Как найти серединный перпендикуляр в четырехугольнике

Серединный перпендикуляр — определение, свойства и формулы

Общие сведения

Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.

Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.

Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.

Аксиомы геометрии Евклида

Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:

  1. Принадлежности.
  2. Порядка.
  3. Конгруэнтности.
  4. Параллельности прямых.
  5. Непрерывности.

Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.

Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.

Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:

  • Вводятся обозначения: первый — MN, второй — OP и третий — RS.
  • Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
  • Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).

Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.

И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.

Информация о треугольниках

Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:

В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.

Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.

У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.

Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).

Основные теоремы

Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.

Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:

  • Прямая.
  • Обратная.
  • Пересечение в треугольнике.

Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.

Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.

Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.

Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.

Важные свойства

Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:

  1. Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
  2. Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
  3. В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.

В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.

Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:

  1. а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
  2. b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
  3. c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).

Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:

  1. Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
  2. Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
  3. Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).

В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.

Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.

Пример решения задачи

В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:

  1. Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
  2. Серединный перпендикуляр, проведенный к диагонали прямоугольника.
  3. Точка Е делит сторону на отрезки а и 2а.

Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении

Рисунок 1. Чертеж для решения задачи.

Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:

  1. Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
  2. Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
  3. При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
  4. Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
  5. Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
  6. В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).

Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).

Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.

Серединный перпендикуляр

Что такое серединный перпендикуляр к отрезку? Что можно сказать о пересечении серединных перпендикуляров к сторонам треугольника? К сторонам многоугольника?

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

m — серединный перпендикуляр к отрезку AB, если

точка C — середина отрезка AB,

Чтобы построить серединный перпендикуляр к данному отрезку с помощью угольника, нужно:

1) найти середину отрезка;

2) провести через эту точку прямую, перпендикулярную данному отрезку (для этого угольник прикладываем прямым углом к середине отрезка так, чтобы она сторона угольника проходила через отрезок, а через другую сторону проводим прямую):

Свойства серединного перпендикуляра.

1) Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.

Например, прямая m — геометрическое место точек, равноудаленных от точек A и B (рисунок 1).

2) Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Эта точка является центром описанной около треугольника окружности.

3) Если около многоугольника можно описать окружность, то центр этой описанной окружности является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Вписанные и описанные окружности

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

В данном уроке мы вспомним основы, на которых базируется теория вписанных и описанных окружностей, вспомним признаки четырехугольников описанных и вписанных. Кроме того, выведем формулы для нахождения радиусов описанной и вписанной окружности в различных случаях.

источники:

Серединный перпендикуляр

http://interneturok.ru/lesson/geometry/8-klass/povtorenie-kursa-geometrii-8-go-klassa/vpisannye-i-opisannye-okruzhnosti


Загрузить PDF


Загрузить PDF

Серединный перпендикуляр — это прямая, перпендикулярная отрезку и делящая его пополам. Чтобы найти серединный перпендикуляр отрезка по его двум точкам, нужно найти точку, являющуюся серединой отрезка, и угловой коэффициент перпендикуляра и подставить найденные значения в линейное уравнение.

  1. Изображение с названием Find the Perpendicular Bisector of Two Points Step 1

    1

    Найдите середину отрезка, ограниченного двумя данными точками. Для этого подставьте координаты точек в формулу: [(x1 + x2)/2,( y1 + y2)/2]. Эта формула вычислит среднее значение координат х и у двух данных точек. Например, даны следующие координаты двух точек: (x1,y1)=(2,5) и (x2,y2)=(8,3). [1]

    • [(2+8)/2, (5 +3)/2] =
    • (10/2, 8/2) =
    • (5, 4)
    • Координаты середины отрезка, ограниченного точками с координатами (2,5) и (8,3), есть (5,4).
  2. Изображение с названием Find the Perpendicular Bisector of Two Points Step 2

    2

    Найдите наклон прямой (угловой коэффициент). Чтобы найти угловой коэффициент по двум точкам, подставьте их координаты в формулу: (y2 — y1) / (x2 — x1). Угловой коэффициент равен тангенсу угла между положительным направлением оси абсцисс и данной прямой. Вот как найти угловой коэффициент прямой, которая проходит через точки (2,5) и (8,3): [2]

    • (3-5)/(8-2) =
    • -2/6 =
    • -1/3
      • Угловой коэффициент прямой равен -1/3. Для получения этого результата мы сократили дробь 2/6.
  3. Изображение с названием Find the Perpendicular Bisector of Two Points Step 3

    3

    Найдите угловой коэффициент перпендикуляра. Для этого найдите обратную величину углового коэффициента прямой и измените знак. Для получения обратной величины разделите единицу на данную величину.[3]

    • Обратная отрицательная величина -1/3 есть 3, потому что 1/(1/3)=3, а знак был изменен с отрицательного на положительный.

    Реклама

  1. Изображение с названием Find the Perpendicular Bisector of Two Points Step 4

    1

    Линейное уравнение записывается в виде: y = mx + b, где х и у — координаты, m – угловой коэффициент, b – смещение прямой по оси Y.[4]

  2. Изображение с названием Find the Perpendicular Bisector of Two Points Step 5

    2

    Подставьте в уравнение найденный угловой коэффициент перпендикуляра. Подставьте 3 вместо m:

    • 3 —> y = mx + b =
    • y = 3x + b
  3. Изображение с названием Find the Perpendicular Bisector of Two Points Step 6

    3

    Подставьте координаты середины отрезка. Это точка с координатами (5,4). Поскольку перпендикуляр проходит через эту точку, подставьте ее координаты в линейное уравнение. Просто подставьте (5,4) вместо х и у.

    • (5, 4) —> y = 3x + b =
    • 4 = 3(5) + b =
    • 4 = 15 + b
  4. Изображение с названием Find the Perpendicular Bisector of Two Points Step 7

    4

    Найдите смещение по оси Y. Для этого обособьте «b» на одной стороне уравнения.

    • 4 = 15 + b =
    • -11 = b
    • b = -11
  5. Изображение с названием Find the Perpendicular Bisector of Two Points Step 8

    5

    Напишите уравнение, описывающее серединный перпендикуляр. Для этого подставьте значения углового коэффициента (3) и смещения по оси Y (-11) в линейное уравнение. Вы не должны подставлять никаких значений вместо х и у, так как это уравнение позволит вам найти координаты любой точки, лежащей на перпендикуляре.

    • y = mx + b
    • y = 3x — 11
    • Уравнение, описывающее серединный перпендикуляр, проходящий через отрезок, ограниченный точками с координатами (2,5) и (8,3), записывается как у=3x-11.

    Реклама

Об этой статье

Эту страницу просматривали 32 613 раз.

Была ли эта статья полезной?

В геометрии построение перпендикуляра биссектрисы четырехугольника — это конструкция, которая создает новый четырехугольник из данного четырехугольника, используя срединный перпендикуляр к сторонам бывшего четырехугольника. Эта конструкция естественным образом возникает при попытке найти замену для центра описанной окружности четырехугольника в случае, который не является циклическим.

Определение конструкции

Предположим , что вершины этого четырехугольника даются . Позвольте быть перпендикулярами середины сторон соответственно. Тогда их пересечения с нижними индексами по модулю 4 образуют следующий четырехугольник . Затем конструкция повторяется для производства и так далее.
QQ_ {1}, Q_ {2}, Q_ {3}, Q_ {4}b_ {1}, b_ {2}, b_ {3}, b_ {4}Q_ {1} Q_ {2}, Q_ {2} Q_ {3}, Q_ {3} Q_ {4}, Q_ {4} Q_ {1}Q_ {i} ^ {{(2)}} = b _ {{i + 2}} b _ {{i + 3}}Q ^ {{(2)}}Q ^ {{(2)}}Q ^ {{(3)}}

Первая итерация построения серединного перпендикуляра

Эквивалентную конструкцию можно получить, если разрешить вершинам треугольника быть центрами описанной окружности четырех треугольников, образованных путем выбора комбинаций из трех вершин .
Q ^ {{(i + 1)}}Q ^ {{(i)}}

Свойства

1. Если не цикличен, то не вырожден.
Q ^ {{(1)}}Q ^ {{(2)}}

2. Четырехугольник никогда не бывает циклическим. Комбинирование №1 и №2 всегда невырождено.
Q ^ {{(2)}}Q ^ {{(3)}}

3. четырехугольники и являются гомотетичны , и , в частности, аналогичны . Четырехугольники и тоже гомотетичны.
Q ^ {{(1)}}Q ^ {{(3)}}Q ^ {{(2)}}Q ^ {{(4)}}

3. Построение биссектрисы перпендикуляра может быть обращено на противоположное посредством изогонального сопряжения . То есть, учитывая , что можно построить .
Q ^ {{(i + 1)}}Q ^ {{(i)}}

4. Позвольте быть углы . Для каждого соотношение площадей и равно
 альфа,  бета,  гамма,  дельта Q ^ {{(1)}}яQ ^ {{(i)}}Q ^ {{(i + 1)}}

(1/4) ( cot ( alpha) +  cot ( gamma)) ( cot ( beta) +  cot ( delta)).

5. Если выпукло то последовательность четырехугольники сходятся к isoptic точки из , который также является isoptic точка для каждого . Точно так же, если вогнутая, то последовательность, полученная обращением конструкции, сходится к изоптической точке ‘s.
Q ^ {{(1)}}Q ^ {{(1)}}, Q ^ {{(2)}},  ldots Q ^ {{(1)}}Q ^ {{(i)}}Q ^ {{(1)}}Q ^ {{(1)}}, Q ^ {{(0)}}, Q ^ {{(- 1)}},  ldots Q ^ {{(i)}}

Ссылки

  • Дж. Лангр, Проблема E1050, Amer. Математика. Ежемесячно , 60 (1953) 551.
  • Прасолов В.В. Задачи плоской геометрии . 1, 1991; Проблема 6.31.
  • Прасолов В.В. Задачи плоской и твердотельной геометрии . 1 (перевод Д. Лейтеса), доступно по адресу http://students.imsa.edu/~tliu/math/planegeo.eps .
  • Д. Беннетт, Динамическая геометрия возрождает интерес к старой проблеме, в « Включенная геометрия» (изд. Дж. Кинг), Примечания МАА 41, 1997, стр. 25–28.
  • Дж. Кинг, Четырехугольники, образованные срединными перпендикулярами, в « Включенная геометрия» (изд. Дж. Кинг), Примечания 41 МАА, 1997 г., стр. 29–32.
  • GC Shephard, Построение биссектрисы перпендикуляра, Геом. Дедиката , 56 (1995) 75–84.
  • А. Богомольный , Четырехугольники, образованные срединными перпендикулярами, Сборник интерактивной математики и головоломки , http://www.cut-the-knot.org/Curriculum/Geometry/PerpBisectQuadri.shtml .
  • Б. Грюнбаум, О четырехугольниках, образованных из четырехугольников — Часть 3, Геомбинаторика 7 (1998), 88–94.
  • О. Радко, Э. Цукерман, Построение перпендикулярно-биссектрисы, изоптическая точка и линия Симсона четырехугольника, Forum Geometricorum 12 : 161–189 (2012).

Привет, Вы узнаете про специальные прямые линии четырёхугольника, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое
специальные прямые линии четырёхугольника, специальные точки четырёхугольника , настоятельно рекомендую прочитать все из категории Планометрия.

Специальные (замечательные) прямые линии четырехугольника

Средние линии четырехугольника

Пусть G, I, H, J — середины сторон выпуклого четырехугольника ABCD, а E, F — середины его диагоналей. Назовем три отрезка GH, IJ, EF соответственно первой, второй и третьей средними линиями четырехугольника. Первые две из них также называют бимедианами .

Специальные и замечательные  прямые и точки четырёхугольника

Точки E, K, F лежат на одной прямой, прямой Ньютона

Теоремы о средних линиях четырехугольника

  • Обобщенная теорема Ньютона. Все три средние линии четырехугольника пересекаются в одной точке (в центроиде вершин («vertex centroid») четырехугольника) и делятся ею пополам.
  • Середины E и F двух диагоналей, а также центроид вершин K выпуклого четырехугольника лежат на одной прямой EF. Указанная прямая называется прямой Ньютона.
  • Заметим, что прямая Ньютона — Гаусса совпадает с прямой Ньютона, ибо обе проходят через середины диагоналей.
  • Теорема Вариньона:
  • Формула Эйлера: учетверенный квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырехугольника минус сумма квадратов его диагоналей.
  • Математически для рисунка слева с серым четырехугольником ABCD формула Эйлера записывается в виде:

    Специальные и замечательные  прямые и точки четырёхугольника.

Прямая Ньютона

Специальные и замечательные  прямые и точки четырёхугольника

Прямая, получаемая соединением середин диагоналей (L, M и N), называется прямой Ньютона — Гаусса (зеленая)

  • Если в четырехугольнике две пары противоположных сторон не параллельны, то две середины его диагоналей лежат на прямой, которая проходит через середину отрезка, соединяющего две точки пересечения этих двух пар противоположных сторон (на рисунке точки показаны красным цветом) . Об этом говорит сайт https://intellect.icu . Указанная прямая называется прямой Ньютона (на рисунке она показана зеленым цветом). При этом прямая Ньютона всегда перпендикулярна прямой Обера.
  • Точки, лежащие на прямой Ньютона, удовлетворяют теореме Анна.

Ортополярные линии ортополюсов троек вершин четырехугольника

Если задана фиксированная прямая линия , и выбрана любая из трех вершин четырехугольника Специальные и замечательные  прямые и точки четырёхугольника, то все ортополюсы данной прямой линии относительно всех таких треугольников лежат на одной прямой. Эта линия называется ортополярной линией для данной линии относительно четырехугольника Специальные и замечательные  прямые и точки четырёхугольника.

Специальные (замечательные) точки четырехугольника

Центроид четырехугольника

  • Четыре отрезка, каждый из которых соединяет вершину четырехугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырехугольника и делятся им в отношении 3:1, считая от вершин.
  • Вау!! 😲 Ты еще не читал? Это зря! свойства центроида четырехугольника.

Точка Понселе четырехугольника

Внутри четырехугольника существует точка Понселе (см. параграф «Окружности девяти точек треугольников внутри четырехугольника»).

Точка Микеля четырехугольника

Внутри четырехугольника существует точка Микеля.

Вау!! 😲 Ты еще не читал? Это зря!

  • Четырехугольники

В общем, мой друг ты одолел чтение этой статьи об специальные прямые линии четырёхугольника. Работы в переди у тебя будет много. Смело пишикоментарии, развивайся и счастье окажется в ваших руках.
Надеюсь, что теперь ты понял что такое специальные прямые линии четырёхугольника, специальные точки четырёхугольника
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Планометрия

Из статьи мы узнали кратко, но емко про специальные прямые линии четырёхугольника

В этой статье мы рассмотрим все основные свойства и признаки четырехугольника.

Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три точки не лежат на одной прямой.

Четырехугольники бывают выпуклые, если они расположены в одной полуплоскости относительно прямой, которая содержит одну из его сторон (ABCD) и невыпуклые (A1B1C1D1).

Если любые две противолежащие точки выпуклого четырёхугольника соединить между собой отрезком, то весь отрезок будет лежать внутри многоугольника. Для невыпуклого четырёхугольника это не выполняется (рисунок ниже).

Диагонали выпуклого четырёхугольника лежат внутри него и пересекаются. Одна из диагоналей невыпуклого четырёхугольника лежит снаружи, а другая внутри него, и эти диагонали не пересекаются.

Определения для четырехугольника

  • Данный четырёхугольник обозначается ABCD.
  • Точки A, B, C, D называются его вершинами, а отрезки AB, BC, CD, DA – его сторонами.
  • Смежные стороны – соседние стороны, имеющие общую вершину. Пары смежных сторон: AB и AD, AB и BC, BC и CD, CD и AD.
  • Противолежащие стороны – несмежные стороны, не имеющие общих вершин. Пары противолежащих сторон: AB и CD, BC и AD.
    Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины. AC и BD – диагонали четырехугольника ABCD.

Виды четырехугольников:

Если рассмотреть схему, то каждый следующий четырехугольник обладает всеми свойствами предыдущего.  Поэтому запоминать надо совсем немного.

Трапеция — это четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны. Трапеции бывают: произвольная, равносторонняя, прямоугольная.

Параллелограмм — это четырехугольник у которого противолежащие стороны параллельны. В параллелограмме:
— противоположные стороны и противоположные углы равны.
— диагонали параллелограмма делятся точкой пересечения пополам.
Соответственно, если  четырехугольник обладает этими свойствами, то он является параллелограммом.

Прямоугольник — это параллелограмм, у которого все углы прямые. Прямоугольник является частным случаем параллелограмма, поэтому обладает всеми его свойствами.

Ромб — это параллелограмм, у которого все стороны равны. Ромб является частным случаем параллелограмма, поэтому обладает всеми его свойствами. В ромбе:
— противоположные углы равны,
— диагонали точкой пересечения делятся пополам,
— диагонали взаимно перпендикулярны,
— диагонали ромба являются биссектрисами углов.

Квадрат — это прямоугольник, у которого все стороны равны. Квадрат является частным случаем прямоугольника и частным случаем ромба, поэтому обладает всеми их свойствами. В квадрате:
— все углы равны 90 градусов,
— диагонали точкой пересечения делятся пополам,
— диагонали взаимно перпендикулярны,
— диагонали  являются биссектрисами углов,
— диагонали равны.

Свойства углов четырехугольника

  • Сумма углов четырёхугольника равна 360°
  • Сумма внешних углов четырехугольника, взятых по одному при каждой вершине, равна 360°.
  • Не существует четырёхугольников, у которых все углы острые или все углы тупые.
  • Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов.

Свойства сторон четырехугольника

  • Каждая сторона четырехугольника меньше суммы всех его других сторон.
  • Сумма диагоналей меньше его периметра.

Четырехугольник и окружность

Четырехугольник вокруг окружности.

  • Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.
  • В четырёхугольник можно вписать окружность, если суммы его противолежащих сторон равны (AB+CD=AD+BC).
  • Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Четырехугольник внутри окружности.

  • Вписанный четырёхугольник — это четырёхугольник, все вершины которого лежат на одной окружности. Эта окружность называется описанной.
  • Вокруг четырёхугольника можно описать окружность, если сумма двух его противоположных углов равна 180°.
  • Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.
  • Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон (AC*BD=AB*CD+AD*BC).

Частные случаи:

  • Параллелограмм, вписанный в окружность – это прямоугольник, центр окружности совпадает с точкой пересечения диагоналей.
  • Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
  • Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной.

Диагонали четырехугольника

  • Диагонали выпуклого четырёхугольника пересекаются в одной точке.
  • Две противоположные стороны четырёхугольника перпендикулярны тогда и только тогда, когда сумма квадратов двух других противоположных сторон равна сумме квадратов диагоналей.
  • Диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов противоположных сторон равны.

Периметр и площадь четырехугольника

Периметр четырёхугольника равен сумме длин всех его сторон: где a, b, c, d – длины сторон четырёхугольника.

Площадь произвольного выпуклого четырёхугольника можно найти по формуле: где d1 и d2— диагонали четырёхугольника, a — угол между диагоналями.

Площадь вписанного четырёхугольника может быть вычислена по формуле: где a, b, c, d – длины сторон четырёхугольника, p=(a+b+c+d)/2 – его полупериметр.

Площадь описанного четырёхугольника равна произведению его полупериметра на радиус вписанной окружности:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти инн индивидуального предпринимателя по фио
  • Как исправить жесткое мясо при тушении на сковороде
  • Как найти судебный приказ по дате
  • Как исправить излишне удержанный ндфл в 1с зуп
  • Как на английском составить утвердительный вопрос

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии