Как найти синус 6пи

В статье мы рассмотрим, как найти значения:

(cosfrac{π}{6}),       (sin⁡(-frac{7π}{3})),     (cosfrac{3π}{4}),     (sin⁡(-frac{27π}{2}))

и других тригонометрических выражений без тригонометрической таблицы.

Для начала внимательно прочтите статью о числовой окружности. Вы должны научиться находить точки на окружности в числах с Пи.

Уже умеете? Тогда два ключевых утверждения:

Например, пусть нам нужно найти синус и косинус числа (frac{π}{6}). Обозначим на числовой окружности точку со значением (frac{π}{6}).

Если построить все точно и крупно, то можно убедиться, что абсцисса этой точки будет равна (0,866…) , что соответствует числу (frac{sqrt{3}}{2}) , а ордината равна (0,5), то есть (frac{1}{2}).

Как найти синус пи на 6 и косинус пи на 6

Значит, что (cos⁡(frac{π}{6}) = frac{sqrt{3}}{2}), а (sin(frac{π}{6}) ⁡=frac{1}{2}).

Аналогично и для любой другой точки: значение абсциссы совпадает со значением косинуса, а ординаты – синуса. Поэтому:

В тригонометрии ось абсцисс часто называют «ось косинусов», а ординат – «ось синусов».

И обычно на них не наносят значения в десятичных ((0,1); (0,2); (0,3) и т.д.), а сразу отмечают стандартные значения для синуса и косинуса: (frac{1}{2} =0,5); (frac{sqrt{2}}{2} ≈0,707); (frac{sqrt{3}}{2}≈0,866), причем, как со знаком плюс, так и минус. Почему стандартные значения синуса и косинуса именно (frac{1}{2}),(frac{sqrt{2}}{2}) и (frac{sqrt{3}}{2}) вы можете узнать из этого видео.

Как находить значения синуса и косинуса без таблицы, а только с помощью круга?

Алгоритм прост:

  1. Начертите круг и оси косинусов и синусов.
  2. Отметьте на круге число, синус и косинус которого надо найти. Если с этим возникают проблемы, прочитайте здесь о том, как расставлять числа на числовой окружности. 
  3. Найдите координаты точки, используя картинку ниже.

тригонометрический круг

Пример. Найдите синус и косинус для числа (-frac{7π}{6}).
Решение:(-frac{7π}{6}=-frac{6π}{6}-frac{π}{6}=-π-frac{π}{6}) , то есть, чтобы отметить на окружности точку (-frac{7π}{6}) сначала находим число (-π) и от него в отрицательную сторону откладываем дугу длиной (frac{π}{6}).

Находим - 7пи на 6

Отмечаем число, синус и косинус которого надо найти:

Находим синус - 7 пи на 6

Получается, что (sin⁡(-frac{7π}{6})=frac{1}{2}), (cos⁡(-frac{7π}{6})=-frac{sqrt{3}}{2}).

Пример. Вычислите (sinfrac{5π}{2}) и (cosfrac{5π}{2}).
Решение:  (frac{5π}{2}=frac{4π+π}{2}=frac{4π}{2}+frac{π}{2}=2π+frac{π}{2}).

5 пи на 2 на тригонометрической окружности

Точка (frac{5π}{2}) совпадает с (1) на оси синусов, значит (sin⁡frac{5π}{2}=1). А если провести перпендикуляр из точки (frac{5π}{2}) до оси косинусов, то можно убедиться, что он попадет в (0). Поэтому (cosfrac{5π}{2}=0).

как вычислить косинус 5 пи на 2

И тут некоторые из вас подумали: «с кругом, на котором подписаны числа, каждый дурак сможет посчитать, а что делать, когда его под рукой нет? Что делать на ЕГЭ?» Ответ прост – нарисуйте круг сами! Для этого вам будет нужно понять логику расположения чисел на осях (подробнее об этом читайте в статье «Как запомнить тригонометрический круг»).

Пример. Найдите а) (sin⁡frac{3π}{2}), б) (cos⁡frac{3π}{4}), в) (sin⁡(-frac{π}{3})) .
Решение: а) Чертим круг, оси и отмечаем число (frac{3π}{2}). Обращаем внимание на ось синусов и понимаем, что точка совпала с (-1), получается (sin⁡frac{3π}{2}=-1).
б) (frac{3π}{4}=frac{4π}{4}-frac{π}{4}=π-frac{π}{4}) — отмечаем число на круге. Проводим перпендикуляр до оси косинусов и вспоминаем, что точки со знаменателем (4) находятся посередине. Мы еще попали и в отрицательную часть оси косинусов, получается (cos⁡frac{3π}{4}=-frac{sqrt{2}}{2}).
в) (-frac{π}{3}) – отмечаем число на круге. Видим, что перпендикуляр к оси синусов попал в точку близкую к (-1), значит (sin⁡(-frac{π}{3})=-frac{sqrt{3}}{2}).

как рисовать тригонометрический круг

Как видите не обязательно рисовать, очень красивую или очень большую окружность — вы можете определить нужное вам значение, быстро набросав круг. И ничего не надо учить!

Если вы хотите еще примеров с вычислением синусов и косинусов без тригонометрической таблицы, то прочтите эту статью.

Пример (ЕГЭ). Найдите значение выражения (frac{8}{sin⁡(-frac{27π}{4}) cos⁡(frac{31π}{4})}) .
Решение.    (-frac{27π}{4}=-frac{28π}{4}+frac{π}{4}=-7π+frac{π}{4}).
(frac{31π}{4}=frac{32π}{4}-frac{π}{4}=8π-frac{π}{4}).

как рисовать тригонометрический круг

(sin⁡(-frac{27π}{4})=-frac{sqrt{2}}{2}),      (cos⁡(frac{31π}{4})=frac{sqrt{2}}{2}).

(frac{8}{sin⁡(-frac{27π}{4}) cos⁡(frac{31π}{4})})(=) (frac{ 8}{-frac{sqrt{2}}{2}cdotfrac{sqrt{2}}{2}})(=-8:frac{2}{4}=-8cdotfrac{2}{1}=-16).

Ответ: (-16).

Смотрите также:
Как найти синус и косинус углов в градусах без тригонометрической таблицы?
Из градусов в радианы и наборот

Тригонометрическая таблица с кругом
Почему в тригонометрической таблице такие числа?

Для тех кто хочет закрепить знания:
Задание на вычисление синусов, косинусов, тангенсов и котангенсов

Значение выражения sin (п / 6) можно вычислить несколькими способами.

Способ №1.
Самым распространенным способом (как в школе, так и вузе) из всех существующих является использование таблицы значений тригонометрических функций от основных значений аргументов.

Удобно использовать таблицу, в которой значение аргумента представлено и в радианах, и в градусах (легче можно сориентироваться). Также по градусам легче понять размер угла. Но в задачах чаще всего встречаются аргументы, представленные в радианах.
По таблице определим значение синуса от Пи / 6 — это 1/2.
Математическая запись:

    [{sin  left(frac{pi}{6}right) }=frac{1}{2}.]

Способ №2.
Когда таблица для использования недоступна, значение основных тригонометрических функций от основных аргументов поможет узнать тригонометрическая окружность (или круг).

На тригонометрической окружности все возможные значения синуса располагаются на оси ординат. Рассмотрим вычисление значения синуса от Пи / 6.
Аргумент синуса по заданию равен Пи / 6. На окружности найдем это значение. Чтобы вычислить значение синуса от этого аргумента опустим перпендикуляр на ось Оу и получим значение 1/2. Следовательно, синус от Пи / 6 равен 1/2.

Способ №3.
Без таблицы и тригонометрической окружности также можно найти значение функции по ее графику. Например, по графику синуса (синусоиде) находим значение Пи / 6 на оси Ох и проводим перпендикулярную прямую относительно этой оси к графику. Получаем точку, которую проектируем на ось Оу и получаем значение 1/2.

Таблица синусов.

Таблица синусов — это записанные в таблицу посчитанные значения синусов углов от 0° до 360°. Используя таблицу синусов вы сможете провести расчеты даже если под руками не окажется инженерного калькулятора. Чтобы узнать значение синуса от нужного Вам угла достаточно найти его в таблице.

Калькулятор — синус угла

sin(°) = 0

Калькулятор — арксинус угла

arcsin() = 90°

Таблица синусов в радианах

α 0 π6 π4 π3 π2 π 3π2 2π
sin α 0 12 22 32 1 0 -1 0

Таблица синусов углов от 0° до 180°

sin(0°) = 0
sin(1°) = 0.017452
sin(2°) = 0.034899
sin(3°) = 0.052336
sin(4°) = 0.069756
sin(5°) = 0.087156
sin(6°) = 0.104528
sin(7°) = 0.121869
sin(8°) = 0.139173
sin(9°) = 0.156434
sin(10°) = 0.173648
sin(11°) = 0.190809
sin(12°) = 0.207912
sin(13°) = 0.224951
sin(14°) = 0.241922
sin(15°) = 0.258819
sin(16°) = 0.275637
sin(17°) = 0.292372
sin(18°) = 0.309017
sin(19°) = 0.325568
sin(20°) = 0.34202
sin(21°) = 0.358368
sin(22°) = 0.374607
sin(23°) = 0.390731
sin(24°) = 0.406737
sin(25°) = 0.422618
sin(26°) = 0.438371
sin(27°) = 0.45399
sin(28°) = 0.469472
sin(29°) = 0.48481
sin(30°) = 0.5
sin(31°) = 0.515038
sin(32°) = 0.529919
sin(33°) = 0.544639
sin(34°) = 0.559193
sin(35°) = 0.573576
sin(36°) = 0.587785
sin(37°) = 0.601815
sin(38°) = 0.615661
sin(39°) = 0.62932
sin(40°) = 0.642788
sin(41°) = 0.656059
sin(42°) = 0.669131
sin(43°) = 0.681998
sin(44°) = 0.694658
sin(45°) = 0.707107
sin(46°) = 0.71934
sin(47°) = 0.731354
sin(48°) = 0.743145
sin(49°) = 0.75471
sin(50°) = 0.766044
sin(51°) = 0.777146
sin(52°) = 0.788011
sin(53°) = 0.798636
sin(54°) = 0.809017
sin(55°) = 0.819152
sin(56°) = 0.829038
sin(57°) = 0.838671
sin(58°) = 0.848048
sin(59°) = 0.857167
sin(60°) = 0.866025
sin(61°) = 0.87462
sin(62°) = 0.882948
sin(63°) = 0.891007
sin(64°) = 0.898794
sin(65°) = 0.906308
sin(66°) = 0.913545
sin(67°) = 0.920505
sin(68°) = 0.927184
sin(69°) = 0.93358
sin(70°) = 0.939693
sin(71°) = 0.945519
sin(72°) = 0.951057
sin(73°) = 0.956305
sin(74°) = 0.961262
sin(75°) = 0.965926
sin(76°) = 0.970296
sin(77°) = 0.97437
sin(78°) = 0.978148
sin(79°) = 0.981627
sin(80°) = 0.984808
sin(81°) = 0.987688
sin(82°) = 0.990268
sin(83°) = 0.992546
sin(84°) = 0.994522
sin(85°) = 0.996195
sin(86°) = 0.997564
sin(87°) = 0.99863
sin(88°) = 0.999391
sin(89°) = 0.999848
sin(90°) = 1
sin(91°) = 0.999848
sin(92°) = 0.999391
sin(93°) = 0.99863
sin(94°) = 0.997564
sin(95°) = 0.996195
sin(96°) = 0.994522
sin(97°) = 0.992546
sin(98°) = 0.990268
sin(99°) = 0.987688
sin(100°) = 0.984808
sin(101°) = 0.981627
sin(102°) = 0.978148
sin(103°) = 0.97437
sin(104°) = 0.970296
sin(105°) = 0.965926
sin(106°) = 0.961262
sin(107°) = 0.956305
sin(108°) = 0.951057
sin(109°) = 0.945519
sin(110°) = 0.939693
sin(111°) = 0.93358
sin(112°) = 0.927184
sin(113°) = 0.920505
sin(114°) = 0.913545
sin(115°) = 0.906308
sin(116°) = 0.898794
sin(117°) = 0.891007
sin(118°) = 0.882948
sin(119°) = 0.87462
sin(120°) = 0.866025
sin(121°) = 0.857167
sin(122°) = 0.848048
sin(123°) = 0.838671
sin(124°) = 0.829038
sin(125°) = 0.819152
sin(126°) = 0.809017
sin(127°) = 0.798636
sin(128°) = 0.788011
sin(129°) = 0.777146
sin(130°) = 0.766044
sin(131°) = 0.75471
sin(132°) = 0.743145
sin(133°) = 0.731354
sin(134°) = 0.71934
sin(135°) = 0.707107
sin(136°) = 0.694658
sin(137°) = 0.681998
sin(138°) = 0.669131
sin(139°) = 0.656059
sin(140°) = 0.642788
sin(141°) = 0.62932
sin(142°) = 0.615661
sin(143°) = 0.601815
sin(144°) = 0.587785
sin(145°) = 0.573576
sin(146°) = 0.559193
sin(147°) = 0.544639
sin(148°) = 0.529919
sin(149°) = 0.515038
sin(150°) = 0.5
sin(151°) = 0.48481
sin(152°) = 0.469472
sin(153°) = 0.45399
sin(154°) = 0.438371
sin(155°) = 0.422618
sin(156°) = 0.406737
sin(157°) = 0.390731
sin(158°) = 0.374607
sin(159°) = 0.358368
sin(160°) = 0.34202
sin(161°) = 0.325568
sin(162°) = 0.309017
sin(163°) = 0.292372
sin(164°) = 0.275637
sin(165°) = 0.258819
sin(166°) = 0.241922
sin(167°) = 0.224951
sin(168°) = 0.207912
sin(169°) = 0.190809
sin(170°) = 0.173648
sin(171°) = 0.156434
sin(172°) = 0.139173
sin(173°) = 0.121869
sin(174°) = 0.104528
sin(175°) = 0.087156
sin(176°) = 0.069756
sin(177°) = 0.052336
sin(178°) = 0.034899
sin(179°) = 0.017452
sin(180°) = 0

Таблица синусов углов от 181° до 360°

sin(181°) = -0.017452
sin(182°) = -0.034899
sin(183°) = -0.052336
sin(184°) = -0.069756
sin(185°) = -0.087156
sin(186°) = -0.104528
sin(187°) = -0.121869
sin(188°) = -0.139173
sin(189°) = -0.156434
sin(190°) = -0.173648
sin(191°) = -0.190809
sin(192°) = -0.207912
sin(193°) = -0.224951
sin(194°) = -0.241922
sin(195°) = -0.258819
sin(196°) = -0.275637
sin(197°) = -0.292372
sin(198°) = -0.309017
sin(199°) = -0.325568
sin(200°) = -0.34202
sin(201°) = -0.358368
sin(202°) = -0.374607
sin(203°) = -0.390731
sin(204°) = -0.406737
sin(205°) = -0.422618
sin(206°) = -0.438371
sin(207°) = -0.45399
sin(208°) = -0.469472
sin(209°) = -0.48481
sin(210°) = -0.5
sin(211°) = -0.515038
sin(212°) = -0.529919
sin(213°) = -0.544639
sin(214°) = -0.559193
sin(215°) = -0.573576
sin(216°) = -0.587785
sin(217°) = -0.601815
sin(218°) = -0.615661
sin(219°) = -0.62932
sin(220°) = -0.642788
sin(221°) = -0.656059
sin(222°) = -0.669131
sin(223°) = -0.681998
sin(224°) = -0.694658
sin(225°) = -0.707107
sin(226°) = -0.71934
sin(227°) = -0.731354
sin(228°) = -0.743145
sin(229°) = -0.75471
sin(230°) = -0.766044
sin(231°) = -0.777146
sin(232°) = -0.788011
sin(233°) = -0.798636
sin(234°) = -0.809017
sin(235°) = -0.819152
sin(236°) = -0.829038
sin(237°) = -0.838671
sin(238°) = -0.848048
sin(239°) = -0.857167
sin(240°) = -0.866025
sin(241°) = -0.87462
sin(242°) = -0.882948
sin(243°) = -0.891007
sin(244°) = -0.898794
sin(245°) = -0.906308
sin(246°) = -0.913545
sin(247°) = -0.920505
sin(248°) = -0.927184
sin(249°) = -0.93358
sin(250°) = -0.939693
sin(251°) = -0.945519
sin(252°) = -0.951057
sin(253°) = -0.956305
sin(254°) = -0.961262
sin(255°) = -0.965926
sin(256°) = -0.970296
sin(257°) = -0.97437
sin(258°) = -0.978148
sin(259°) = -0.981627
sin(260°) = -0.984808
sin(261°) = -0.987688
sin(262°) = -0.990268
sin(263°) = -0.992546
sin(264°) = -0.994522
sin(265°) = -0.996195
sin(266°) = -0.997564
sin(267°) = -0.99863
sin(268°) = -0.999391
sin(269°) = -0.999848
sin(270°) = -1
sin(271°) = -0.999848
sin(272°) = -0.999391
sin(273°) = -0.99863
sin(274°) = -0.997564
sin(275°) = -0.996195
sin(276°) = -0.994522
sin(277°) = -0.992546
sin(278°) = -0.990268
sin(279°) = -0.987688
sin(280°) = -0.984808
sin(281°) = -0.981627
sin(282°) = -0.978148
sin(283°) = -0.97437
sin(284°) = -0.970296
sin(285°) = -0.965926
sin(286°) = -0.961262
sin(287°) = -0.956305
sin(288°) = -0.951057
sin(289°) = -0.945519
sin(290°) = -0.939693
sin(291°) = -0.93358
sin(292°) = -0.927184
sin(293°) = -0.920505
sin(294°) = -0.913545
sin(295°) = -0.906308
sin(296°) = -0.898794
sin(297°) = -0.891007
sin(298°) = -0.882948
sin(299°) = -0.87462
sin(300°) = -0.866025
sin(301°) = -0.857167
sin(302°) = -0.848048
sin(303°) = -0.838671
sin(304°) = -0.829038
sin(305°) = -0.819152
sin(306°) = -0.809017
sin(307°) = -0.798636
sin(308°) = -0.788011
sin(309°) = -0.777146
sin(310°) = -0.766044
sin(311°) = -0.75471
sin(312°) = -0.743145
sin(313°) = -0.731354
sin(314°) = -0.71934
sin(315°) = -0.707107
sin(316°) = -0.694658
sin(317°) = -0.681998
sin(318°) = -0.669131
sin(319°) = -0.656059
sin(320°) = -0.642788
sin(321°) = -0.62932
sin(322°) = -0.615661
sin(323°) = -0.601815
sin(324°) = -0.587785
sin(325°) = -0.573576
sin(326°) = -0.559193
sin(327°) = -0.544639
sin(328°) = -0.529919
sin(329°) = -0.515038
sin(330°) = -0.5
sin(331°) = -0.48481
sin(332°) = -0.469472
sin(333°) = -0.45399
sin(334°) = -0.438371
sin(335°) = -0.422618
sin(336°) = -0.406737
sin(337°) = -0.390731
sin(338°) = -0.374607
sin(339°) = -0.358368
sin(340°) = -0.34202
sin(341°) = -0.325568
sin(342°) = -0.309017
sin(343°) = -0.292372
sin(344°) = -0.275637
sin(345°) = -0.258819
sin(346°) = -0.241922
sin(347°) = -0.224951
sin(348°) = -0.207912
sin(349°) = -0.190809
sin(350°) = -0.173648
sin(351°) = -0.156434
sin(352°) = -0.139173
sin(353°) = -0.121869
sin(354°) = -0.104528
sin(355°) = -0.087156
sin(356°) = -0.069756
sin(357°) = -0.052336
sin(358°) = -0.034899
sin(359°) = -0.017452
sin(360°) = 0

The value of sin pi/6 is 0.5. Sin pi/6 radians in degrees is written as sin ((π/6) × 180°/π), i.e., sin (30°). In this article, we will discuss the methods to find the value of sin pi/6 with examples.

  • Sin pi/6: 1/2
  • Sin pi/6 in decimal: 0.5
  • Sin (-pi/6): -0.5 or -(1/2)
  • Sin pi/6 in degrees: sin (30°)

What is the Value of Sin pi/6?

The value of sin pi/6 in decimal is 0.5. Sin pi/6 can also be expressed using the equivalent of the given angle (pi/6) in degrees (30°).

We know, using radian to degree conversion, θ in degrees = θ in radians × (180°/pi)
⇒ pi/6 radians = pi/6 × (180°/pi) = 30° or 30 degrees
∴ sin pi/6 = sin π/6 = sin(30°) = 1/2 or 0.5

Sin pi/6

Explanation:

For sin pi/6, the angle pi/6 lies between 0 and pi/2 (First Quadrant). Since sine function is positive in the first quadrant, thus sin pi/6 value = 1/2 or 0.5
Since the sine function is a periodic function, we can represent sin pi/6 as, sin pi/6 = sin(pi/6 + n × 2pi), n ∈ Z.
⇒ sin pi/6 = sin 13pi/6 = sin 25pi/6 , and so on.
Note: Since, sine is an odd function, the value of sin(-pi/6) = -sin(pi/6).

Methods to Find Value of Sin pi/6

The sine function is positive in the 1st quadrant. The value of sin pi/6 is given as 0.5. We can find the value of sin pi/6 by:

  • Using Trigonometric Functions
  • Using Unit Circle

Sin pi/6 in Terms of Trigonometric Functions

Using trigonometry formulas, we can represent the sin pi/6 as:

  • ± √(1-cos²(pi/6))
  • ± tan(pi/6)/√(1 + tan²(pi/6))
  • ± 1/√(1 + cot²(pi/6))
  • ± √(sec²(pi/6) — 1)/sec(pi/6)
  • 1/cosec(pi/6)

Note: Since pi/6 lies in the 1st Quadrant, the final value of sin pi/6 will be positive.

We can use trigonometric identities to represent sin pi/6 as,

  • sin(pi — pi/6) = sin 5pi/6
  • -sin(pi + pi/6) = -sin 7pi/6
  • cos(pi/2 — pi/6) = cos pi/3
  • -cos(pi/2 + pi/6) = -cos 2pi/3

Sin pi/6 Using Unit Circle

value of sin pi/6

To find the value of sin π/6 using the unit circle:

  • Rotate ‘r’ anticlockwise to form pi/6 angle with the positive x-axis.
  • The sin of pi/6 equals the y-coordinate(0.5) of the point of intersection (0.866, 0.5) of unit circle and r.

Hence the value of sin pi/6 = y = 0.5

☛ Also Check:

  • cot pi/8
  • cot 3pi/2
  • sin 5pi
  • sin 5pi/4
  • cot pi/2
  • tan 5pi/3

FAQs on Sin pi/6

What is Sin pi/6?

Sin pi/6 is the value of sine trigonometric function for an angle equal to pi/6 radians. The value of sin pi/6 is 1/2 or 0.5.

What is the Value of Sin pi/6 in Terms of Cosec pi/6?

Since the cosecant function is the reciprocal of the sine function, we can write sin pi/6 as 1/cosec(pi/6). The value of cosec pi/6 is equal to 2.

How to Find the Value of Sin pi/6?

The value of sin pi/6 can be calculated by constructing an angle of π/6 radians with the x-axis, and then finding the coordinates of the corresponding point (0.866, 0.5) on the unit circle. The value of sin pi/6 is equal to the y-coordinate (0.5). ∴ sin pi/6 = 0.5.

What is the Value of Sin pi/6 in Terms of Cot pi/6?

We can represent the sine function in terms of the cotangent function using trig identities, sin pi/6 can be written as 1/√(1 + cot²(pi/6)). Here, the value of cot pi/6 is equal to 1.7321.

How to Find Sin pi/6 in Terms of Other Trigonometric Functions?

Using trigonometry formula, the value of sin π/6 can be given in terms of other trigonometric functions as:

  • ± √(1-cos²(pi/6))
  • ± tan(pi/6)/√(1 + tan²(pi/6))
  • ± 1/√(1 + cot²(pi/6))
  • ± √(sec²(pi/6) — 1)/sec(pi/6)
  • 1/cosec(pi/6)

☛ Also check: trigonometric table

Найди верный ответ на вопрос ✅ «Чему равны сos п/6, sin п/6, tg п/6, ctg п/6 …» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Алгебра » Чему равны сos п/6, sin п/6, tg п/6, ctg п/6

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как нас найти аптека низких цен
  • Как найти камеру в файлах
  • Как найти картину по номерам на холсте
  • Найди значение выражения как решать 2 класс
  • Как найти собственную скорость зная скорость течения

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии