Как найти скорость распространения тока

движение электронов в токе

Жизнь современного человека полна комфорта. Сегодня мы имеем все блага цивилизации в свободном доступе. Главным достижением, которое совершенствовалось в течение долгого времени, является электрическая энергия, доступная практически в любой части мира. Мы привыкли к тому, что электроэнергия повсюду и задумываемся о ней лишь в тот момент, когда она внезапно пропадает. На самом деле явление электричества таит в себе много интересного, что желательно было бы знать каждому человеку.

Например, одним из вопросов, которым нужно задаться, является скорость электрического тока. Мало кто думал о том, как быстро зажжется лампочка, находящаяся в сотне километров от источника энергии. Этот вопрос актуален для населенных пунктов, которые находятся вдали от цивилизации.

Опытным путем учеными и исследователями было доказано, что электрический сигнал движется по кабелю со скоростью света, а именно 300 тысяч км/сек.

Важно отметить, что электроны и ионы в проводнике при этом движутся совсем не с такой скоростью. Они просто на просто не могут иметь столь высокую скорость в проводящем материале. 

Под скоростью света в случае с электрическим током понимается показатель скорости, с которым заряженные частицы приходят в движение друг за другом, а не движутся относительно друг друга. Носители заряда при этом обладают средней скоростью, равной, как правило, нескольким миллиметрам за 1 сек.

Более подробно объясним данную ситуацию примером:

К заряженному конденсатору присоединяются провода большой длины, идущие к лампе, что находится на расстоянии около 100 км. Замыкание цепи происходит вручную. После этого носители зарядов приходят в движение на том отрезке провода, который подключен к конденсатору. При этом начинается покидание электронами минусовой обкладки конденсатора, следовательно, происходит уменьшение электрического поля в конденсаторе параллельно с уменьшением плюсовой обкладки.

Таким образом, между обкладками сокращается разность потенциалов. При этом электроны, пришедшие в движение, приходят на место тех, что ушли. То есть, запущен процесс перераспределения электронов внутри провода за счет влияния электрического поля. Данный процесс растет, как снежный ком, и переходит дальше по всей длине провода, достигая в итоге нити накаливания лампы.

Получается, что перемены в состоянии электрического поля распространяются внутри проводника со скоростью, равной скорости света. При этом происходит активация электронов в электрической цепи с аналогичной скоростью. Хотя сами электроны движутся друг за другом по проводнику с гораздо меньшей скоростью.

Теперь разберемся в явлении гидравлической аналогии. Рассмотрим это понятие на примере движения водного потока из пункта А в пункт Б.

Допустим, что из небольшого населенного пункта по трубе в город поступает вода. Для этого функционирует специальный насос, который повышает давление внутри трубы, и вода под влиянием давления движется гораздо быстрее. Малейшие перемены в давлении по трубе распространяются очень быстро (приблизительно 1400 км/сек). Скорость распространения данных перемен напрямую зависит от показателя плотности жидкости, ее температуры и степени оказываемого давления. Через совсем короткий промежуток времени (доля секунды) вода уже поступила в город. Но это уже совсем другая вода. Ведь молекулы в ее составе провоцируют движение друг друга из-за столкновений между собой. При этом скорость движения данных молекул гораздо меньше, ведь дрейфовая скорость имеет прямую связь с силой напора. То есть, столкновения молекул друг с другом распространяются очень быстро, а скорость одной молекулы при этом не увеличивается.

Абсолютно аналогичный процесс происходит с электрическим током. Проведем параллели: скорость распространения поля есть скорость распространения давления, а скорость движения молекул, следовательно, есть скорость электронов, создающих ток.

Дрейфовая скорость – это скорость последовательного движения заряженных частиц. Электронами данная скорость приобретается за счет действия внешнего электрического поля.

В случае, если внешнее электрическое поле отсутствует, то движение электронов внутри проводника происходит хаотично. Иными словами, конкретного направления у электрического тока нет, а дрейфовая скорость при этом нулевая.

При наличии внешнего электрического поля у проводника носители заряда приходят в движение, скорость которого зависит от ряда факторов (концентрация свободных электронов, площадь сечения провода, величины тока).

Таким образом, электрический ток имеет скорость распространения по проводнику равную скорости света. При этом скорость  движения тока в проводнике – очень мала.

Вам будут интересны такие познавательные статьи, как:

  • Блуждающие токи: причина возникновения и защита от них
  • Причины возникновения короткого замыкания и методы его устранения
  • Влияние электрического тока на организм человека
  • Энергетическая система страны
  • Влияние света на организм человека

Здесь надо различать скорость движения собственно заряженных частиц, и скорость электрического тока. Сами частицы движутся довольно медленно, при переменном токе они движутся даже в разные стороны, т. е. в итоге, упрощенно, вообще никуда не передвигаются. Но вот сила, заставляющая эти частицы двигаться, распространяется по проводам именно со скоростью света (тоже упрощенно) — 300 тыс. км/с.

Представить себе это можно на простом примере: допустим, вы дуете в трубу, и из нее начинает выходить воздух. Своим дыханием вы увеличиваете давление в трубе, и частицы воздуха начинают двигаться почти одновременно по всей трубе. Но вот сами частицы из того участка трубы, в который вы начали дуть, дойдут до конца трубы далеко не сразу. Так же и с электричеством, только в трубе — разность давлений, а для провода — разность потенциалов. И скорости сильно отличаются, конечно.

Сопротивление тоже можно себе представить на том же примере — пусть труба будет не гладкая, а с пористым материалом внутри, например. Тогда усилий для продувки через нее воздуха нужно будет намного больше.

From Wikipedia, the free encyclopedia

The word electricity refers generally to the movement of electrons (or other charge carriers) through a conductor in the presence of a potential difference or an electric field. The speed of this flow has multiple meanings. In everyday electrical and electronic devices, the signals travel as electromagnetic waves typically at 50%–99% of the speed of light in vacuum, while the electrons themselves move much more slowly; see drift velocity and electron mobility.

Electromagnetic waves[edit]

The speed at which energy or signals travel down a cable is actually the speed of the electromagnetic wave traveling along (guided by) the cable. I.e., a cable is a form of a waveguide. The propagation of the wave is affected by the interaction with the material(s) in and surrounding the cable, caused by the presence of electric charge carriers (interacting with the electric field component) and magnetic dipoles (interacting with the magnetic field component). These interactions are typically described using mean field theory by the permeability and the permittivity of the materials involved.
The energy/signal usually flows overwhelmingly outside the electric conductor of a cable; the purpose of the conductor is thus not to conduct energy, but to guide the energy-carrying wave.[1]: 360 

Velocity of electromagnetic waves in good dielectrics[edit]

The velocity of electromagnetic waves in a low-loss dielectric is given by[1]: 346 

{displaystyle v={frac {1}{sqrt {varepsilon mu }}}={frac {c}{sqrt {varepsilon _{r}mu _{r}}}}.}

where

Velocity of electromagnetic waves in good conductors[edit]

The velocity of transverse electromagnetic (TEM) mode waves in a good conductor is given by[1]: 360  [2]: 142  [3]: 50–52 

{displaystyle v={sqrt {frac {2omega }{sigma mu }}}={sqrt {frac {4pi }{sigma _{c}mu _{0}}}}{sqrt {frac {f}{sigma _{r}mu _{r}}}}approx left(0.41~mathrm {m/s} right){sqrt {frac {f/(1~mathrm {Hz} )}{sigma _{r}mu _{r}}}}.}

where

and permeability is defined as above in § Speed of electromagnetic waves in good dielectrics

This velocity is the speed with which electromagnetic waves penetrate into the conductor and is not the drift velocity of the conduction electrons. In copper at 60 Hz, {displaystyle vapprox } 3.2 m/s. As a consequence of Snell’s Law and the extremely low speed, electromagnetic waves always enter good conductors in a direction that is within a milliradian of normal to the surface, regardless of the angle of incidence.

Electromagnetic waves in circuits[edit]

In the theoretical investigation of electric circuits, the velocity of propagation of the electromagnetic field through space is usually not considered; the field is assumed, as a precondition, to be present throughout space. The magnetic component of the field is considered to be in phase with the current, and the electric component is considered to be in phase with the voltage. The electric field starts at the conductor, and propagates through space at the velocity of light (which depends on the material it is traveling through). Note that the electromagnetic fields do not move through space. It is the electromagnetic energy that moves; the corresponding fields simply grow and decline in a region of space in response to the flow of energy. At any point in space, the electric field corresponds not to the condition of the electric energy flow at that moment, but to that of the flow at a moment earlier. The latency is determined by the time required for the field to propagate from the conductor to the point under consideration. In other words, the greater the distance from the conductor, the more the electric field lags.[4]

Since the velocity of propagation is very high – about 300,000 kilometers per second – the wave of an alternating or oscillating current, even of high frequency, is of considerable length. At 60 cycles per second, the wavelength is 5,000 kilometers, and even at 100,000 hertz, the wavelength is 3 kilometers. This is a very large distance compared to those typically used in field measurement and application.[4]

The important part of the electric field of a conductor extends to the return conductor, which usually is only a few feet distant. At greater distance, the aggregate field can be approximated by the differential field between conductor and return conductor, which tend to cancel. Hence, the intensity of the electric field is usually inappreciable at a distance which is still small compared to the wavelength. Within the range in which an appreciable field exists, this field is practically in phase with the flow of energy in the conductor. That is, the velocity of propagation has no appreciable effect unless the return conductor is very distant, or entirely absent, or the frequency is so high that the distance to the return conductor is an appreciable portion of the wavelength.[4]

Electric drift[edit]

The drift velocity deals with the average velocity of a particle, such as an electron, due to an electric field. In general, an electron will propagate randomly in a conductor at the Fermi velocity.[5] Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity. When a DC voltage is applied, the electron drift velocity will increase in speed proportionally to the strength of the electric field. The drift velocity in a 2 mm diameter copper wire in 1 ampere current is approximately 8 cm per hour. AC voltages cause no net movement; the electrons oscillate back and forth in response to the alternating electric field (over a distance of a few micrometers – see example calculation).

See also[edit]

  • Speed of light
  • Speed of gravity
  • Speed of sound
  • Telegrapher’s equations
  • Reflections of signals on conducting lines

References[edit]

  1. ^ a b c Hayt, William H. (1989), Engineering Electromagnetics (5th ed.), McGraw-Hill, ISBN 0070274061
  2. ^ Balanis, Constantine A. (2012), Engineering Electromagnetics (2nd ed.), Wiley, ISBN 978-0-470-58948-9
  3. ^ Harrington, Roger F. (1961), Time-Harmonic Electromagnetic Fields, McGraw-Hill, ISBN 0-07-026745-6
  4. ^ a b c Theory and calculation of transient electric phenomena and oscillations By Charles Proteus Steinmetz
  5. ^ Academic Press dictionary of science and technology By Christopher G. Morris, Academic Press.

Further reading[edit]

  • Alfvén, H. (1950). Cosmical electrodynamics. Oxford: Clarendon Press
  • Alfvén, H. (1981). Cosmic plasma. Taylor & Francis US.
  • «Velocity of Propagation of Electric Field», Theory and Calculation of Transient Electric Phenomena and Oscillations by Charles Proteus Steinmetz, Chapter VIII, p. 394-, McGraw-Hill, 1920.
  • Fleming, J. A. (1911). Propagation of electric currents in telephone & telegraph conductors. New York: Van Nostrand

External links[edit]

  • Propagation Times

Что такое электрический ток?

Из школьного курса физики известно, что электричество – это поток электронов, упорядоченно перемещающихся в проводнике. Пока источника электричества нет, электроны движутся в проводнике хаотически, в разных направлениях. Если суммировать траектории всех заряженных частиц, получится ноль. Поэтому кусок металла не бьет током.

Если металлический предмет подсоединить к электрической цепи, все электроны в нем выстроятся в цепочку и потекут от одного полюса к другому. Насколько быстро произойдет упорядочение? Со скоростью света в вакууме. Но это не означает, что электроны полетели от одного полюса к другому также стремительно. Это заблуждение. Просто люди настолько привыкли к утверждению, что электричество распространяется так же быстро как свет, что не особо задумываются над деталями.

Электрические токи в природе

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю. Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе rm CuSO_4
положительные ионы rm Cu^{2+}
двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда q, прошедшего через поперечное сечение проводника за время t, к этому самому времени:

I=frac{displaystyle q}{displaystyle t vphantom{1^a}}.
(1)

Измеряется сила тока в амперах (A). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока. Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за 1 с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

j=frac{displaystyle I}{displaystyle S vphantom{1^a}},
(2)

где I — сила тока, S — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

j=frac{displaystyle q}{displaystyle St vphantom{1^a}}.

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

С какой скоростью перемещается электрический ток по проводам?

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

Скорость электрического тока

Почему такой, казалось бы, простой и очевидный факт игнорируется учеными и зачем нужно было придумывать отрицательный заряд электронов и положительный для протонов – это вопрос не ко мне, а к ученым. Это им так проще и удобнее при рассмотрении множества других теоретических вопросов.

Таким образом, чем меньше площадь поперечного сечения проводника, тем меньше его пропускная способность за единицу времени, потому что скорость перемещения энергии ограничена скоростью движения фотонов. Когда мы умножаем площадь поперечного сечения проводника на длину проводника, то получаем условный объем электрического заряда в проводнике.

Когда мы пытаемся “прокачать” через поперечное сечение проводника объем энергии, больший пропускной способности проводника, то “избыточная” часть энергии поглощается проводником. Электроны, поглощая фотоны, переходят на более высокий энергетический уровень. Проводник нагревается и если температура окружающей среды при этом меньше температуры проводника, то проводник начинать излучать это тепло по всей своей длине.

При дальнейшем увеличении объема “прокачиваемой” энергии часть излучаемой “избыточной” энергии переходит в видимый нами спектр – проводник начинает светиться, причем сначала именно в красном спектре. При дальнейшем увеличении объема, часть энергии переходит в ультрафиолетовое излучение и так далее вплоть до γ-излучения, но как правило проводник плавится раньше, электроны переходят на еще более высокий энергетический уровень и материал проводника переходит в новое фазовое состояние – жидкое.

Кстати, сварщики такие загорелые там, где кожа не защищена от света, именно потому, что при сварке – плавлении проводника – достаточно большая часть энергии преобразуется в ультрафиолетовое излучение.

Думаю, теперь можно достаточно логично ответить и на другой вопрос: “Почему электрический заряд движется в направлении, противоположном направлению движения электронов?”

Ответ: Потому что соблюдается закон сохранения энергии.

E = mфc2/2 = mev2/2 (707.3)

Тут, кстати, возникает еще один очень интересный вопрос: “Почему для фотонов Е = mc2, а не Е= mc2/2?”

Возможный ответ: Потому что скорость света определена неправильно. Например если реальная скорость света равна 223000 км/с, то квадрат этой скорости в 2.008 раза меньше, чем квадрат скорости 316000 км/с. Возможно эта двойка именно отсюда и появилась. Впрочем это не имеет прямого отношения к теме данной статьи.

Со скоростью электронов я в последнее время немного разобрался. Электроны действительно законопослушные ребята и двигаются строго в пределах ныне существующих теорий со скоростью, которая может изменяться в очень узких пределах от 0 м/с до 300 000 км/с (в зависимости от выбранной теории). А так чтоб скорость хоть чуть-чуть меньше или больше была, то это ни в какую.

Правда, это возможная скорость при вращении электронов по орбите, а не линейная скорость перемещения в проводнике, но на такие мелочи и вовсе не стоит внимание обращать.

Скорость распространения электрического поля и тока в металлах

После создания электрического поля свободные электроны приходят в движение. Скорость их движения совсем небольшая. В среднем она составляет несколько миллиметров в секунду.

Но как тогда после щелчка выключателем лампа в комнате загорается мгновенно? Дело обстоит в следующем.

Именно само электрическое поле распространяется в проводнике с огромной скоростью. Она близка к скорости света в вакууме ($c = 300 space 000 frac{км}{с}$). Распространяется поле по всей длине проводника.

Соответственно, в движение приходят одновременно все электроны в проводнике. И те, что ближе к выключателю, и те, что ближе к электроприбору.

Например, пошлем электрический сигнал из Владивостока в Москву. Расстояние между этими городами составляет около 8000 км. В Москве сигнал будет зафиксирован уже через 0,03 с. Это не означает, что электроны от Владивостока проделали весь этот путь за указанное время и прибыли в Москву. Нет, это электрическое поле распространилось по проводам с невероятной скоростью и привело в движение самые ближние к приемнику в Москве электроны в движение, которое и было зафиксировано.

Поэтому, когда говорят о скорости распространения тока в проводнике, то имеется в виду скорость распространения электрического поля по всей длине проводника.

Скорость движения электронов в металлах

С какой скоростью все же двигаются сами электроны в металлах? Давайте ответим на этот вопрос и сравним полученную скорость со скоростью света, т.е. со скоростью распространения электрического поля по проводнику.

Скорость движения электронов при действии на них электрических сил называется дрейфовой скоростью.

Получается, что скорость распространения электрического поля по проводнику (скорость света) больше скорости движения электронов под действием этого же электрического поля.

Скорость электромагнитной волны – это не скорость тока

Теперь будем более внимательны к цифрам и терминам. На примере молнии убедились, что маленькое неверное допущение может привести к большим промахам. Точно известно, что скорость распространения электромагнитной волны равна 300 000 километров в секунду. Однако это не означает, что электроны в проводнике перемещаются с такой же скоростью.

Представим, что две команды соревнуются, кто быстрее доставит мяч с одного края поля на другой. Обязательное условие – каждый член команды сделает несколько шагов с мячом в руках. В одной команде пять человек, а в другой – один. Пятеро, выстроившись в цепочку, сыграют в пас, сделав каждый несколько шагов в направлении от старта к финишу. Одиночке придется бежать всю дистанцию. Очевидно, что победят пятеро, потому что мяч летит быстрее, чем человек бегает.

Так же и с электричеством. Электроны «бегают» медленно (собственная скорость элементарных частиц в направленном потоке исчисляется миллиметрами в секунду), но передают друг другу «мячик» заряда очень быстро. При отсутствии разности потенциалов на разноименных концах проводника все электроны движутся хаотично. Это тепловое движение, присутствующее в каждом веществе.

Если бы электроны двигались в проводах со скоростью света

Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи.

адронный коллайдер

Самая очевидная проблема: на такой скорости электроны не смогут следовать за поворотами проводов. Разогнавшись на прямом участке, заряженные частицы будут вылетать по касательной как не вписавшиеся в вираж автомобили. Чтобы удержать летящие на космических скоростях электроны внутри энергетических магистралей, придется снабжать провода электромагнитными ловушками. Каждый участок проводки станет похожим на фрагмент адронного коллайдера.

К счастью элементарные частицы предвигаются гораздо медленнее и для передачи энергии на дальние расстояния вполне пригодны неизолированные алюминиевые провода для ЛЭП

Надеемся, что ознакомившись с этим обзором, вы нашли ответ на вопрос почему ток не бежит по кабелям со скоростью света и вспомнили кое-что из школьного курса физики, а это, согласитесь, крайне полезно в любом возрасте.

Что быстрее: молния или гром?

Этот детский вопрос имеет простой ответ – молния. Из того же школьного курса физики известно, что скорость звука в воздухе равна примерно 331 м/сек. Почти в миллион раз медленнее электромагнитной волны. Зная это, легко понять, как высчитать расстояние до молнии.

Свет вспышки доходит до нас в момент разряда, а звук летит дольше. Достаточно засечь промежуток времени между вспышкой и громом. Теперь просто считаем, насколько далеко от нас ударила молния, по простой формуле:

L =T × 331

Где T – это время от вспышки до грома, а L – это расстояние от нас до молнии в метрах.

Например, гром прогремел через 7.2 секунды после вспышки. 331 × 7.2 = 2383. Получается, что молния ударила на высоте 2 километра 383 метра.

Популярные заблуждения о скорости света

Еще одним примером такого поверхностного восприятия можно назвать понятие о природе молнии. Многие ли задумываются, какие физические процессы происходят во время грозы? Какова, например, скорость молнии? Можно ли без приборов узнать, на какой высоте бушуют грозовые разряды? Разберемся со всем этим по порядку.

Кто-то может сказать, что молния бьет со скоростью света, и будет не прав. Настолько быстро распространяется вспышка, вызванная гигантским электрическим разрядом в атмосфере, но сама молния гораздо медленнее. Грозовой разряд – это не удар луча света наподобие лазера, хотя визуально похоже. Это сложная структура в насыщенной электричеством атмосфере.

Ступенчатый лидер или главный канал молнии формируется в несколько этапов. Каждая ступень в десятки метров образуется со скоростью около 100 км/сек вдоль разрядных нитей из ионизированных частиц. Направление меняется на каждом этапе, поэтому молния имеет вид извилистой линии. 100 километров в секунду – это быстро, но до скорости электромагнитной волны очень далеко. В три тысячи раз.

Заключение и выводы

Так, давайте вновь вернемся к току. Получается, если на проводник не воздействует электромагнитное поле, то движение электронов внутри провода происходит абсолютно в хаотичном порядке.

Как только к проводнику оказывается воздействие электрического поля, то в зависимости от таких факторов как температура проводника, материала, разности потенциалов, скорость электрического тока может варьироваться от 0,6 до 6 миллиметров в одну единицу времени. Как видите, эта величина очень далека от скорости света. И вычисляется она по следующей формуле:

Где n – концентрация свободных носителей, S – площадь сечения проводника, e – заряд частицы, I – сила тока.

Это все, что я хотел вам рассказать о скорости перемещения электрического тока по проводам. Если статья оказалась вам полезна, то оцените ее лайком. Спасибо за ваше внимание!

Предыдущая

ТеорияЧто такое МТЗ ?

Следующая

ТеорияТиристорный преобразователь частоты

Постоянный электрический ток

  • Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

  • Направление электрического тока

  • Действия электрического тока

  • Сила и плотность тока

  • Скорость направленного движения зарядов

  • Стационарное электрическое поле

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли rm NaCl. Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы rm Na^+ и отрицательные ионы rm Cl^-. Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы rm Na^+ начнут направленное движение к отрицательному электроду, а ионы rm Cl^- — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

к оглавлению ▴

Направление электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

к оглавлению ▴

Действия электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе rm CuSO_4 положительные ионы rm Cu^{2+} двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

к оглавлению ▴

Сила и плотность тока

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда q, прошедшего через поперечное сечение проводника за время t, к этому самому времени:

I=frac{displaystyle q}{displaystyle t vphantom{1^a}}. (1)

Измеряется сила тока в амперах (A). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за 1 с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

j=frac{displaystyle I}{displaystyle S vphantom{1^a}}, (2)

где I — сила тока, S — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

j=frac{displaystyle q}{displaystyle St vphantom{1^a}}.

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

к оглавлению ▴

Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к 300000 км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к 300000 км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока I через скорость v направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения S (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим e (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна n.

Рис. 2. К выводу формулы I = envS

Какой заряд q пройдёт через поперечное сечение AB нашего проводника за время t?

С одной стороны, разумеется,

q = It. (3)

С другой стороны, сечение AB пересекут все те свободные заряды, которые спустя время t окажутся внутри цилиндра ABCD с высотой vt. Их число равно:

N = nV_{ABCD} = nSvt.

Следовательно, их общий заряд будет равен:

q = eN = enSvt. (4)

Приравнивая правые части формул (3) и (4) и сокращая на t, получим:

I = envS. (5)

Соответственно, плотность тока оказывается равна:

j = env.

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока 1 A.

Заряд электрона известен: e = 1,6 cdot 10^{-19} Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

n=frac{displaystyle N}{displaystyle V vphantom{1^a}}=frac{displaystyle nu N_A}{displaystyle V vphantom{1^a}}=frac{displaystyle m N_A}{displaystyle mu V vphantom{1^a}}=frac{displaystyle rho N_A}{displaystyle mu vphantom{1^a}} = frac{displaystyle 8900 cdot 6,02 cdot 10^{23}}{displaystyle 0,0635 vphantom{1^a}}approx 8,5 cdot 10^{28} м vphantom{1}^{-3}

Положим S = 1 мм vphantom{1}^{2}. Из формулы (5) получим:

v=frac{displaystyle 1}{displaystyle enS vphantom{1^a}}=frac{displaystyle 1}{displaystyle 1,6 cdot 10^{-19} cdot 8,5 cdot 10^{28} cdot 10^{-6} vphantom{1^a}}approx 7,4 cdot 10^{-5} м/с.

Это порядка одной десятой миллиметра в секунду.

к оглавлению ▴

Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула U = El, где U — напряжение на концах проводника, E — напряжённость стационарного поля в проводнике, l — длина проводника.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Постоянный электрический ток» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти видеокарта винда 10
  • Как найти своего отказного ребенка
  • Как найти диагонали параллелограмма по двум сторонам
  • Как исправить воспроизведение видео в браузере
  • Ошибка 064 меркурий 115ф как исправить ошибку

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии