Как найти смежные углы двух прямых секущей

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть

Конечно, углы и , и — тоже вертикальные.

Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .

Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.

Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть

Углы и (а также и , и , и ) называются соответственными.

Соответственные углы равны, то есть

Углы и (а также и , и , и ) называют накрест лежащими.

Накрест лежащие углы равны, то есть

Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.

Ты нашел то, что искал? Поделись с друзьями!

1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .

Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.

Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.

Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .

Периметр параллелограмма — это сумма всех его сторон, то есть

2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.

Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .

3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.

Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на чертеж. По условию, , то есть .

Углы и — односторонние при параллельных прямых и секущей, следовательно,

Геометрия. Урок 2. Углы

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Углы

Понятие угла

Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.

Стороны угла – лучи, которые образуют угол.

Вершина угла – точка, из которой выходят лучи.

Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠ A O B или ∠ B O A , но ни в коем случае не ∠ O A B , ∠ O B A , ∠ A B O , ∠ B A O .

Величину угла измеряют в градусах. ∠ A O B = 24 ° .

Виды углов:

Биссектриса угла

Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.

Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.

O D – биссектриса угла ∠ A O B . Она делит этот угол на два равных угла.

∠ A O D = ∠ B O D = ∠ A O B 2

Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон O A и O B угла ∠ A O B .

Углы, образованные при пересечении двух прямых

Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.

Свойство: вертикальные углы равны.

Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.

Свойство: сумма смежных углов равна 180 ° .

( 1 ) и ( 3 )
( 2 ) и ( 4 )

называются вертикальными .

По свойству вертикальных углов:

∠ C O D = ∠ A O B
∠ B O D = ∠ A O C

( 1 ) и ( 2 )
( 2 ) и ( 3 )
( 3 ) и ( 4 )
( 4 ) и ( 1 )

называются смежными .

По свойству смежных углов:

∠ C O D + ∠ D O B = 180 ° ∠ D O B + ∠ B O A = 180 ° ∠ B O A + ∠ A O C = 180 ° ∠ A O C + ∠ C O D = 180 °

Углы, образованные при пересечении двух прямых секущей

Прямая, пересекающая две заданные прямые, называется секущей этих прямых.

Существует пять видов углов, которые образуются при пересечении двух прямых секущей.

( 1 ) и ( 5 )
( 2 ) и ( 6 )
( 3 ) и ( 7 )
( 4 ) и ( 8 )

называются соответственными .
(Легко запомнить: они соответствуют друг другу, похожи друг на друга).

( 3 ) и ( 5 )
( 4 ) и ( 6 )

называются внутренними односторонними .
(Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).

( 1 ) и ( 7 )
( 2 ) и ( 8 )

называются внешними односторонними .
(Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).

( 3 ) и ( 6 )
( 4 ) и ( 5 )

называются внутренними накрест лежащими .
(Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).

( 1 ) и ( 8 )
( 2 ) и ( 7 )

называются внешними накрест лежащими .
(Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).

Если прямые, которые пересекает секущая, параллельны , то углы имеют следующие свойства:

  • Соответственные углы равны.
  • Внутренние накрест лежащие углы равны.
  • Внешние накрест лежащие углы равны.
  • Сумма внутренних односторонних углов равна 180 ° .
  • Сумма внешних односторонних углов равна 180 ° .

Сумма углов многоугольника

Сумма углов произвольного n -угольника вычисляется по формуле:

S n = 180 ° ⋅ ( n − 2 )

где n – это количество углов в n -угольнике.

Пользуясь этой формулой, можно вычислить сумму углов для произвольного n -угольника.

Сумма углов треугольника: S 3 = 180 ° ⋅ ( 3 − 2 ) = 180 °

Сумма углов четырехугольника: S 4 = 180 ° ⋅ ( 4 − 2 ) = 360 °

Сумма углов пятиугольника: S 5 = 180 ° ⋅ ( 5 − 2 ) = 540 °

Так можно продолжать до бесконечности.

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.

На рисунках изображены примеры правильных многоугольников:

Чтобы найти величину угла правильного n -угольника , необходимо сумму углов этого многоугольника разделить на количество углов.

α n = 180 ° ⋅ ( n − 2 ) n

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с углами

Углы при пересечении двух прямых

Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.

При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.

На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным — внутренние углы (∠3, ∠4, ∠5 и ∠6).

Также при пересечении двух прямых третьей, образовавшиеся углы получают попарно следующие названия:

Углы при пересечении параллельных прямых

Если секущая пересекает две параллельные прямые линии, то:

  • внутренние накрест лежащие углы равны;
  • сумма внутренних односторонних углов равна 180°;
  • соответственные углы равны;
  • внешние накрест лежащие углы равны;
  • сумма внешних односторонних углов равна 180°.
источники:

Геометрия. Урок 2. Углы

http://izamorfix.ru/matematika/planimetriya/ugly_dvuh_pryam.html

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Понятие угла

Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.

Стороны угла – лучи, которые образуют угол.

Вершина угла – точка, из которой выходят лучи.

Угол AOB

Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠ A O B  или ∠ B O A ,  но ни в коем случае не ∠ O A B , ∠ O B A , ∠ A B O , ∠ B A O .

Величину угла измеряют в градусах. ∠ A O B = 24 ° .

