Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра. Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.
В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.
Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.
Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.
Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.
Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:
где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)
Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:
В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.
Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.
Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.
Цена деления прибора рассчитывается по формуле:
где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями
Для упрощения можно воспользоваться онлайн калькулятором ниже:
Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.
Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом
Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах
Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.
Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.
Формула для расчёта тока отклонения стрелки до максимального значения:
Расчёт: 0.075/2.52=0.02976А
Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:
Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом
Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах
Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.
О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье: Как сделать шунт (шунтирующий резистор) для амперметра. Самый простой метод подбора.
И ещё одно продолжение этой тематики: Как изменить предел измерения амперметра. Как переделать амперметр постоянного тока на переменный.
-
Владимир (Гость)14 мая 2016 / 16:29
-
Все очень доступно и понятно, спасибо отличная статья. А где найти статью о тонкостях изготовления шунтирующего сопротивления?
-
pedgry (Гость)24 декабря 2016 / 17:14
-
На самой первой схеме Амперметр и Rш необходимо поменять местами.
Потому, что правильно Амперметр подключается к Шунту, что-бы соединительные провода не вносили больших погрешностей. -
vinserg26 декабря 2016 / 22:56
-
pedgry, в схемотехнике допускается такое обозначение. И от перемены мест потребителей (рассматриваем участок цепи на первом рисунке) в параллельном соединении ни чего не поменяется. Закон Ома. На практике действительно амперметр подключается к шунту, т.к. он по сути является вольтметром.
-
pedgry (Гость)15 марта 2017 / 14:53
-
vinserg писал:
И от перемены мест потребителей…
Это каких-же потребителей? На схеме показан ИЗМЕРИТЕЛЬНЫЙ прибор без потребителей.
Сопротивление соединительных проводов внесет большие погрешности,
поскольку, сопротивление соединительных проводов больше сопротивления шунта. Проверено на собственном опыте. -
vinserg15 марта 2017 / 15:39
-
Надо внимательнее быть, там есть полная схема с потребителем. И есть часть той же схемы и не надо мне голову морочить, откройте учебники по физике и ТЭО. Там тоже самое. На практике я очень хорошо себе представляю, что и сколько вносит. Или очень хочется придраться? Когда статью про практику буду писать там все и опишу.
-
Слава (Гость)16 марта 2017 / 11:07
-
Есть еще одна формула для шунта: Rш=Uш/(Iраб—Iамперм)
Uш — указан на амперметре. -
vinserg16 марта 2017 / 11:33
-
Но я за всё время только на одном приборе встречал Uш. И была пара новых. Uш было приведено в паспорте.
-
Вова (Гость)20 апреля 2020 / 19:51
-
хороший калькулятор. спасибо
-
Slav (Гость)19 декабря 2020 / 15:41
-
Может я и ошибаюсь, но в формуле определения шунта
в знаменатель достаточно написать значение напряжения полного
отклонения стрелки (оно есть на шкале прибора — 75mV).
Это же и есть Rприб х Iприб, равное Uприб.
Проще и без танцев с бубном.
А в общем полезная информация. -
iury (Гость)31 декабря 2020 / 14:39
-
Нужная тема и калькулятор супер!(одно не понял,откуда взялось максимальное отклонение 80(х2) исходя из каких параметров?Хотелось бы продолжения по расчету длины шунта исходя из его удельного сопротивления с таблицами распространенных металлов и сплавов.
-
Райхан (Гость)27 января 2021 / 16:17
-
Измерения сопротивления прибора……., тяжеловато для пенсионера за 65…. Есть китайский ампервольтметр «DC 100 в 1A 10A 50A 100A мини 0,28 дюйма светодиодный цифровой вольтметр Амперметр постоянного тока Амперметр Напряжение/амперметр». Какое сопротивление шунта можно применить для тока на 10А и 20А, напряжение в обоих случаях до 30 вольт, можно ли использовать для этого резисторы и какой мощностью? Спасибо, если ответите!
-
vinserg30 января 2021 / 11:39
-
Так вы не написали исходные данные, а мы вряд ли дистанционно что-то подскажем. Это я так понимаю китайский прибор с али, если так, то стоит задать вопрос продавцу и уточнить Rприб и Iприб
-
Stone (Гость)2 января 2022 / 21:21
-
У меня амперметр 20/5А для подключения через ТТ. Без ТТ максимальное измерение тока 5А. Допустим, градуировка шкалы для меня не имеет значения при измерении до 5А, но мне надо установить его без ТТ на измерение тока до 40А. Разбирать прибор не хочется, а сопротивление установленного шунта померить нечем, слишком малое сопротивление. На шкале ничего не написано, паспорта нету. Хотелось бы установить дополнительный шунт без особых заморочек.
-
Иван (Гость)7 января 2023 / 10:10
-
Амперметр 30А М42300. Какое внутреннее сопротивление прибора и максимально измеримый ток амперметром без шунта?
Планируется подключение амперметра с шунтом для замера тока якоря электродвигателя (Iном=24А).
Расчет сопротивления шунта амперметра
Часто при электротехнических измерениях необходимо узнать величину тока протекающего в цепи. Для этого используется амперметр. Как и другие измерительные приборы, амперметр имеет свой максимальный предел измерения, в тех случаях, когда его недостаточно, применяют шунтирование амперметра.
Шунт — это сопротивление, которое подключается параллельно к зажимам амперметра, с целью увеличения диапазона измерений. Добавление шунта параллельно амперметру вызывает разделение тока I, который протекает через данную цепь, на две составляющие – Iа и Iш.
По закону Кирхгофа известно, что сумма токов сходящихся в узле равна нулю, а значит, ток I представляет собой сумму токов Iа и Iш. Чем меньше сопротивление шунта Rш , тем ток Iш больше, а значит ток Iа, который протекает через амперметр — меньше. Зная, как соотносятся сопротивление амперметра Ra и шунта Rш, можно узнать величину измеряемого тока I или напротив, зная ток I, можно рассчитать необходимое сопротивление шунта Rш.
Формула для расчета сопротивления шунта:
Для увеличения диапазона измерения амперметра в n раз, формула для шунта:
Пример 1
Рассчитайте сопротивление шунта, который увеличит диапазон электромагнитного амперметра до 10 А, если известно, что амперметр имеет внутреннее сопротивление 5 Ом и измеряет ток до 1 А.
Измеряемый ток в 10 А, делится на два тока Iа = 1 А, и Iш, который равен:
Отсюда измеряемый ток должен разделиться в соотношении:
Так как по закону Ома сопротивление обратно пропорционально току, то
Откуда Rш:
Ответ: 0.556 Ом
Пример 2
Определите, какое должно быть сопротивление шунта, для того, чтобы увеличить предел измерения амперметра в 5 раз, если известно, что внутреннее сопротивление амперметра 2 Ом.
Сопротивление шунта рассчитывается по следующей формуле:
Ответ: 0,5 Ом.
Пример 3
Амперметр дает полное отклонение стрелки при токе в 3 А. Необходимо измерить с помощью него ток в 150 А. Определите сопротивление шунта, если известно, что внутреннее сопротивление амперметра 1 Ом.
Для проведения измерения необходимо увеличить ток в n раз:
По уже знакомой формуле рассчитаем сопротивление шунта:
Ответ: 0.02 Ом.
Шунт представляет собой проводник, катушку или резистор. Если шунт необходим для измерения тока меньше 30А, то его встраивают в сам амперметр. При больших токах шунт делают выносной, чтобы он не нагревал сам прибор.
Шунтирование – это процесс параллельного подключения одного элемента к другому.
Шунт подключают параллельно амперметру для расширения шкалы прибора.
При подключенном шунте часть тока, протекает мимо прибора по шунту и тем самым уменьшается нагрузка на прибор.
Расчет шунта для амперметра
Ниже приведена формула для расчета необходимого сопротивления шунта, подключаемого к амперметру для увеличения шкалы измерения.
Где :
- RА, IA – сопротивление и ток амперметра
- RШ – сопротивление шунта
- I – ток, который необходимо измерить
Если измеряемый ток значительно больше максимального измеряемого тока амперметра, то этой величиной в формуле выше можно пренебречь по причине её малого влияния на результат. И мы получим отношение RШ/RА=IА/I.
Если необходимо увеличить предел измеряемого тока в m раз, то можно воспользоваться следующим соотношением – RШ=(m-1)/RА.
Разберем пример, где все цифры взяты из головы и не имеют под собой справочной обоснованности.
Задача. Амперметр имеет внутреннее сопротивление 10 Ом и максимальный измеряемый ток 1 А. Какое должно быть сопротивление шунта, чтобы можно было измерить ток 100А. Как его рассчитать?
Решение. При увеличении шкалы по амперметру будет течь ток в 1А как и раньше, а по шунту потечет ток 100-1=99А. Получится, что ток будет делиться в отношении 1:99, а сопротивления будут обратно пропорциональны.
Воспользуемся формулой выше и получим RШ=10*1/(100-1) = 0,101 Ом.
Источник
Перейти на сайт | Как это работает | Возможности ПО | Кейсы
2021-02-18 11:20
Полезные статьи
Демьян Бондарь
Эксперт по предмету «Электроника, электротехника, радиотехника»
преподавательский стаж — 5 лет
Задать вопрос автору статьи
Назначение измерительных шунтов и их расчет
Определение 1
Шунт – это самый простой преобразователь электрического тока.
Шунт представляет собой четырехзажимный преобразователь. Два зажима, к которым подводится электрический ток, называются токовыми, а выходные, с которых снимается напряжение, — потенциальными. Как правило, к потенциальным входам присоединяют механизм измерительного устройства. Основными параметрами измерительных шунтов являются:
- Номинальное выходное напряжение.
- Номинальный входной электрический ток.
Сопротивление измерительного шунта рассчитывается по следующей формуле:
$Rш = Iш/Uш$
где: Iш — номинальный входной ток; Uш — номинальное выходное напряжение.
Основная функция шунтов заключается в расширении пределов измерения измерительных устройств по току. Большую часть измеряемого электрического тока пропускают через шунт, а меньшую через измерительный механизм. Шунты обладают небольшим сопротивлением, поэтому чаще всего используются в цепях постоянного тока, в состав которых входят магнитоэлектрические измерительные устройства. На рисунке ниже представлена схема включения данного измерительного устройства с шунтом. Электрический ток, который протекает через измерительное устройство, связан с величиной измеряемого тока следующим образом:
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
$Iи = I*(Rш+Rи)$
где: I — измеряемый электрический ток; Rш — сопротивление шунта; Rи — сопротивление измерительного механизма.
Когда необходимо, чтобы ток протекающий через измерительный механизм, был в определенное количество раз меньше, чем измеряемый ток, нужно, чтобы сопротивление шунта удовлетворяло следующему выражению:
$Rш = Rи/(n-1)$
где n — коэффициент шунтирования.
Коэффициент шунтирования рассчитывается по следующей формуле:
$n = I/Iи$
Пример схемы наружного шунта, который используется при 2000 амперах изображен на рисунке ниже
Рисунок 1. Схема шунта. Автор24 — интернет-биржа студенческих работ
Здесь: В и Г — потенциальные зажимы; А и Б — токовые зажимы.
Шунты изготавливаются из манганина. Когда шунт рассчитан на небольшой ток (до 30 ампер), то он встраивается в корпус прибора. Для измерения больших токов используются устройства с наружными шунтами, так как в таком случае мощность рассеивания не нагревает прибор.
«Расчет шунтов и добавочных сопротивлений» 👇
Добавочные сопротивления
Определение 2
Добавочные сопротивления (резисторы) – это простейшие измерительные преобразователи напряжения в электрический ток.
Когда возникает необходимость в переключении потребителя или группы потребителе на более высокое напряжение, чем то, на которое они рассчитаны, включают добавочное сопротивление. На таком сопротивлении создается падение напряжения, снижающее напряжение на потребителе до необходимой величины. Напряжение источника представляет собой в этом случае сумму напряжений на потребителях и добавочном сопротивлении, то есть:
$U = Uп + Uд $
Замечание 1
Снижение напряжения при помощи добавочного сопротивления неэкономично, так как в сопротивлении электроэнергия переходит в тепловую энергию.
Так как электрические измерительные устройства практически всех систем реагируют на величину тока, а добавочные резисторы предназначены для расширения пределов их измерения вольтметров, счетчиков энергии, фазометров, ваттметров. Добавочное сопротивление подключается последовательно с прибором. Пример такого подключения изображен на рисунке ниже.
Рисунок 2. Схема подключения. Автор24 — интернет-биржа студенческих работ
Электрический ток в измерительной цепи, в этом случае, рассчитывается по формуле:
$I = U / (Rп+Rд)$
где: U — измеряемое напряжение; Rп — сопротивление измерительного устройства; Rд — сопротивление добавочного резистора.
Так как через добавочный резистор и измерительное устройство протекает один и тот же электрический ток, то падение напряжения на измерительном устройстве может быть рассчитано по следующей формуле:
$Uп = U * ((Rп)/Rп+Rд)$
Если у измерительного прибора, например, вольтметра, имеется предел измерения, то благодаря добавочному резистору этот предел расширяется в определённое количество раз, но только в том случае, если выполняется следующее условие:
$Rд = Rп*(n-1)$
Использование добавочных резисторов также способствует снижению температурной погрешности электрических измерительных устройств. Из ранее представленной схемы общий температурный коэффициент измерительного устройства может быть рассчитан по следующей формуле:
$В = (Вп*Rп+Вд*Rд) / Rп+Rд$
где: Bп — температурный коэффициент сопротивления измерительного устройства; Вд — температурный коэффициент сопротивления добавочного резистора.
Как правило, температурный коэффициент добавочного резистора стремится к нулю, поэтому можно считать верным следующее выражение:
$В = Вп*(1/(1+(Rд/Rп)))$
Из представленного выражения следует, что Rп намного меньше Rд, а В намного меньше Вп
Как и шунты, добавочные резисторы изготавливаются из манганина и применяются при напряжении до 30 киловольт. В щитовых и переносных устройствах используются многопредельные добавочные резисторы.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Что такое шунт
В электронике и электротехнике часто можно услышать слово «шунт», «шунтирование», «прошунтировать». Слово «шунт» к нам пришло с буржуйского языка: shunt — в дословном переводе «ответвление», «перевод на запасной путь». Следовательно, шунт в электронике — это что-то такое, что «примыкает» к электрической цепи и «переводит» электрический ток по другому направлению. Ну вот, уже легче).
По сути дела шунт представляет из себя простой резистор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!
Как работает шунт
Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.
Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.
Помните Закон Ома для участка электрической цепи? Вот, собственно и он:
где
U — напряжение
I — сила тока
R — сопротивление
Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря «константа». Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:
Значит, исходя из формулы
получаем формулу:
и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.
Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное — просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).
Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.
Виды шунтов
Промышленные амперметры выглядят вот так:
На самом же деле, как бы это странно ни звучало — это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).
На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.
А вот, собственно, и промышленные шунты:
Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.
К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:
В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.
[quads id=1]
Работа шунта на практическом примере
В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:
Сзади можно прочитать его маркировку:
Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.
0,5 — это класс точности. То есть сколько мы замерили — это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).
Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:
Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.
Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:
И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.
Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс
Вспоминаем, что показывал наш блок питания?
Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).
Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится » голь на выдумку хитра»
Что такое шунт в электронике и видео про это:
Где купить шунт
Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке: