Как найти соли серной кислоты

Оксид серы(VI)

Oксид серы((VI)) образуется при каталитическом окислении сернистого газа:

При обычных условиях это жидкость, которая реагирует с водой с образованием серной кислоты:

Эта реакция протекает даже с парами воды. Поэтому оксид серы((VI)) дымит на воздухе.

Особенностью оксида серы((VI)) является его способность растворяться в концентрированной серной кислоте с образованием олеума.

Оксид серы((VI)) — типичный кислотный оксид. Он реагирует с основаниями и основными оксидами c образованием солей:

Степень окисления серы в этом оксиде — (+6). Это максимальное значение для серы, поэтому в окислительно-восстановительных реакциях он может быть только окислителем.

Серная кислота

H2SO4

 — важнейшее соединение серы. Чистая серная кислота представляет собой  бесцветную вязкую маслянистую жидкость, котoрая почти в два раза тяжелее воды.

Серная кислота неограниченно смешивается с водой. Растворение серной кислоты сопровождается сильным разогреванием раствора, и может происходить его разбрызгивание. Поэтому серную кислоту растворяют осторожно: тонкой струйкой кислоту вливают в воду при постоянном перемешивании.

Asset 22chem.svg

Рис. (1). Смешивание серной кислоты с водой

Серная кислота очень гигроскопична и используется для осушки разных веществ.

Химические свойства серной кислоты зависят от её концентрации.

Серная кислота любой концентрации реагирует:

  • с основными и амфотерными оксидами и гидроксидами с образованием соли и воды:
H2SO4+Zn(OH)2=ZnSO4+2H2O

;

  • с солями, если образуется газ или нерастворимое вещество:
H2SO4+CaCO3=CaSO4+H2O+CO2↑

,

Разбавленная кислота реагирует только с металлами, расположенными в ряду активности до водорода. В реакции образуются сульфаты и выделяется водород. Окислительные свойства в этом случае проявляют атомы водорода:

H2+1SO4+Zn0=Zn+2SO4+H2↑0

.

Концентрированная кислота реагирует:

  • со всеми металлами, кроме золота и платины, за счёт сильных окислительных свойств атома серы:
2H2S+6O4+Cu0=Cu+2SO4+S+4O2+2H2O

.

В реакциях с активными металлами продуктами реакции могут быть сернистый газ, сероводород или сера.

Обрати внимание!

При низкой температуре пассивирует железо и алюминий и с ними не реагирует.

  • С твёрдыми солями других кислот:
H2SO4(к)+2NaNO3(тв)=Na2SO4+2HNO3

.

  • Со многими органическими веществами (происходит обугливание сахара, бумаги, древесины и т. д., так как отнимается вода):

sahar.svg

Рис. (2). Обугливание сахара концентрированной серной кислотой

Серная кислота образует два ряда солей. Средние соли называются сульфатами (

Na2SO4,CaSO4

), а кислые — гидросульфатами (

NaHSO4,Ca(HSO4)2

). 

Качественной реакцией на серную кислоту и её соли является реакция с растворимыми солями бария — выпадает белый осадок сульфата бария:

Na2SO4+BaCl2=BaSO4↓+2NaCl,SO42−+Ba2+=BaSO4↓.

Серная кислота — одно из важнейших химических веществ. Она используется:

  • для получения других кислот;
  • для производства минеральных удобрений;
  • для очистки нефтепродуктов;
  • в свинцовых аккумуляторах;
  • в производстве моющих средств, красителей, лекарств.

Соли серной кислоты также находят применение. Медный купорос

CuSO4⋅5H2O

 используется для борьбы с заболеваниями растений, гипс

CaSO4⋅2H2O

 применяется в строительстве, сульфат бария

BaSO4

 — в медицине.

Источники:

Рис. 1. Смешивание серной кислоты с водой © ЯКласс

Рис. 2. Обугливание сахара концентрированной серной кислотой © ЯКласс

Химические свойства разбавленной серной кислоты

H2SO4 — сильная двухосновная кислота, водный раствор изменяет окраску индикаторов (лакмус и универсальный индикатор краснеют)

1) Диссоциация протекает ступенчато:

H2SO4→ H+ + HSO4 (первая ступень, образуется гидросульфат – ион)

HSO4 → H+ + SO42- (вторая ступень, образуется сульфат – ион)

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты)

2) Взаимодействие с металлами:

Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) → Zn+2SO4 + H20

Zn0 + 2H+ → Zn2+ + H20

3) Взаимодействие с основными и амфотерными оксидами:

CuO + H2SO4 → CuSO4 + H2O

CuO + 2H+ → Cu2+ + H2O

4) Взаимодействие с основаниями:

· H2SO4 + 2NaOH → Na2SO4 + 2H2O (реакция нейтрализации)

H+ + OH→ H2O

Если кислота в избытке, то образуется кислая соль:

H2SO4 + NaOH → NaНSO4 + H2O

· H2SO4 + Cu(OH)2 → CuSO4 + 2H2O

2H+ + Cu(OH)2 → Cu2+ + 2H2O

5) Обменные реакции с солями:

образование осадка

BaCl2 + H2SO4 → BaSO4↓ + 2HCl

Ba2+ + SO42- → BaSO4

Качественная реакция на сульфат-ион

Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Видео «Качественная реакция на сульфит- и сульфат-ионы»

образование газа — как сильная нелетучая кислота серная вытесняет из солей другие менее сильные кислоты, например, угольную

MgCO3 + H2SO4 → MgSO4 + H2O + CO2

MgCO3 + 2H+ → Mg2+ + H2O + CO2­↑

Применение серной кислоты

  • в производстве минеральных удобрений;

  • как электролит в свинцовых аккумуляторах;

  • для получения различных минеральных кислот и солей;

  • в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;

  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;

  • в пищевой промышленности — зарегистрирована в качестве пищевой добавки E513(эмульгатор);

  • в промышленном органическом синтезе в реакциях:

  • дегидратации (получение диэтилового эфира, сложных эфиров);

  • гидратации (получение этанола);

  • сульфирования (получение СМС и промежуточные продукты в производстве красителей);

  • Самый крупный потребитель серной кислоты — производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Применение солей серной кислоты

Железный купорос FеSО4•7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями.

Медный купорос CuSO4•5Н2O широко используют в сельском хозяйстве для борьбы с вредителями растений.

«Глауберова соль» (мирабилит) Nа2SO4•10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

«Бариевая каша» BaSO4 обладает способностью задерживать рентгеновские лучи в значительно большей степени, чем ткани организма. Это позволяет рентгенологам при заполнении «бариевой кашей» полых органов определить в них наличие анатомических изменений.

Гипс СаSO4•2Н2O находит широкое применение в строительном деле, в медицинской практике для накладывания гипсовых повязок, для изготовления гипсовых скульптур.

Соли серной кислоты

Из солей серной кислоты, встречающихся в природе, наибольшее практическое значение имеют две: сернокислый натрий Na2SO4 и сернокислый кальций CaSO4.

Соль, имеющая состав Na2SO4 · 10Н2O, называется глауберовой солью, или мирабилитом. Большие количества этой соли растворены в морской воде. Особенно богата этой солью вода залива Кара-Богаз-Гол в восточной части Каспийского моря.

Так как растворимость этой соли уменьшается с понижением температуры, то зимой она оседает на дно залива и большие количества её выносятся волнами на берег. Здесь ее собирают и отвозят от берега, чтобы летом не смыли и не растворили ее теплые воды залива.

Глауберова соль используется в производстве стекла. Небольшие количества её находят применение в медицине.

Минерал, имеющий состав СаSО4 · 2Н2O, называется гипсом. Он весьма распространён в природе. Очень большие залежи его находятся в Донбассе.

При обжиге гипс теряет часть воды и превращается в алебастр, который применяется для внутренней штукатурки домов.

В медицине пользуются обожжённым гипсом для накладывания гипсовых повязок при переломе костей.

Из сернокислых солей, получаемых искусственно на заводах, следует отметить железный купорос FeSO4 · 7Н2O (зелёные кристаллы) и медный купорос CuSO4 · 5Н2O (синие кристаллы). Обе эти соли получаются путём обработки серной кислотой соответствующих металлических отбросов. Применяются они главным образом для борьбы с вредителями и болезнями сельскохозяйственных растений.

Источник: Д.М. Кирюшкин, учебник уроков по химии для 7 класса средней школы.

I. Оксид серы (VI) (серный ангидридтриокись серысерный газ)


SO3 — высший оксид серы, тип химической связи: ковалентная полярная химическая связь.

1. Физические свойства

Бесцветная летучая маслянистая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе «дымит», сильно поглощает влагу (хранят в запаянных сосудах).

SO3 + H2O → H2SO4

SO3 хорошо растворяется в 100%-ной серной кислоте, этот раствор называется олеумом. 

2. Получение

1) 2SO2 + O2  →  2SO3 (катализатор – V2O5, при 450˚С)

 2) Fe2(SO4)3  →  Fe2O3 + 3SO3­ (разложение при нагревании) 

3. Химические свойства 

Серный ангидрид — кислотный оксид. Его химическая активность достаточно велика.

1) Взаимодействие с водой

При растворении в воде дает сильную двухосновную серную кислоту:

Анимация: “Взаимодействие оксида серы (VI) с водой”

SO3 + H2O → H2SO4

2) Взаимодействие со щелочами 

2NaOH + SO3 → Na2SO4 + H2O

NaOH + SO3 (избыток) → NaHSO4

3) Взаимодействие с основными оксидами

Na2O + SO3 → Na2SO4

4) SO3 — сильный окислитель

5SO3 + 2P = P2O5 + 5SO2

3SO3 + H2S = 4SO2 + H2O

2SO3 + 2KI = SO2 + J2 + K2SO4

II. Серная кислота и ее соли


Серная кислота H2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). 

В XVIII—XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) — купоросы.

1. Физические свойства

Тяжелая маслянистая жидкость («купоросное масло»); r = 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара). 

Помните!
Кислоту вливать малыми порциями в воду, а не наоборот! 

Видео: «Разбавление серной кислоты водой»

2. Производство серной кислоты

Макет производсва серной кислоты

1-я стадия. Печь для обжига колчедана 

4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Процесс гетерогенный:

  • измельчение железного колчедана (пирита)
  • метод «кипящего слоя»
  • 800°С; отвод лишнего тепла
  • увеличение концентрации кислорода в воздухе 

2-я стадия. Контактный аппарат

После очистки, осушки и теплообмена сернистый газ поступает в контактный аппарат, где окисляется в серный ангидрид (450°С – 500°С; катализатор V2O5):

2SO2 + O2 → 2SO3

3-я стадияПоглотительная башня

nSO3 + H2SO4(конц) → (H2SO4 • nSO3)  (олеум) 

Воду использовать нельзя из-за образования тумана. Применяют керамические насадки и принцип противотока. 

3. Химические свойства разбавленной серной кислоты

H2SO4 — сильная двухосновная кислота, водный раствор изменяет окраску индикаторов (лакмус и универсальный индикатор краснеют). 

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты)

1) Диссоциация протекает ступенчато:

H2SO4→ H+ HSO4 (первая ступень, образуется гидросульфат – ион)

HSO4 → H+ SO42-  (вторая ступень, образуется сульфат – ион)

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты)

2) Взаимодействие с металлами: 

Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) → Zn+2SO4 + H20↑ 

Zn0 + 2H+ → Zn2+ + H20↑ 

3) Взаимодействие с основными и амфотерными  оксидами:

CuO + H2SO4 → CuSO4 + H2O

CuO + 2H→ Cu2+ + H2O

4) Взаимодействие с основаниями:

H2SO4 + 2NaOH → Na2SO4 + 2H2O (реакция нейтрализации)

H+ OH— → H2O

Если кислота в избытке, то образуется кислая соль:

H2SO4 + NaOH → NaНSO4 + H2O

H2SO4 + Cu(OH)2 → CuSO4 + 2H2O

2H+ Cu(OH)2 → Cu2+ + 2H2

5) Обменные реакции с солями:

образование осадка

BaCl2 + H2SO4 → BaSO4↓ + 2HCl

Ba2+ + SO42- → BaSO4↓ 

Качественная реакция на сульфат-ион:

Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Видео: «Качественная реакция на сульфит- и сульфат-ионы»

образование газа —  как сильная нелетучая кислота серная вытесняет из солей другие менее сильные кислоты, например, угольную

MgCO3 + H2SO4 → MgSO4 + H2O + CO2

MgCO3 + 2H→ Mg2+ + H2O + CO2­

4. Применение серной кислоты

  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности — зарегистрирована в качестве пищевой добавкиE513(эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (получение этанола);
    • сульфирования (получение СМС и промежуточные продукты в производстве красителей);
    • и др.

Самый крупный потребитель серной кислоты — производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Это интересно

История серной кислоты (материал взят с сайта alhimikov.net)

Вы все, наверное, знакомы с медным купоросом, кристаллогидратом сульфата меди (II). Купоросами называют кристаллогидраты двухвалентных металлов. Купоросы изучались еще с древних времен. Так, в некоторых работах конца-начала новой эры обсуждались свойства купоросов и их происхождение. Они упоминаются в трудах греческого врача Диоскорида, римского исследователя природы Плиния Старшего. Об использовании купоросов в металлургии рассказано в работах древнегреческих алхимиков Зосимы из Панополиса. Древний лекарь Ибн Сина использовал различные вещества-купоросы в медицине. 
Самым первым способом получения был процесс нагревания алюмокалиевых квасцов . Сведения об этом способе содержатся в алхимической литературе XIII века. Но алхимики не знали сути процесса и состава квасцов. А целенаправленно химическим синтезом серной кислоты стали заниматься в XV веке. Алхимики обрабатывали смесь сульфида сурьмы(III) Sb2S3 и серы при нагревании с азотной кислотой. 
Серную кислоту средневековые европейские алхимики называли «купоросным маслом», в последствии купоросной кислотой. Алхимики получали небольшие количества, которые использовались для проведения экспериментов. В XVII веке Иоганн Глаубер получил серную кислоту в результате горения самородной серы с калийной селитрой( нитратом калия) в присутствии паров воды. Селитра окисляла серу до оксида серы (VI, который впоследствии реагировал с парами воды, в результате чего образовывалась серная кислота. В 30-е годы XVIII века лондонский фармацевт Уорд Джошуа использовал эту реакцию для промышленного производства серной кислоты. Потребности в серной кислоте в средние века исчислялись всего несколькими десятками килограммов. Она использовалась для аптечных нужд и алхимических опытов. Небольшое количество концентрированной серной кислоты шло производство спичек, которые содержали бертолетовую соль. количество концентрированной кислоты шло для производства особых спичек, содержащих бертолетову соль. На Руси купоросная кислота появилась в семнадцатом веке.
В 1746 г. Джон Робак в английском Бирмингеме наладил производство, адаптировав этот способ для производства серной кислоты, используя освинцованные камеры, которые были прочными , дешевыми более крупными чем стеклянные контейнеры.

Джон Робак
Джон Робак

Этот способ использовался в промышленности в течение почти двух столетий. В камерах получали кислоту с концентрацией около 65 %, впоследствии усовершенствовав сам процесс (Это сделали французский химик Гей-Люссак и английский Гловер), концентрацию довели до 78%. Однако этих концентраций для некоторых химических процессов, например, при производстве красителей не хватало. 
Лишь в 1831 г. британский торговец уксусной кислотой Перегрин Филипс запатентовал экономичный процесс для производства оксида серы (VI) и концентрированной серной кислоты, который известен нам в настоящее время как контактный способ получения серной кислоты.
В 1864 году стали производить суперфосфат. В восьмидесятые годы XIX века производство серной кислоты достигло в Европе 1 млн. тонн. Основными производителями были Англия и Германия, на долю которых приходилось более 72% от мирового объема производства.

5. Применение солей серной кислоты

Железный купорос FеSО4•7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями.

Медный купорос CuSO4•5Н2O широко используют в сельском хозяйстве для борьбы с вредителями растений.

«Глауберова соль» (мирабилит) Nа2SO4•10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

«Бариевая каша» BaSO4 обладает способностью задерживать рентгеновские лучи в значительно большей степени, чем ткани организма. Это позволяет рентгенологам при заполнении «бариевой кашей» полых органов определить в них наличие анатомических изменений.

Гипс СаSO4•2Н2O находит широкое применение в строительном деле, в медицинской практике для накладывания гипсовых повязок, для изготовления гипсовых скульптур.

III. Тренажеры


Тренажёр №1 — Сероводород. Оксиды серы

Тренажёр №2 — Свойства разбавленной серной кислоты

IV. Задания для закрепления


№1. Осуществите превращения по схеме:

1) Zn →ZnSO4→Zn(OH)2 →ZnSO→ BaSO4

2) S →SO2 →SO3→H2SO4 →K2SO4

№2. Закончите уравнения практически осуществимых реакций в полном и кратком ионном виде:

Na2CO+ H2SO4

Cu + H2SO4 (раствор) →

Al(OH)3 + H2SO4 →

MgCl+ H2SO4 →

№3. Запишите уравнения реакций взаимодействия разбавленной серной кислоты с магнием, гидроксидом железа (III), оксидом алюминия, нитратом бария и сульфитом калия в молекулярном, полном и кратком ионном виде.

ЦОРы


Видео: «Разбавление серной кислоты водой»

Макет производсва серной кислоты

Видео:«Качественная реакция на сульфит- и сульфат-ионы»

 Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравнения реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон  Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр  Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня  Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник  Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат  2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня  Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 + H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота.

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

H2SO4  ⇄  H+ + HSO4

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4  ⇄  H+ + SO42–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, серная кислота взаимодействует с оксидом магния:

H2SO4    +   MgO   →   MgSO4   +   H2O

Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

H2SO4    +   КОН     →     KHSО4  +   H2O

H2SO4    +   2КОН      →     К24  +   2H2O

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3H2SO4     +    2Al(OH)3    →   Al2(SO4)3    +   6H2O

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.).  Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например, серная кислота взаимодействует с гидрокарбонатом натрия:

Н2SO4   +   2NaHCO3   →   Na2SO4   +   CO2   +  H2O

Или с силикатом натрия:

H2SO4    +   Na2SiO3    →  Na2SO4  +   H2SiO3

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

NaNO3 (тв.)   +   H2SO4   →   NaHSO4   +   HNO3

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:

NaCl(тв.)   +   H2SO4   →   NaHSO4   +   HCl

4. Также серная кислота вступает в обменные реакции с солями.

Например, серная кислота взаимодействует с хлоридом бария:

H2SO4  + BaCl2  →  BaSO4   +   2HCl

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):

H2SO4(разб.)    +   Fe   →  FeSO4   +   H2

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

H2SO4   +   NH3    →    NH4HSO4

Концентрированная серная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы  S, или сероводорода Н2S.

Железо Fe, алюминий  Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

6H2SO4(конц.)    +   2Fe   →   Fe2(SO4)3   +   3SO2   +  6H2O

6H2SO4(конц.)    +   2Al   →   Al2(SO4)3   +   3SO2   +  6H2O

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

2H2SO4(конц.)   +   Cu     →  CuSO4   +   SO2 ↑ +   2H2O

2H2SO4(конц.)   +   Hg     →  HgSO4   +   SO2 ↑ +   2H2O

2H2SO4(конц.)   +   2Ag     →  Ag2SO4   +   SO2↑+   2H2O

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

3Mg   +   4H2SO4   →   3MgSO4   +   S   +  4H2O

При взаимодействии с щелочными металлами и цинком  концентрированная серная кислота восстанавливается до сероводорода:

5H2SO4(конц.)   +  4Zn     →    4ZnSO4   +   H2S↑   +   4H2O

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4      BaSO4  + 2NaCl

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

5H2SO4(конц.)   +    2P     2H3PO4   +   5SO2↑  +   2H2O

2H2SO4(конц.)   +    С     СО2↑   +   2SO2↑  +   2H2O

2H2SO4(конц.)   +    S     3SO2 ↑  +   2H2O

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

3H2SO4(конц.)   +   2KBr    Br2↓   +  SO2↑   +   2KHSO4    +  2H2O

5H2SO4(конц.)   +   8KI      4I2↓    +   H2S↑   +   K2SO4   +  4H2O

H2SO4(конц.)   +   3H2S  4S↓  +  4H2O

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Fallout 4 как найти сына
  • Как найти в настройках часы
  • Как найти кто кусает ночью
  • Как исправить одно опущенное веко
  • Областная больница гинекологическое отделение как найти

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии