Как найти синус альфа в ромбе


Свойства ромба:

1. Ромб — частный случай параллелограмма

2. Противоположные стороны — параллельны

3. Все четыре стороны — равны

4. Диагонали пересекаются под прямым углом (90°)

5. Диагонали являются биссектрисами

углы ромба

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

β — тупой угол

Формулы косинуса углов через диагональ и сторону:

Косинус угла в ромбе

Косинус угла в ромбе

Формулы синуса углов через диагонали :

Синус угла в ромбе

Формулы синуса углов через площадь S и сторону :

Синус угла в ромбе

Формулы тангенса половинных углов через диагонали

Тангенс угла в ромбе

Тангенс угла в ромбе

Формулы соотношения острого и тупого углов:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos или arcsin или arctg

Сумма углов четырехугольника



Формулы площади ромба

Формула периметра ромба

Все формулы по геометрии

Подробности

Опубликовано: 25 ноября 2011

Обновлено: 13 августа 2021

Ромб. Формулы, признаки и свойства ромба

Определение.

Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом.

Ромбы отличаются между собой размером стороны и размером углов.

Признаки ромба

Параллелограмм ABCD будет ромбом, если выполняется хотя бы одно из следующих условий:

1. Две его смежные стороны равны (отсюда следует, что все стороны равны):

АВ = ВС = СD = AD

2. Его диагонали пересекаются под прямым углом:

ACBD

3. Одна из диагоналей (биссектриса) делит содержащие её углы пополам:

∠BAC = ∠CAD или ∠BDA = ∠BDC

4. Если все высоты равны:

BN = DL = BM = DK

5. Если диагонали делят параллелограмм на четыре равных прямоугольных треугольника:

Δ ABO = Δ BCO = Δ CDO = Δ ADO

6. Если в параллелограмм можно вписать круг.

Основные свойства ромба

2. Диагонали перпендикулярны:

ACBD

3. Диагонали являются биссектрисами его углов:

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:

AC2 + BD2 = 4AB2

5. Точка пересечения диагоналей называется центром симметрии ромба.

6. В любой ромб можно вписать окружность.

7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

2. Формула стороны ромба через площадь и синус угла:

3. Формула стороны ромба через площадь и радиус вписанной окружности:

4. Формула стороны ромба через две диагонали:

5. Формула стороны ромба через диагональ и косинус острого угла (cos α) или косинус тупого угла (cos β):

6. Формула стороны ромба через большую диагональ и половинный угол:

7. Формула стороны ромба через малую диагональ и половинный угол:

8. Формула стороны ромба через периметр:

Диагонали ромба

Определение.

Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.

Ромб имеет две диагонали — длинную d1, и короткую — d2

Формулы определения длины диагонали ромба:

1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d1 = a2 + 2 · cosα

d1 = a2 — 2 · cosβ

2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d2 = a2 + 2 · cosβ

d2 = a2 — 2 · cosα

3. Формулы большой диагонали ромба через сторону и половинный угол:

d1 = 2a · cos(α/2)

d1 = 2a · sin(β/2)

4. Формулы малой диагонали ромба через сторону и половинный угол:

d2 = 2a · sin(α/2)

d2 = 2a · cos(β/2)

5. Формулы диагоналей ромба через сторону и другую диагональ:

d1 = √4a2d22

d2 = √4a2d12

6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:

d1 = d2 · tg(β/2)

d2 = d1 · tg(α/2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Определение.

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Формула периметра ромба через сторону ромба:

P = 4a

Площадь ромба

Определение.

Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.

Формулы определения площади ромба:

1. Формула площади ромба через сторону и высоту:

S = a · ha

2. Формула площади ромба через сторону и синус любого угла:

S = a2 · sinα

3. Формула площади ромба через сторону и радиус:

S = 2a · r

4. Формула площади ромба через две диагонали:

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):

Окружность вписанная в ромб

Определение.

Кругом вписанным в ромб называется круг, который примыкает ко всем сторонам ромба и имеет центр на пересечении диагоналей ромба.

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

В ромбе все углы равны между собой. Обозначим угол ромба буквой θ. Тогда, чтобы найти синус этого угла, нужно знать длину одной из его сторон и высоту, опущенную на эту сторону.

Допустим, сторона ромба равна a, а высота, опущенная на эту сторону, равна h. Тогда синус угла θ можно найти по формуле sin(θ) = h/a.

Чтобы найти высоту h, можно воспользоваться теоремой Пифагора, зная длины двух других сторон ромба. Для этого нужно найти длину диагоналей, которые равны между собой, и затем разделить ее пополам. Тогда h = √(a^2 — (d/2)^2), где d — длина диагонали ромба.

Таким образом, если известна длина одной из сторон ромба и длины его диагоналей, можно найти синус угла θ.

Учебник

Геометрия, 11 класс

Ромб: Свойства, Формулы. Задачи

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторонами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
  • Меньшая диагональ   $AC^2=a^2+b^2-2cdot acdot bcdotcos D$     ,      большая    $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
  • Сумма   {Цвет:Red квадратов диагоналей ромба равна    $AC^2+BD^2=4cdot a^2$     четырежды квадрат стороны.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Формулы Площади ромба:

  • Площадь   ромба   равна    произведению   основания на высоту      $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
  • Площадь   ромба   равна   через синус угла:        $S=a^2cdotsin A$     ,          квадрат стороны на синус .
  • Площадь   ромба   через диагонали:    $S=frac{ACcdot BD}{2}$ .      половина произведения диагоналей

Вписанная окружность в ромб:

  • В четырехугольник   можно   вписать   окружность только если … суммы противоположных сторон   равны.
  • Вписать окружность можно в ромб и квадрат, ;
  • Если   вписывается, то площадь     $S=pcdot r$,     $p=2cdot a$       $S=2cdot a cdot r$.
  • Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.

Задача 1:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

Задача 2:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

  • Решение:          Проведем высоту   из той же вершины, из которой   проведена   меньшая диагональ.       
  • Получили прямоугольный треугольник $BED$ .    Он   подобен тем треугольникам, на которые ромб делится диагоналями:     
  • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Все прямоугольные и есть равные углы.
  • например   $alpha$.     Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
  • Для угла   $alpha$   в   $bigtriangleup EBD$   мы знаем гипотенузу и противолежащий катет   $Rightarrow$     $sinalpha=frac{BE}{BD}=frac{12}{13}$
  • Перейдем к   $bigtriangleup OCD$ : в нем прилежащий катет    $OD=frac{1}{2}BD=6,5$.    Чтобы найти второй катет, нам нужен тангенс,
  • а чтобы найти   гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
  • $sin^2alpha+cos^2alpha=1$ .   Тогда косинус:   $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
  • Угол   $alpha$   острый,   так как он входит в прямоугольный треугольник,   т. е. принадлежит первой четверти.
  • Следовательно, косинус положительный и мы останавливаемся на одном значении:   $cosalpha = frac{5}{13}$
  • Тогда:   $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$             $Rightarrow$        $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
  • Площадь ромба равна произведению основания на высоту:    Ответ:    $S=16,9cdot12=202,8$

Задача 3:          В Ромбе   $ABCD$    точка $K$ делит сторону   $CD$ в соотношении   $2:7$, а    $M$ делит   $1:3$ сторону   $BC$.       $MN$   параллельна   $AB$,   $O$ — пересечение $MN$ и   $BK$.    Найти площадь трапеции   $ABON$, если площадь   $ABCD=420$.

Решение:    пробa    Анализ рисунка:    

  • $AB$, $MN$,   $CD$ — параллельные.   Какие углы равные?
  • Треугольники   $BMO$ и    $BKC$ подобные.   Коэффициент подобия   $1:3$.
  • Отношение площадей    $BMO$   и   $BKC$ равен    $1:9$ — квадрату коэффициента подобия.
  • (по формулам) Площади   $BKC$   и    $BCD$ относятся как    $CK$ и   $CD$, т.е.   $5:7$.
  • Площадь   $BCD$   равен половине площади   $ABCD$,   т.е. $S_{BCD}=210$.
  • $S_{ABMN}:S_{ABCD}=1:3$        $Rightarrow$       $S_{ABMN}=140$ .   
  • Из складываемости площадей:     площадь $ABON$ =   разности   площадей   $ABMN$   и    $BOM$.

Упражнения:

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
  • Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторанами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
  • Меньшая диагональ   $AC^2=a^2+b^2-2cdot acdot bcdotcos D$     ,      большая    $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
  • Сумма   {Цвет:Red квадратов диагоналей ромба равна    $AC^2+BD^2=4cdot a^2$     четырежды квадрат стороны.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Формулы Площади ромба:

  • Площадь   ромба   равна    произведению   основания на высоту      $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
  • Площадь   ромба   равна   через синус угла:        $S=a^2cdotsin A$     ,          квадрат стороны на синус .
  • Площадь   ромба   через диагонали:    $S=frac{ACcdot BD}{2}$ .      половина произведения диагоналей

Вписанная окружность в ромб:

  • В четырехугольник   можно   вписать   окружность только если … суммы противоположных сторон   равны.
  • Вписать окружность можно в ромб и квадрат, ;
  • Если   вписывается, то площадь     $S=pcdot r$,     $p=2cdot a$       $S=2cdot a cdot r$.
  • Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.

Задача 1:        Найти периметр ромба   $ABCD$, в котором    $angle C=60^o$ , а меньшая диагональ равна    $10,5$ см.

  • Решение:          Рассмотрим   $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков   данный   треугольник?             
  • По условию,   угол $bigtriangleup BCD$ у вершине   $angle B=60^o$   , тогда как два других угла?
  • Каков все-таки этот   треугольник?   Чему равны стороны ромба. А сумма сторон? Ответ:     $p=42$ см.

Задача 2:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

Задача 3:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

  • Решение:          Проведем высоту   из той же вершины, из которой   проведена   меньшая диагональ.       
  • Получили прямоугольный треугольник $BED$ .    Он   подобен тем треугольникам, на которые ромб делится диагоналями:     
  • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Все прямоугольные и есть равные углы.
  • например   $alpha$.     Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
  • Для угла   $alpha$   в   $bigtriangleup EBD$   мы знаем гипотенузу и противолежащий катет   $Rightarrow$     $sinalpha=frac{BE}{BD}=frac{12}{13}$
  • Перейдем к   $bigtriangleup OCD$ : в нем прилежащий катет    $OD=frac{1}{2}BD=6,5$.    Чтобы найти второй катет, нам нужен тангенс,
  • а чтобы найти   гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
  • $sin^2alpha+cos^2alpha=1$ .   Тогда косинус:   $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
  • Угол   $alpha$   острый,   так как он входит в прямоугольный треугольник,   т. е. принадлежит первой четверти.
  • Следовательно, косинус положительный и мы останавливаемся на одном значении:   $cosalpha = frac{5}{13}$
  • Тогда:   $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$             $Rightarrow$        $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
  • Площадь ромба равна произведению основания на высоту:    Ответ:    $S=16,9cdot12=202,8$

Задача 4:          В Ромбе   $ABCD$    точка $K$ делит сторону   $CD$ в соотношении   $2:7$, а    $M$ делит   $1:3$ сторону   $BC$.       $MN$   параллельна   $AB$,   $O$ — пересечение $MN$ и   $BK$.    Найти площадь трапеции   $ABON$, если площадь   $ABCD=420$.

Решение:    пробa    Анализ рисунка:    

  • $AB$, $MN$,   $CD$ — параллельные.   Какие углы равные?
  • Треугольники   $BMO$ и    $BKC$ подобные.   Коэффициент подобия   $1:3$.
  • Отношение площадей    $BMO$   и   $BKC$ равен    $1:9$ — квадрату коэффициента подобия.
  • (по формулам) Площади   $BKC$   и    $BCD$ относятся как    $CK$ и   $CD$, т.е.   $5:7$.
  • Площадь   $BCD$   равен половине площади   $ABCD$,   т.е. $S_{BCD}=210$.
  • $S_{ABMN}:S_{ABCD}=1:3$        $Rightarrow$       $S_{ABMN}=140$ .   
  • Из складываемости площадей:     площадь $ABON$ =   разности   площадей   $ABMN$   и    $BOM$.

Упражнения:

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто неподвижное — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
  • Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторонами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Квадратодновременно прямоугольник, ромб, параллелограмм. Диагонали квадрата    равны между собой и делятся пополам.

Задача 1:        Найти периметр ромба   $ABCD$, в котором    $angle C=60^o$ , а меньшая диагональ равна    $10,5$ см.

  • Решение:          Рассмотрим   $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков   данный   треугольник?             
  • По условию,   угол $bigtriangleup BCD$ у вершины   $angle B=60^o$   , тогда как два других угла?
  • Каков все-таки этот   треугольник?   Чему равны стороны ромба. А сумма сторон? Ответ:     $p=42$ см.

Задача 2:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

  • Полезные напоминания: «В равностороннем треугольнике все углы равны    60    градусов.
  • Если в равнобренном треугольнике один из углов 60, то это равносторонный треугольник — стороны равны, углы тоже.
  • В прямоугольном треугольнике катет напротив угла 30 градусов равен половине гипотенузы.

Упражнения:

Задачи из сайта https://resh.edu.ru :

Задача 11: В ромбе АВСD ∠А = 140°, диагонали пересекаются в точке O. Найдите угол CBO.

Задача 12:    В ромбе ABCD ∠С = 50°. Точка O – точка пересечения диагоналей ромба. Найдите угол OBC.

Задача 13: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.

Задача 14: ???? В любом ромбе равны…      Противолежащие углы равны, сумма соседних углов равна 180 градусов:(?) Ромб, у которого все углы равны, это… (?)    Диагонали пересекаются и точкой пересечения делятся пополам. (?)   Диагонали взаимно перпендикулярны. (?)

Задача 15: Отрезки AB и CD пересекаются в их общей середине. В образовавшемся четырёхугольнике ∠CAD = ∠ADB. Найдите ∠BCA.

Задача 16: На диагонали квадрата как на стороне построен новый квадрат. Чему равна его диагональ, если сторона исходного квадрата равна 6 см?

Задача 17: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.

Теорема синусов

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Формула теоремы синусов:

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Из этой формулы мы получаем два соотношения:

На b сокращаем, синусы переносим в знаменатели:

  • bc sinα = ca sinβ

  • Из этих двух соотношений получаем:

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Вспомним свойство вписанного в окружность четырёхугольника:

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Четырехугольники. Основные теоремы, формулы и свойства. Виртуальный справочник репетитра по математике

    З десь ученики и репетиторы по математике и могут найти основные свойства и формулы площадей четырехугольников, изучаемых в школе по основной программе. Регулярно пользуюсь этими теоретическими сведениями на тематических и обзорных занятиях по геометрии (планиметрии), а также при подготовке к ЕГЭ по математкие. Все математические понятия и факты иллюстрированы с цветовыми выделениями главных особенностей изучаемого.

    1) Площади четырехугольников

    Площадь параллелограмма

    произведение основания на высоту

    пороизведение сторон на синус угла между ними

    полупроизведение диагоналей на синус угла между ними

    Площадь трапеции

    произведение полусуммы оснований на высоту

    произведение средней линии на высоту

    полупроизведение диагоналей на синус угла между ними

    Площадь произвольного четырехугольника


    Площадь произвольного четырехугольника равна полупроизведению его диагоналей на синус угла между ними

    2) Свойства параллелограмма

    В параллелограмме:
    противолежащие стороны и углы равны

    диагонали пересекаются и в точке пересечения делятся пополам

    3) сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон, то есть

    3) Cредняя линия в трапеции

    Теорема о средней линии: Средняя линия трапеции параллельна основаниям и равна их полусумме.
    То есть и

    4) Средняя линия в равнобедренной трапеции

    Средняя линия в равнобедренной трапеции равна отрезку нижнего основания, соединяющему вершину основания с снованием проведенной к ней высоты.

    То есть

    5) Теорема с сдвиге диагонали в трапеции

    Теорема: Если в трапеции через вершину В, как показано на рисунке слева , провести отрезок параллельный одной из диагоналей, то окажутся верными следующие факты:

    трапеция — равнобедренная равнобедренный

    6) Четыре замечательные точки в трапеции

    Теорема: В любой трапеции точка пересечения диагоналей, точка пеерсечения продолжений боковых сторон и середины оснований лежат на одной прямой.

    То есть точки M, N, K и P лежат на одной прямой

    Комментарий репетитора по математкие: Знаний этих свойств по четырехугольникам вполне достаточно для решения задачи С4 на ЕГЭ, то есть ничего сверх этих фактов по четырехугольникам абитуриент знать не обязан. Однако сильным ученикам для решения сложных задач части С или олимпиадных геометрических задач, а также для качественной подготовки к экзамену по математике в МГУ необходимо расширить список. Я бы не советовал репетиторам ограничиваться только задачами на применение этих свойств, так как составителями ЕГЭ по математике закладывается проверка сразу нескольких навыков работы с теорией. В течении всего времени подготовки к ЕГЭ репетитору по математкие необходимо отбирать тренировочные задачи на одновременное использование этих свойств с другими планиметрическими фактами внутри одной задачи, ибо на экзамене может встретиться многоходовая комбинация.

    Колпаков Александр Николаевич. Репетитор по математике.

    Александр, конечно, есть множество карманных справочников, НО! Было бы здорово сделать для репетиторов по математике скачиваемые материалы в каком-нибудь удобном формате, а также для проработки отдельно задачи к таким шпаргалкам опять же от простого к сложному.

    Я выкладывал на каких-то страницах с карточками-памятками готовые теоретические материалы — файлы в формате word, по крайней мере для планиметрии точно. Просмотрите соответствующие разделы сайта. На них ведут ссылки с главной страницы. Задумываю выделить репетиторам по математике для скачивания материалов отдельный раздел сайта. Все упирается в мою занятость реальными учениками. Иначе бы уже давно реализовал все замыслы.

    В этой хорошей подборке, на мой взгляд, не достает сведений по углам, например, два внутренних угла параллелограмма, связанных одной стороной в сумме дают 180 градусов.

    Принципиально ли в формуле площади через диагонали брать именно меньший угол между ними? Или можно любой?

    Александр, если не затруднит, очень хотелось бы получить файлик world на почту или тыкнуть ссылкой на нее. За ранее очень благодарен за титанический труд.

    Площади четырехугольников

    В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:

    которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.

    Формулы для площадей четырехугольников

    a и b – смежные стороны

    d – диагональ,
    φ – любой из четырёх углов между диагоналями

    Получается из верхней формулы подстановкой d=2R

    R – радиус описанной окружности,
    φ – любой из четырёх углов между диагоналями

    a – сторона,
    ha – высота, опущенная на эту сторону

    a и b – смежные стороны,
    φ – угол между ними

    φ – любой из четырёх углов между ними

    a – сторона квадрата

    Получается из верхней формулы подстановкой d = 2R

    a – сторона,
    ha – высота, опущенная на эту сторону

    a – сторона,
    φ – любой из четырёх углов ромба

    r – радиус вписанной окружности,
    φ – любой из четырёх углов ромба

    a и b – основания,
    h – высота

    φ – любой из четырёх углов между ними

    a и b – основания,
    c и d – боковые стороны

    a и b – неравные стороны,
    φ – угол между ними

    a и b – неравные стороны,
    φ1 – угол между сторонами, равными a ,
    φ2 – угол между сторонами, равными b .

    a и b – неравные стороны,
    r – радиус вписанной окружности

    φ – любой из четырёх углов между ними

    ,

    a, b, c, d – длины сторон четырёхугольника,
    p – полупериметр,

    Формулу называют «Формула Брахмагупты»

    Четырехугольник Рисунок Формула площади Обозначения
    Прямоугольник S = ab
    Параллелограмм
    Квадрат S = a 2
    S = 4r 2
    Ромб
    Трапеция
    S = m h
    Дельтоид S = ab sin φ
    Произвольный выпуклый четырёхугольник
    Вписанный четырёхугольник

    где
    a и b – смежные стороны

    где
    d – диагональ,
    φ – любой из четырёх углов между диагоналями

    где
    R – радиус описанной окружности,
    φ – любой из четырёх углов между диагоналями

    Формула получается из верхней формулы подстановкой d = 2R

    где
    a – сторона,
    ha – высота, опущенная на эту сторону

    где
    a и b – смежные стороны,
    φ – угол между ними

    φ – любой из четырёх углов между ними

    Получается из верхней формулы подстановкой d = 2R

    где
    a – сторона,
    ha – высота, опущенная на эту сторону

    где
    a – сторона,
    φ – любой из четырёх углов ромба

    где
    r – радиус вписанной окружности,
    φ – любой из четырёх углов ромба

    где
    a и b – основания,
    h – высота

    φ – любой из четырёх углов между ними

    где
    a и b – основания,
    c и d – боковые стороны

    где
    a и b – неравные стороны,
    φ – угол между ними

    где
    a и b – неравные стороны,
    r – радиус вписанной окружности

    φ – любой из четырёх углов между ними

    ,

    где
    a, b, c, d – длины сторон четырёхугольника,
    p – полупериметр

    Формулу называют «Формула Брахмагупты»

    Прямоугольник
    Параллелограмм
    Квадрат
    S = a 2

    где
    a – сторона квадрата

    S = 4r 2
    Ромб
    Трапеция
    Дельтоид

    где
    a и b – неравные стороны,
    φ1 – угол между сторонами, равными a ,
    φ2 – угол между сторонами, равными b .

    Произвольный выпуклый четырёхугольник
    Вписанный четырёхугольник
    Прямоугольник

    где
    a и b – смежные стороны

    где
    d – диагональ,
    φ – любой из четырёх углов между диагоналями

    где
    R – радиус описанной окружности,
    φ – любой из четырёх углов между диагоналями

    Формула получается из верхней формулы подстановкой d = 2R

    Параллелограмм

    где
    a – сторона,
    ha – высота, опущенная на эту сторону

    где
    a и b – смежные стороны,
    φ – угол между ними

    φ – любой из четырёх углов между ними

    Квадрат

    где
    a – сторона квадрата

    Получается из верхней формулы подстановкой d = 2R

    Ромб

    где
    a – сторона,
    ha – высота, опущенная на эту сторону

    где
    a – сторона,
    φ – любой из четырёх углов ромба

    где
    r – радиус вписанной окружности,
    φ – любой из четырёх углов ромба

    Трапеция

    где
    a и b – основания,
    h – высота

    φ – любой из четырёх углов между ними

    где
    a и b – основания,
    c и d – боковые стороны ,

    Дельтоид

    где
    a и b – неравные стороны,
    φ – угол между ними

    где
    a и b – неравные стороны,
    φ1 – угол между сторонами, равными a ,
    φ2 – угол между сторонами, равными b .

    где
    a и b – неравные стороны,
    r – радиус вписанной окружности

    Произвольный выпуклый четырёхугольник

    φ – любой из четырёх углов между ними

    Вписанный четырёхугольник

    где
    a, b, c, d – длины сторон четырёхугольника,
    p – полупериметр

    Формулу называют «Формула Брахмагупты»

    Вывод формул для площадей четырехугольников

    Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле

    Доказательство . В соответствии с рисунком 1 справедливо равенство:

    что и требовалось доказать.

    Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле

    где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).

    Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

    что и требовалось доказать.

    Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле

    где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

    то, в силу утверждения 2, справедлива формула

    что и требовалось доказать.

    Утверждение 4 . Площадь ромба ромба можно найти по формуле

    ,

    где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).

    что и требовалось доказать.

    Утверждение 5 . Площадь трапеции можно найти по формуле

    ,

    где a и b – основания трапеции, а h – высота высота высота (рис.5).

    Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому

    что и требовалось доказать.

    Утверждение 6 . Площадь трапеции трапеции можно найти по формуле

    где a и b – основания, а c и d – боковые стороны трапеции ,

    (рис.6).

    Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

    ,

    что и требовалось доказать.

    Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:

    где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

    Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.

    Если r – радиус вписанной в дельтоид окружности, то

    источники:

    http://ankolpakov.ru/2010/10/11/chetyrexugolniki-osnovnye-teoremy-formuly-i-svojstva-virtualnyj-spravochnik-repetitra-po-matematike/

    http://www.resolventa.ru/spr/planimetry/sqf.htm

    Понравилась статья? Поделить с друзьями:

    Не пропустите также:

  • Как найти силу притяжения между двумя телами
  • Как найти радиан формула
  • Как найти давление на дне стакана
  • Как найти базу данных сайта на сервере
  • Как найти шунтирующее сопротивление

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии