тока для измерения переменного напряжения.
Поделиться в соцсетях
На этом рисунке изображена схема подключения вольтметра и амперметра с отдельным токоизмерительным шунтом к блоку питания.
Параметры не ниже выходных БП: Uвх — Никакого спама, только полезные идеи!
Питание прибора должно находиться в рамках 4, В. Это и послужило поводом для написания данной статьи, ведь, скорее всего, мы не одни, которые столкнулись с вопросами подключения WR к цепям измерения.
Нижний начинается не от 0, и даже верхний предел вызывает сомнения, в даташите на HT Holtek он ограничен 24V, оригинального даташита не нашел. Также в Интернете встречаются иные модификации этого модуля, но суть переделок от этого не меняется — если Вам попался не такой модуль, просто скорректируйте схему по плате, выпаяв индикатор или прозвонив цепи тестером и вперед! С2 — предположительно 0. Первые три шнура чаще всего объединены для удобства.
Метки: вольтметр, амперметр
На этом рисунке изображена схема подключения вольтметра амперметра первой модели к зарядному устройству из компьютерного блока питания. Поэтому я решил написать специально отдельную статью, в которой подробно расскажу, как и каким образом подключить китайский вольтметр амперметр к зарядному устройству или самодельному регулируемому блоку питания. Таким же образом нужно соединить тонкий красный и желтый контакты. Потребление энергии менее 20 мА.
Подав питание на схему, индикатор начнет светиться. Большинство моделей имеют на своем корпусе специальные резисторы. Не сразу и не вовремя выяснилось, что вход питания у него гальванически связан с минусовым входом шунта. Толстые провода: Черный минус амперметра, синий выход амперметра, красный вход вольтметра. Вывод — вполне сносный измерительный прибор, позволит примерно понять проходящий ток и измерить напряжение, но только до 24 вольт.
Как подключить вольтамперметр к зарядному устройству — подборка схем
Разрешение 0,28 дюйма. Также BY42A можно встретить в двух вариантах исполнения платы, но цветовая маркировка проводов остается прежней. На AliExpress предлагается похожий измеритель на стм8с, но если посмотреть распиновку, это не он. Минус внешнего источника подать на общий провод схемы. Данный вольтметр, амперметр удобен еще и тем, что он реализуется в уже откалиброванном состоянии.
Это вносит ощутимую погрешность при питании индикатора от того-же источника, с которого измеряется ток погрешность вплоть до ампера с моим шунтом на 50А! Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4. Достаточно будет подключить зарядное, где установлен вольтамперметр к батареи, и мы увидим какое сейчас на ней напряжение. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы. Вольтметр 100V + амперметр 50А подключаем шунт digital voltmeter ammeter