Виды углов:

Виды углов

Биссектриса угла

Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.

Или

Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.

Биссектриса угла

O D – биссектриса угла ∠ A O B . Она делит этот угол на два равных угла.

∠ A O D = ∠ B O D = ∠ A O B 2

Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон O A и O B угла ∠ A O B .

Углы, образованные при пересечении двух прямых

Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.

Свойство: вертикальные углы равны.

Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.

Свойство: сумма смежных углов равна 180 ° .

Пример:

Углы, образованные при пересечении двух прямых

Пары углов

( 1 ) и ( 3 )
( 2 ) и ( 4 )

называются вертикальными.

По свойству вертикальных углов:

∠ C O D = ∠ A O B
∠ B O D = ∠ A O C

Пары углов

( 1 ) и ( 2 )
( 2 ) и ( 3 )
( 3 ) и ( 4 )
( 4 ) и ( 1 )

называются смежными.

По свойству смежных углов:

∠ C O D + ∠ D O B = 180 ° ∠ D O B + ∠ B O A = 180 ° ∠ B O A + ∠ A O C = 180 ° ∠ A O C + ∠ C O D = 180 °

Углы, образованные при пересечении двух прямых секущей

Прямая, пересекающая две заданные прямые, называется секущей этих прямых.

Углы, образованные при пересечении двух прямых секущей

Существует пять видов углов, которые образуются при пересечении двух прямых секущей.

Пары углов:

( 1 ) и ( 5 )
( 2 ) и ( 6 )
( 3 ) и ( 7 )
( 4 ) и ( 8 )

называются соответственными.
(Легко запомнить: они соответствуют друг другу, похожи друг на друга).

Пары углов:

( 3 ) и ( 5 )
( 4 ) и ( 6 )

называются внутренними односторонними.
(Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).

Пары углов:

( 1 ) и ( 7 )
( 2 ) и ( 8 )

называются внешними односторонними.
(Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).

Пары углов:

( 3 ) и ( 6 )
( 4 ) и ( 5 )

называются внутренними накрест лежащими.
(Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).

Пары углов:

( 1 ) и ( 8 )
( 2 ) и ( 7 )

называются внешними накрест лежащими.
(Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).

Если прямые, которые пересекает секущая, параллельны, то углы имеют следующие свойства:

  • Соответственные углы равны.
  • Внутренние накрест лежащие углы равны.
  • Внешние накрест лежащие углы равны.
  • Сумма внутренних односторонних углов равна 180 ° .
  • Сумма внешних односторонних углов равна 180 ° .

Углы, образованные при пересечении двух параллельных прямых секущей

Сумма углов многоугольника

Сумма углов произвольного n -угольника вычисляется по формуле:

S n = 180 ° ⋅ ( n − 2 )

где n – это количество углов в n -угольнике.

Пользуясь этой формулой, можно вычислить сумму углов для произвольного n -угольника.

Сумма углов треугольника: S 3 = 180 ° ⋅ ( 3 − 2 ) = 180 °

Сумма углов четырехугольника: S 4 = 180 ° ⋅ ( 4 − 2 ) = 360 °

Сумма углов пятиугольника: S 5 = 180 ° ⋅ ( 5 − 2 ) = 540 °

Так можно продолжать до бесконечности.

Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.

На рисунках изображены примеры правильных многоугольников:

Правильный треугольник (равносторонний треугольник) Правильный четырехугольник (квадрат) Правильный семиугольник

Чтобы найти величину угла правильного n -угольника, необходимо сумму углов этого многоугольника разделить на количество углов.

α n = 180 ° ⋅ ( n − 2 ) n

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с углами

Скачать домашнее задание к уроку 2.

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Углы при параллельных прямых и секущей

Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Углы при параллельных прямых и секущей

Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны, то есть

angle 1=angle 3;

angle 2=angle 4.

Конечно, углы 5 и 7, 6 и 8 — тоже вертикальные.

Углы 1 и 2 — смежные, это мы уже знаем. Сумма смежных углов равна 180^{circ}.

Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие.

Накрест лежащие углы равны.

angle 3=angle 5,

angle 1=angle 7,

angle 2=angle 8,

angle 4=angle 6.

Углы 1 и 6 — односторонние. Они лежат по одну сторону от всей «конструкции». Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180^{circ}, то есть

angle 1+angle 6=180^{circ},

angle 4+angle 7=180^{circ}.

Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными.

Соответственные углы равны, то есть

angle 2=angle 6,

angle 3=angle 7.

Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими.

Накрест лежащие углы равны, то есть

angle 3=angle 5,

angle 1=angle 7,

angle 2=angle 8,

angle 4=angle 6.

Чтобы применять все эти факты в решении задач по геометрии, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть две параллельных прямые и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это – один из шагов, из которых и состоит решение.

В этой статье – полезные теоремы и примеры решения задач ЕГЭ и ОГЭ по теме «Углы при параллельных прямых и секущей».

Этот материал можно использовать для проектов по геометрии, в работе на уроке и самостоятельно.

Теорема 1.

Углы с соответственно параллельными сторонами равны, если они оба острые или тупые.

Доказательство:

Дано два острых угла: angle ACB и angle FNM. Известно, что их стороны параллельны: CAparallel NF и CBparallel NM.

Докажем, что angle ACB=angle FNM.

Пусть NFcap  CB=D.

Тогда angle ACB=angle FDB как соответственные углы при параллельных прямых CA и NF и секущей CB.

angle FDB=angle FNM, как соответственные углы при параллельных прямых CB и NM и секущей NF.

Отсюда следует, что angle ACB=angle FNM, что и требовалось доказать.

Аналогично и для тупых углов.

Теорема 2.

Углы с соответственно параллельными сторонами в сумме составляют 180{}^circ , если один из них острый, а другой тупой.

Доказательство:

Дано: angle ACB – острый, а angle FNM – тупой. Известно, что их стороны параллельны: CAparallel NF и CBparallel NM.

Докажем, что сумма углов angle ACB и angle FNM равна 180{}^circ .

Пусть NFcap  CB=D. Продолжим луч NM за точку N и получим прямую MK.

Получили два острых угла, angle ACB и angle FNK с параллельными сторонами. Согласно теореме 1, они равны, т. е. angle ACB=angle FNK.

angle MNF+angle FNK=180{}^circ как смежные. Значит, angle MNF+angle ACB=180{}^circ.

Теорема доказана.

Теорема 3.

Если накрест лежащие углы равны, прямые параллельны.

Доказательство:

Пусть при пересечении прямых a и b секущей AB накрест лежащие углы равны: angle 1=angle 2.

Докажем, что aparallel b. Если углы 1 и 2 прямые, то прямые a и b перпендикулярны к прямой AB и, следовательно, параллельны.

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведем перпендикуляр OH к прямой a.

На прямой b от точки В отложим отрезок {BH}_1 равный отрезку AH

triangle OHA=triangle OH_1B по двум сторонам и углу между ними, поэтому angle 3=angle 4 и angle 5=angle 6. Из равенства angle 3=angle 4  следует, что точка H_1 лежит на продолжении луча OH, т. е. точки H, O и H_1 лежат на одной прямой, а из равенства angle 5=angle 6 следует, что угол 6 – прямой (так как угол 5 – прямой). Итак, прямые a и b перпендикулярны к прямой HH_1, поэтому они параллельны. Теорема доказана.

Теорема 4.

Если соответственные углы равны, прямые параллельны.

Доказательство:

Пусть при пересечении прямых a и b секущей c соответственные углы равны, например angle 1=angle 2.

Так как углы 2 и 3 – вертикальные, то angle 2=angle 3. Из этих двух равенств следует, что angle 1=angle 3 . Но углы 1 и 3 – накрест лежащие, поэтому прямые a и b параллельны. Теорема доказана.

Теорема 5.

Если сумма односторонних углов равна 180 градусов, прямые параллельны.

Доказательство:

Пусть при пересечении прямых a и b секущей c сумма односторонних углов равна 180{}^circ , например angle 1+angle 4=180{}^circ.

Так как углы 3 и 4 – смежные, то angle 3+angle 4=180. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые a и b параллельны. Теорема доказана

И самое главное. Подборка примеров заданий ОГЭ и ЕГЭ по темам: углы при параллельных прямых и секущей, внешние накрест лежащие и внутренние накрест лежащие углы, односторонние углы.

Задачи ОГЭ по теме: Свойства параллельных прямых и секущей, углы при пересечении параллельных прямых секущей

Задача 1. Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.

Решение:

Стороны BC и AD параллелограмма параллельны, АК – секущая. Углы angle KAD и angle AKB равны как накрест лежащие.

BC=BK+KC=5+14=19,

triangle ABK – равнобедренный треугольник.

Мы доказали важное утверждение.

Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.

AB=BK=5.

P_{ABCD}=left(AB+BCright)cdot 2;

P_{ABCD}=left(5+19right)cdot 2=48.

Ответ: 48.

Задача 2. Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F.

Найдите AB, если AF=24, BF=10.

Решение:

Основания трапеции АD и ВС параллельны, поэтому углы BAD и АВС – односторонние при параллельных прямых АD и ВС и секущей АВ. Сумма односторонних углов равна 180^circ .

Сумма углов, прилежащих к боковой стороне трапеции, равна180{}^circ .

Мы получили, что

angle BAD+angle ABC=180^circ .

AF — биссектриса угла А,

BF — биссектриса угла В, поэтому

angle FAB=frac{1}{2}angle BAD;; angle ABF=frac{1}{2}angle ABC, тогда

angle FAB+angle ABF=90^circ .

Из треугольника AFB получим, что AFB=90{}^circ .

Мы доказали теорему:

Биссектрисы углов трапеции, прилежащих к боковой стороне, перпендикулярны.

Значит, треугольник AFB – прямоугольный.

По теореме Пифагора, {AB}^2={AF}^2+{BF}^2Rightarrow AB=sqrt{{24}^2+{10}^2}=sqrt{676}=26.

Ответ: 26.

Задача 3. Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=28, AC=16, MN=12. Найдите AM.

Решение:

Пусть М – середина АВ, N – середина ВС. Тогда MN – средняя линия треугольника АВС, MNparallel AC.

Значит, angle BMN=angle BAC, как односторонние углы при параллельных прямых MN и AC и секущей АВ.

triangle ABCsim triangle MBN по двум углам.

Отсюда displaystyle frac{AB}{BM}=displaystyle frac{AC}{MN}Rightarrow BM=displaystyle frac{ABcdot MN}{AC};

BM=displaystyle frac{28cdot 12}{16}=21.

Ответ: 21.

Задача 4. Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 108{}^circ. Найдите угол B этой трапеции. Ответ дайте в градусах.

Решение:

ABCD – трапеция, ADparallel BC – основания, AB – секущая.

Значит, angle A и angle B – внутренние односторонне углы.

Отсюда angle B=180{}^circ -108{}^circ =72{}^circ.

Ответ: 72.

Задача 5. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=7, а расстояние от точки K до стороны AB равно 4.

Решение:

Сумма углов, прилежащих к боковой стороне параллелограмма, равна 180{}^circ .

Это значит, что angle BAD +angle ABC = 180{}^circ.

AК — биссектриса угла А,

BК — биссектриса угла В, поэтому

angle KAB=frac{1}{2}angle BAD; ; angle ABK=frac{1}{2}angle ABC, тогда

angle KAB+angle ABK= 90{}^circ .

Из треугольника AKB получим, что angle ABK= 90{}^circ .

Мы доказали теорему:

Биссектрисы углов параллелограмма, прилежащих к боковой стороне, перпендикулярны.

Значит, треугольник AKB – прямоугольный.

Расстояние от точки K до стороны AB – это длина перпендикуляра, проведенного из точки K на прямую АВ, т.е. KH=4.

triangle AKN=triangle AKH по гипотенузе и острому углу Rightarrow KN=KH.

Аналогично, triangle BKH=triangle BKM по гипотенузе и острому углу Rightarrow KH=KM.

Получили: KN=KH=KM=4Rightarrow MN=8.

Тогда S_{ABCD}=ADcdot MN; S_{ABCD}=8cdot 7=56.

Ответ: 56.

Задача 6. На плоскости даны четыре прямые. Известно, что angle 1=120{}^circ , angle 2=60{}^circ , angle 3=55{}^circ . Найдите angle 4. Ответ дайте в градусах.

Решение:

angle 1 и angle 2 – это внутренние односторонние углы,

angle 1+angle 2=120{}^circ +60{}^circ =180{}^circ.

Отсюда следует, что прямые параллельны, т.е. aparallel b.

Рассмотрим углы при параллельных прямых aparallel b и секущей d.

angle 3 и angle 4 – это односторонние углы, а значит, они равны: angle 3=angle 4=55{}^circ.

Ответ: 55.

Задача 7. Прямые m и n параллельны. Найдите angle 3, если angle 1=22{}^circ , angle 2=72{}^circ . Ответ дайте в градусах.

Решение:

mparallel nRightarrow angle 1=angle 4=22{}^circ  как односторонние углы.

Сумма углов треугольника равна 180{}^circ .

Для треугольника на рисунке:

angle 2+angle 3+angle 4=180{}^circ Rightarrow angle 3=180{}^circ -72{}^circ -22{}^circ =86{}^circ .

Ответ: 86.

Задача 8. Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30{}^circ и 45{}^circ. Найдите больший угол параллелограмма. Ответ дайте в градусах.

Решение:
angle A=angle BAC+angle CAD=30{}^circ +45{}^circ =75{}^circ ,

angle A и angle B – это внутренние односторонние углы при параллельных прямых.

ADparallel BC и секущей АВ, их сумма равна 180{}^circ .

Тогда angle B=180{}^circ -angle A=180{}^circ -75{}^circ =105{}^circ .

Это и есть наибольший угол параллелограмма.

Ответ: 105.

Задача 9. Найдите величину тупого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 15{}^circ. Ответ дайте в градусах.

Решение:

AK – биссектриса угла А параллелограмма ABCD, angle A=30{}^circ.

angle A и angle B – внутренние односторонние углы при параллельных прямых.

ADparallel BC и секущей АВ. Их сумма равна 180{}^circ , значит, angle B=180{}^circ -30{}^circ =150{}^circ.

Ответ: 150.

Задача 10. В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и angle ACD=169{}^circ . Найдите меньший угол между диагоналями параллелограмма. Ответ дайте в градусах.

Решение: AC=2ABRightarrow AO=OC=AB=CD, тогда triangle COD – равнобедренный, в нем OC= CD. Значит,  angle COD=angle CDO=displaystyle frac{180{}^circ -169{}^circ }{2}=5,5{}^circ .

Ответ: 5,5.

Задачи ЕГЭ по теме: Углы при параллельных прямых и секущей

Задача 1, ЕГЭ. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3:4, считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.

Решение:

Напомним, что биссектриса угла – это луч, выходящий из вершины угла и делящий угол пополам.

Пусть BM – биссектриса тупого угла B. По условию, отрезки MD и AB равны 3x и 4x соответственно.

Рассмотрим углы CBM и BMA. Поскольку AD и BC параллельны, BM – секущая, углы CBM и BMA являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник ABM – равнобедренный, следовательно, AB = AM = 4x.

Периметр параллелограмма – это сумма всех его сторон, то есть

7x+7x+4x+4x=88.

Отсюда x=4, 7x=28.

Ответ: 28.

Задача 2, ЕГЭ. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50{}^circ ? Ответ дайте в градусах.

Решение:

Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на рисунок. По условию, alpha -beta =50{}^circ , то есть alpha =beta +50{}^circ .

Углы alpha и beta – односторонние при параллельных прямых и секущей, следовательно,

alpha +beta =180{}^circ , по свойству односторонних углов.

Итак, 2beta +50{}^circ =180{}^circ.

beta =65{}^circ , тогда alpha =115{}^circ .

Ответ: 115.

Задача 3, ЕГЭ. Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.

Решение:

angle B и angle C – внутренние односторонние углы и при параллельных прямых

AB и DC и секущей BC; их сумма равна 180{}^circ .

BE – биссектриса угла В, значит angle ABE=angle CBE=angle BEA как накрест лежащие углы при BCparallel AD и секущей BE. Тогда triangle ABE – равнобедренный, AB=AE=5=DC.

Аналогично, CE – биссектриса угла С, значит angle DCE=angle BCE=angle CED как накрест лежащие углы при BCparallel AD и секущей CE. Тогда triangle DCE – равнобедренный и DC=DE=5.

Значит AD=AE+ED=10.

Ответ : 10.

Задача 4, ЕГЭ. В ромбе ABCD угол ABC равен 122{}^circ. Найдите угол ACD. Ответ дайте в градусах.

Решение:

angle B и angle C – это внутренние односторонние углы при параллельных прямых.

ABparallel DC и секущей BC, их сумма равна 180{}^circ .

Значит, angle C=180{}^circ -angle B=180{}^circ -122{}^circ =58{}^circ .

ABCD – ромб, диагонали ромба делят его углы пополам.

Тогда angle ACD=58div 2=29{}^circ .

Ответ: 29.

Задача 5, ЕГЭ. Угол между стороной и диагональю ромба равен 54{}^circ . Найдите острый угол ромба.

Решение:

Диагональ ромба делит его угол пополам, то есть является биссектрисой угла ромба. Поэтому один из углов ромба равен 54cdot 2=108 градусов, и это тупой угол ромба. Тогда острый угол ромба равен 180{}^circ -108{}^circ =72{}^circ .

Ответ: 72.

Задача 6, ЕГЭ. Основания трапеции равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол 150{}^circ. Найдите площадь трапеции.

Решение:

Пусть angle D=150{}^circ ;  AB=18;  DC=6;  AD=7.

Углы, прилежащие к боковой стороне AD трапеции, являются внутренними односторонними при ABparallel DC и секущей BC. Их сумма равна 180{}^circ .

Тогда angle A=30{}^circ . Построим высоту из вершины D. Получим прямоугольный треугольник с острым углом в 30{}^circ .

Высота трапеции DH – это катет, лежащий напротив угла в 30{}^circ и равный половине гипотенузы, т. е. h=0.5cdot AD=0.5cdot 7=3.5.

Отсюда S_{ABCD}=displaystyle frac{DC+AB}{2}cdot h; S_{ABCD}=displaystyle frac{6+18}{2}cdot 3.5=12cdot 3.5=42.

Ответ: 42.

Задача 7, ЕГЭ. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50{}^circ? Ответ дайте в градусах.

Решение:

У равнобедренной трапеции углы при основании равны т.е. angle A=angle B; ; angle D=angle C.

По условию, angle D-angle B=50{}^circ Rightarrow angle C-angle B=50{}^circ ;

angle C и angle B, прилежащие к боковой стороне CB трапеции, являются внутренними односторонними углами при параллельных прямых
AB и DC и секущей BC. Их сумма равна 180{}^circ .

angle C+angle B=180{}^circ.

Получили:

left{ begin{array}{c}angle C-angle B=50{}^circ \angle C+angle B=180{}^circ end{array}right. .

Сложив два уравнения, получим: 2angle C=230{}^circ , тогда angle C=115{}^circ.

Ответ: 115.

Задания ЕГЭ Базового уровня, геометрия. Свойства углов при параллельных прямых и секущей.

Задание 1. Основания трапеции равны 10 и 20, боковая сторона, равная 8, образует с одним из оснований трапеции угол 150{}^circ . Найдите площадь трапеции.

Решение:

Углы, прилежащие к боковой стороне трапеции, являются внутренними односторонними углами при параллельных основаниях трапеции и секущей. Их сумма равна 180{}^circ . Значит, острый угол трапеции равен 30{}^circ . Построив высоту, мы увидим, что она лежит против прямого угла в прямоугольном треугольнике. Значит, высота равна половине боковой стороны, т.е. h=4.

Отсюда

Ответ: 60.

Задание 2. В прямоугольной трапеции основания равны 4 и 7, а один из углов равен 135{}^circ . Найдите меньшую боковую сторону.

Решение:

Углы, прилежащие к боковой стороне трапеции, являются внутренними односторонними углами при параллельных прямых и секущей. Их сумма равна 180{}^circ . Значит, острый угол равен 45{}^circ .

Вторая высота отсекает равнобедренный прямоугольный треугольник с катетом, равным разности оснований. Значит, высота равна: 7–4=3.

Отсюда

Ответ: 16,5.

Задание 3. В трапеции ABCD известно, что AB = CD, angle BDA=40{}^circ и angle BDC=30{}^circ . Найдите угол ABD. Ответ дайте в градусах.

Решение:

angle D=angle BDA+angle BDC=40{}^circ +30{}^circ =70{}^circ . Углы, прилежащие к боковой стороне трапеции, являются внутренними односторонними углами при параллельных прямых и секущей. Их сумма равна 180{}^circ . Значит, острый угол равен 110{}^circ .

Нам дана трапеция, в которой AB=CD. Очевидно, что это боковые стороны, и трапеция равнобедренная с основаниями AD и BC .

AD и BC параллельны, BD секущая, тогда angle ADB=angle DBC=40{}^circ .

angle ABD=angle ABC-angle DBC=110{}^circ -40{}^circ =70{}^circ.

Ответ: 70.

Задание 4. В параллелограмме ABCD проведена биссектриса угла A, пересекающая сторону BC в точке K. Найдите KC, если AB = 4, а периметр параллелограмма равен 20.

Решение:

ABCD – параллелограмм, тогда AB = DC = 4.

AK – биссектриса угла А, значит, angle BAK=angle KAD;

angle KAD=angle AKC как накрест лежащие углы при параллельных прямых BC и AD и секущей AK.

Получили, что triangle ABK – равнобедренный и AB=BK=4.

P_{ABCD}=left(AB+ADright)cdot 2=20, значит AB+AD=10Rightarrow AD=6,

KC=BC-BK=6-4=2.

Ответ: 2.

Задание 5. Прямые m и n параллельны (см. рисунок). Найдите angle 3, если angle 1=117{}^circ , angle 2=24{}^circ . Ответ дайте в градусах.

Решение:

mparallel n, angle 2=angle 4=24{}^circ (как накрест лежащие углы).

angle 1+angle 4+angle 3=180{}^circ (развернутый угол).

Тогда angle 3=180{}^circ -left(angle 1+angle 4right)=180{}^circ -left(117{}^circ +24{}^circ right)=39{}^circ .

Ответ: 39.

Задание 6. В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и angle ACD=104{}^circ . Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.

Решение:

Пусть диагонали пересекаются в точке О, т.е. ACcap BD=O.

AC=2ABRightarrow AB=displaystyle frac{1}{2}cdot ACRightarrow AB=AO=OC=CD.

AB и CD параллельны, АС – секущая, Rightarrow angle BAC=angle ACD=104{}^circ .

AB=AORightarrow triangle BAO – равнобедренный, отсюда угол между диагоналями равен:

angle BOA=displaystyle frac{180{}^circ -104{}^circ }{2}=38{}^circ .

Ответ: 38.

Если вам понравился наш материал на тему «Углы при параллельных прямых и секущей» — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Как мы выяснили на прошлом уроке, прямая, пересекающая данную прямую, пересечет также прямую, параллельную данной. Это следствие из аксиомы параллельности открывает нам возможность сформулировать конкретные признаки параллельности прямых, по которым можно доказательно заключать о параллельности тех или иных прямых. Вы все правильно поняли: от аксиом мы наконец переходим к теоремам.

Что такое секущая

Даны прямые $a$ и $b$, параллельные друг другу, и прямая $c$, которая пересекает данные прямые в двух точках.

Подобная прямая, пересекающая две прочие прямые, в геометрии называется секущей. Секущая может проводиться как по отношению к параллельным прямым, так и к непараллельным.

Секущая — прямая пересекающая две прямые, лежащие в одной плоскости, в двух разных точках.

Обращаем внимание на углы при секущей: секущая при пересечении с параллельными прямыми образует восемь углов, которые на чертеже обозначены заглавными латинскими буквами: A, B, C и так далее. Некоторые пары углов при секущей настолько важны, что за ними даже закреплены отдельные названия:

  • односторонние углы — $angle{A}$ и $angle{H}$, $angle{B}$ и $angle{G}$;
  • накрест лежащие углы — $angle{A}$ и $angle{G}$, $angle{B}$ и $angle{H}$;
  • соответственные углы — $angle{A}$ и $angle{E}$, $angle{B}$ и $angle{F}$, $angle{D}$ и $angle{H}$,
    $angle{C}$ и $angle{G}$;

Внутренние и внешние углы при секущей

Внутренние углы при секущей — это углы, которые находятся в общих для прямых полуплоскостях. Однако секущая также образует и внешние углы — те, что располагаются в не пересекающихся полуплоскостях прямых. Посмотрите на чертежи: для наглядности «зоны» внутренних и внешних углов выделены цветом.

К внутренней «зоне» относятся углы $angle{A}$, $angle{B}$, $angle{H}$ и $angle{G}$.

К внешней «зоне» относятся углы $angle{D}$, $angle{C}$, $angle{E}$ и $angle{F}$.

Примечательно, что соответственные углы — это пары, состоящие из одного внутреннего и одного внешнего угла. А при должном внимании вы могли догадаться, что накрест лежащие и односторонние углы были выше нами указаны только для внутренней «зоны». Аналогичные пары вообще-то имеются и во внешней «зоне».

Признаки параллельности прямых: накрест лежащие углы

Очевидно, что проведение секущей — это специальный геометрический метод для определения параллельности прямых. По тому, являются ли те или иные пары углов, образованные секущими, равными, можно заключать о параллельности или непараллельности прямых. Одна из таких пар — накрест лежащие углы.

Признак параллельности прямых по накрест лежащим углам. Если при пересечении двух прямых секущей накрест лежащие углы равны, то такие прямые параллельны.

Доказательство. Проведем прямые $a,$ $b$ и секущую $c$, пересекающую прямые в точках $A$ и $B$ соответственно. По условию прямые образуют с секущей пару равных накрест лежащих углов$angle{1}$ и $angle{2}$. Воспользуемся методом от противного и предположим, что прямые не параллельны. Тогда они будут пересекаться в некоторой точке $C$. Отложим на продолжении отрезка $CB$ отрезок $BD$, равный отрезку $AC$.

Треугольники $bigtriangleup{CAB}$ и $bigtriangleup{DBA}$ равны по первому признаку равенства треугольников: $AB$ — общая сторона, $BD=AC$ по построению, углы $angle{1}$ и $angle{2}$ равны по условию о накрест лежащих углах. Следовательно $angle{CBA}$ и $angle{DAB}$ также равны.

Известно, что сумма смежных углов равняется $180^circ$. Значит, $angle{CBA}+angle{DBA}=180^circ$. Однако сумма равных им углов $angle{DAB}+angle{CAB}$, то есть угла $angle{CAD}$ в $bigtriangleup{DAC}$, меньше $180^circ$. Мы пришли к противоречию.

Следовательно прямые параллельны. Теорема доказана.

Внешние накрест лежащие углы!

Заметьте, что при доказательстве мы опирались на равенство внутренних накрест лежащих углов, хотя, если взять признак параллельности прямых, тексте теоремы указана общая формулировка — «накрест лежащие углы», без обозначения их расположения относительно полуплоскостей прямых.

Ответ прост: если доказать признаки параллельности прямых, опираясь на равенство внутренних накрест лежащих углов, внешнее расположение — не более чем условность.

Возьмем для примера $angle{B}$ и $angle{H}$. Для $angle{B}$: внешний $angle{D}$ — с ним вертикальный; внешний $angle{C}$ — смежный. Аналогично для $angle{H}$: $angle{F}$ и $angle{E}$ соответственно.

Вертикальные углы равны, поэтому получаем равенство $angle{D}$ и $angle{F}.$ У равных углов смежные с ними углы также будут равны, отсюда $angle{C}=angle{E}$. Поэтому теорема обычно доказывается по внутренним накрест углам, ведь равенство таких же внешних — прямое следствие.

Признаки параллельности прямых: задача

Отрезки $AB$ и $CD$ пересекаются в общей середине $O$. Докажите, что прямые $AC$ и $BD$ при этом параллельны.

Дано:

$AB, CD$
$AO=OB$
$CO=OD$

Решение
Рассмотрим треугольники $bigtriangleup{AOC}$ и $bigtriangleup{BDO}$. Они равны по первому признаку: по условию $AO=OB$ и $CO=OD$, углы $angle{COA}$ и $angle{BOD}$ равны как вертикальные. Следовательно $angle{ACD}=angle{BDC}$. Данные углы являются внутренними накрест лежащими. Тогда $ACparallel{BD}$ согласно признаку параллельности по накрест лежащим углам.

Признак параллельности прямых: соответственные углы

Признак параллельности прямых по соответственным углам. Если при пересечении двух прямых секущей соответственные углы равны, то такие прямые параллельны.

Доказательство. Пусть прямые $a$ и $b$ при пересечении секущей $c$ образуют пару равных соответственных углов — $angle{A}=angle{B}$. Угол $angle{D}$ является вертикальным по отношению к $angle{A}$. Следовательно $angle{A}=angle{D}=angle{B}$. Поскольку $angle{D}$ и $angle{B}$ — накрест лежащие углы, прямые $a$ и $b$ являются параллельными. Теорема доказана.  

Признак параллельности прямых: односторонние углы

Признак параллельности прямых по сумме односторонних углов. Если при пересечении двух прямых секущей сумма односторонних углов равняется $180^circ$, то такие прямые параллельны.

Доказательство

Пусть прямые $a$ и $b$ при пересечении секущей $c$ образуют пару односторонних углов $angle{A}$ и $angle{B}$ с суммой $180^circ$. $angle{C}$ является смежным с $angle{B}$, следовательно $angle{B}+angle{C}=180^circ$. Имеем следующее:

$angle{A}+angle{B}=180^circ$;
$angle{B}+angle{C}=180^circ$;
$angle{A}+angle{B}=angle{B}+angle{C}$.

Из последнего равенства получаем равенство $angle{A}$ и $angle{C}$. Они накрест лежащие. Тогда прямые $a$ и $b$ будут параллельны согласно признаку параллельности по накрест лежащим углам. Теорема доказана.

По аналогии с накрест лежащими углами, доказательство признака параллельности по сумме внутренних односторонних углов позволяет прямо перейти к точно такому же признаку, но на основе внешних односторонних углов. Смежные углы — сила.

Задача. Известно, что в треугольнике $bigtriangleup{ABC}$ угол $angle{A}$ равен $40^circ$, а угол $angle{B}$ равен $70^circ$. На плоскости лежит точка $D$ так, что сторона $BC$ треугольника $bigtriangleup{ABC}$ является биссектрисой угла $ABD$. Докажите, что $ACparallel{BD}$.  

Показать решение

Скрыть решение

Дано:

$bigtriangleup{ABC}$
$angle{A}=40^circ$
$angle{B}=70^circ$

Угол $angle{ABD}$ складывается из суммы углов $angle{B}$ и $angle{CBD}$. Поскольку $BC$ является биссектрисой $angle{ABD}$, имеем, что $angle{CBD}=70^circ$. Сумма углов $angle{ABD}$ и $angle{A}$ равняется $180^circ$. Они являются односторонними при секущей $AB$ для отрезков $AC$ и $BD$. Следовательно $ACparallel{BD}$.

«Признак» или «теорема»?

Все доказанные признаки параллельности прямых так или иначе в научном понимании является теоремами. При этом, тем не менее, в формулировках слово «теорема» не фигурировало: мы все время пользовались обозначением «признак».

Причина здесь — амбивалентность, создаваемая словосочетанием «теорема параллельности».  Есть аксиома параллельности, а есть, значит, еще и теорема? Тогда аксиома совсем не аксиома, если ей можно противопоставить теорему параллельности. Замена «теорема» на «признак» разрешает данную двойственность.  

Есть, конечно, еще одна причина… Но это разговор для целого отдельного урока. Этот урок, к слову, следующий. Загляните.

Что такое смежные углы? Какие у них свойства?

Определение.

Смежные углы — это углы, у которых одна сторона — общая, а другие стороны лежат на одной прямой.

smezhnyie uglyi

∠1 и ∠2 — смежные углы

Сколько смежных углов образуется при пересечении двух прямых?

При пересечении двух прямых образуется четыре пары смежных углов:

skolko smezhnyih uglov pri peresechenii pryamyih

∠1 и ∠2, ∠3 и ∠4,

∠1 и ∠3,  ∠2 и ∠4

Но, так как ∠1 =∠4,  ∠2=∠3 (как вертикальные), то достаточно рассмотреть только одну из этих пар.

Свойство смежных углов.

Сумма смежных углов равна 180º.

Задачи.

1) Даны два смежных угла. Один на 42 градуса больше другого. Найти эти углы.

dva smezhnyih ugla

Дано:

∠AOC и ∠BOC — смежные,

∠AOC на 42º  больше, чем ∠BOC

Найти: ∠AOC и ∠BOC.

Решение:

Пусть ∠BOC=хº, тогда ∠AOC= х+42º. Так как сумма смежных углов равна 180º, то ∠BOC+∠AOC=180º.

Имеем уравнение:

х+х+42=180

2х=180-42

2x=138

x=69

Значит, ∠BOC= 69º, ∠AOC=69+42=111º.

Ответ: 69º и 111º.

2) Найти смежные углы, если их градусные меры относятся как 4:5.

danyi smezhnyie uglyi

Дано:

∠1 и ∠2 — смежные,

∠1 : ∠2= 4:5

Найти:∠1 и ∠2

Решение:

Пусть k — коэффициент пропорциональности. Тогда ∠2 =4kº , ∠1=5kº. Так как сумма смежных углов равна 180º, ∠1 +∠2=180º.

Имеем уравнение:

4k+5k=180

9k=180

k=20

Значит, смежные углы равны 4∙20=80º и 5∙20=100º.

Ответ: 80º и 100º.

3) Один из углов, образованных при пересечении двух прямых, в 5 раз больше другого. Найти эти углы.

ugol peresecheniya dvuh pryamyih

Дано: AB и CD — прямые, O — точка их пересечения,

∠AOD  в 5 раз больше, чем ∠BOD

Найти: ∠AOD, ∠BOD

Решение:

При пересечении двух прямых образуются смежные и вертикальные углы. Так как вертикальные углы равны между собой, то углы∠AOD и ∠BOD —  смежные. Пусть ∠BOD=xº, тогда ∠AOD=5xº. Так как сумма смежных углов равна 180º, ∠AOD +∠BOD=180º.

Имеем уравнение:

x+5x=180

6x=180

x=30

Значит, ∠BOD=30º, ∠AOD=5∙30=150º.

Ответ: 30º и 150º.

Могут ли смежные углы быть равными?

Да. Если смежные углы равны между собой, то, так как сумма смежных углов равна 180º, каждый из них равен половине суммы, то есть 90º.

Вывод:

угол, смежный с прямым, есть прямой угол.

Могут ли два смежных угла быть тупыми? Острыми?

Нет. Так как градусная мера тупого угла больше 90º, то сумма двух тупых углов больше 180º. А сумма смежных углов равна 180º.

Градусная мера острого угла меньше 90º. Значит, сумма двух острых углов меньше 180º.

Таким образом, в паре смежных углов один — тупой, другой — острый (или оба прямые).

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти user settings
  • Как найти свою научную статью в интернете
  • Форум как найти приложение
  • Код ошибки 0xc000001 как исправить
  • Путешествие как найти все символы

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии