Как найти силу взаимодействия тока

Ток в двух параллельных проводниках

Два проводника с током взаимодействуют друг с другом, поскольку каждый из них находится в магнитном поле другого.

Ток в двух параллельных проводниках

Ток в двух параллельных проводниках

Если направления токов одинаковы, то параллельные проводники притягиваются, если же направления токов противоположны — отталкиваются.

Если

F сила, действующая между параллельными проводниками, Ньютон
μа = μ0μ абсолютная магнитная проницаемость,
μ0 магнитная постоянная, 1.257 · 10-6 Гн/м
μ относительная магнитная проницаемость
I1 сила тока в первом проводнике, Ампер
I2 сила тока во втором проводнике, Ампер
l длина проводников, метр
r расстояние между проводниками, метр

то на второй проводник, находящийся в поле первого проводника, действует сила

[ F = B_{1} I_{1} l_{1} ]

где

[ В_{1} = H_{1} ]

Поскольку напряженность магнитного поля $Н_{1}$ на расстоянии r от проводника дается выражением

[ Н_{1}= frac{I_{1}}{2πr} ]

получаем следующую формулу для силы, действующей между проводниками:

[ F = frac{μ_{a} I_{1} I_{2} l}{2πr} ]

Вычислить, найти силу взаимодействия двух параллельных проводников с током

Ток в двух параллельных проводниках

стр. 668

На основе магнитных явлениях построено действие электротехнических устройств. Все современные электромоторы, генераторы и множество других электромеханических приборов работают по принципу взаимодействия электрического тока с окружающими его магнитными полями. Эти взаимодействия описывает знаменитый закон Ампера, названный так в честь своего первооткрывателя.

Влияние электричества на поведение магнитной стрелки впервые обнаружил Х. К. Эрстед. Он заметил, что вопреки ожиданию, магнитное поле не параллельно вектору тока, а перпендикулярно ему. Развивая выводы Эрстеда, и продолжая исследования в этом направлении, Мари Ампер установил [1], что электричество взаимодействует не только с магнитами, но и между собой. Заслуга Ампера в том, что он теоретически обосновал взаимное влияние токов и предоставил формулу, позволяющую вычислять силы этого взаимодействия.

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

Формула расчета амперовой силы

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Взаимодействие параллельных проводников

Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Амперова сила

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α — угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Закон Ампера

Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 900, то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Проводник в магнитном поле

Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Амперова сила

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Интерпретация правила

Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Применение

Закон Ампера, а точнее следствия, вытекающие из него, используются в каждом электромеханическом устройстве, где необходимо вызвать движение рабочих элементов. Самым распространённым механизмом, работа которого базируется на законе Ампера, является электродвигатель.

Применение электромоторов настолько широкое, что его можно увидеть практически во всех сферах человеческой деятельности:

  • на производстве, в качестве приводов станков и различного оборудования;
  • в бытовой сфере (бытовая электротехника);
  • в электроинструментах;
  • на транспорте;
  • в устройствах автоматики, в офисной технике и во многих других сферах.

Из закона Ампера вытекает возможность получения электротока путём перемещения проводников, находящихся в магнитном поле. На данном принципе построены все генераторы электрического тока. Благодаря этой уникальной возможности, у нас появился доступ к использованию электроэнергии для различных потребностей.

Мы буквально окружены проявлением закона Ампера. Например, просмотр телепередачи сопровождается звуком, который транслируется через динамики. Но диффузор динамика приводит в движение сила Ампера. Мы разговариваем по телефону – там тоже есть динамик и микрофон. Принцип действия современных микрофонов также основан на законе Ампера.

Вход в помещение через автоматическую раздвижную дверь, поднятие на лифте, поездка в троллейбусе, трамвае, запуск двигателя автомобиля – всё это было бы невозможным, если бы не существовало взаимодействия электрического тока с силами магнитной индукции.

Ампер открыл перед человечеством такие возможности, без которых развитие научно-технического прогресса было бы невозможным. Влияние этого закона в электротехнике сравнимо с законами Ньютона, которые в своё время совершили революцию в механике. В этом огромная заслуга учёного-физика Мари Ампера, труды которого увенчались открытием в 1820 г. знаменитого закона.

Каждый
из проводников создаёт магнитное поле,
которое действует по закону Ампера на
второй проводник. Ток
создаёт вокруг себя магнитное поле,
линии магнитной индукции которого

представляют собой
концентрические окружности. Направление
вектора В задаётся правилом правого
винта, его модуль равен

Направление силы
d
с которой поле с вектором
действует
на участокdL
второго тока, определяется по правилу
левой руки и указано на рисунке. Модуль
силы, с учётом того, что угол между
элементами тока
и векторомпрямой, равен:

Аналогичными
рассуждениями можно показать, что на
участок dl
первого проводника действует сила
направленная в сторону, противоположнуюи численно равна:

Сравнение выражений
показывает, что

т.е. два
параллельных тока одинакового направления
притягиваются друг к другу с силой

Если токи имеют
противоположные направления, то,
используя правило левой руки, можно
показать, что между ними действует сила
отталкивания. Полагая

имеем

Магнитные линии
двух проводников с токами разных
направлений в пространстве между
проводниками направлены в одну сторону.
Магнитные линии, имеющие одинаковое
направление, будут взаимно отталкиваться.
Поэтому проводники с токами противоположного
направления отталкиваются один от
другого

За единицу силы
тока 1 А

принимают силу тока, при которой два
параллельных проводника длиной 1м,
расположенные на расстоянии 1м друг от
друга, взаимодействуют с силой 0,0000002 Н.

8. Действие магнитного поля на движущийся заряд. Сила Лоренца. Определение направления силы Лоренца.

Так как электрический
ток представляет собой упорядоченное
движение зарядов, то действие магнитного
поля на проводник с током есть результат
его действия на отдельные движущиеся
заряды.

Сила Лоренца
– сила, действующая со стороны магнитного
поля на движущиеся в нем заряды.
=
q·V·B·sina

где q — величина
движущегося заряда; V — модуль его
скорости; B — модуль вектора индукции
маг. поля; a — угол м/у вектором скорости
заряда и вектором маг. инд.

Cила
Лоренца перпендикулярна скорости и
поэтому она не совершает работы, не
изменяет модуль скорости заряда и его
кинетической энергии. Но направление
скорости изменяется непрерывно.

Сила Лоренца
перпендикулярна векторам В и v , и её
направление определяется по правилу:
если левую руку расположить так, чтобы
составляющая магнитной индукции В,
перпендикулярная скорости заряда,
входила в ладонь, а четыре пальца были
направлены по движению положительного
заряда (против движения отрицательного),
то отогнутый на 90 градусов большой палец
покажет направление действующей на
заряд силы Лоренца F л.

Сила Лоренца зависит
от модулей скорости частицы и индукции
магнитного поля. Эта сила перпендикулярна
скорости и, следовательно, определяет
центростремительное ускорение частицы.
Частица равномерно движется по окружности
радиуса r.

9. Движение
заряженных частиц в однородном магнитном
поле: а) вектор индукции параллелен
вектору скорости частицы; б) перпендикулярен
ему; в) составляет угол а с направлением
скорости частицы. Вычисление радиуса
окружности, периода обращения и шага
винтовой линии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

в раздел тоэ

Закон Ампера  — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных  — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током.

Взаимодействия проводников с током:

(ниже рассмотрим три варианта формул силы взаимодействия токов по Закону Ампера)

Вариант 1

     Выражение для силы , с которой магнитное поле действует на элемент объёма проводника с током плотности , находящегося в магнитном поле с индукцией  , в Международной системе единиц (СИ) имеет вид:

Если ток течёт по тонкому проводнику, то , где — «элемент длины» проводника — вектор, по модулю равный  и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Сила , с которой магнитное поле действует на элемент  проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока  в проводнике и векторному произведению элемента длины  проводника на магнитную индукцию :

Вариант 2

  Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

F – сила взаимодействия двух параллельных проводников,

I1, I2 – величины токов в проводниках,

∆ℓ − длина проводников,

r – расстояние между проводниками.

Вариант 3

  Закон Ампера определяет силу, действующую со стороны магнитного поля на проводник с током. Эта сила называется силой Ампера и равна:

dF= I[dl B]

Направление силы определяется по правилу левой руки:

Рис. 1

Если ладонь левой руки расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые пальцы указывали направление тока, то отставленный большой палец будет показывать направление силы Ампера.


                       Рис. 2

Модуль силы Ампера равен: dF = IBdlsin(dl B).

Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два параллельных проводника с токами I1, I2, которые находятся в среде с магнитной проницаемостью m, на расстоянии R (рис.2). Каждый из проводников создаёт магнитное поле, которое действует по закону Ампера на другой проводник с током. Направление вектора В1 определяется по правилу правого винта, а модуль его по формуле:

В1 = .

Направление силы dF1, с которой магнитное поле тока I1 действует на элемент dl тока I2, определяется по правилу левой руки, а модуль силы равен:

dF1 = I2 В1dl 

аналогично 

dF2 = I1 Вdl = ,

т. е. dF1 = dF2 = dF.

Два параллельных элемента тока притягиваются друг к другу с силой dF. Антипараллельные токи отталкиваются.

Вывод:

 Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесённого через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а, именно, количество заряда, переносимое через поперечное сечение проводника. На основании этого определения не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путём: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока – 1 А (1 ампер).

Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой 2∙10-7 Ньютона.

Статья ещё не готова.

в раздел тоэ

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти тренировочные карты в cs go
  • Как составить ведомость дефектов на ремонт
  • Как составить акта сдачи приемки оказанных услуг
  • Как найти тарифную ставку первого разряда
  • Как в подвале найти котят

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии