Как найти сцепление грунта

Удельное сцепление грунта

Сцепление грунта (с) – это один из параметров, от которого зависит прочность грунта при сдвиге. Его вычисляют по формуле соотношением вертикального и касательного напряжений или определяют на графике. Измеряется сцепление в килопаскалях (кПа).

  • Удельное сцепление грунта

  • От чего зависит сцепление грунта и на что оно влияет

  • Методы определения удельного сцепления

  • Лабораторные методы испытания

  • Одноплоскостный срез

  • Трехосное сжатие

  • Полевые методики испытаний

  • Готовые показатели

  • Практическое значение показателя

На показатель влияет тип химических связей в породе. Свойство характерно для глинистых и скальных грунтов. Устойчивость к сдвигу несвязных дисперсных грунтов обеспечивает трение между отдельными зернами, поэтому сцепление в этом случае играет минимальную роль.

От чего зависит сцепление грунта и на что оно влияет

Сцепление обеспечивают химические связи между молекулами минеральных компонентов грунтов.

Основные разновидности связей:

  • Коллоидные – это электрохимические контакты между молекулами минералов и воды
  • Цементационные – связи между частицами и минералами, которые играют роль цемента
  • Кристаллизационные – связи между отдельными молекулами, образующими кристаллические решетки

Наименьшей силой обладают коллоидные или водно-коллоидные связи. Больше всего на них влияет влажность. Но это единственный тип структурных связей, способный восстанавливаться после разрушения. Встречаются они в глинистых грунтах.

Цементационные связи достаточно прочные. Они характерны для литифицированных (окаменевших) глин и некоторых скальных грунтов. После разрушения такие связи не восстанавливаются. Но они могут опять возникать в массивах через несколько десятилетий или столетий.

Кристаллизационные связи присутствуют в скальных грунтах и некоторых глинистых. Они прочные, но необратимо разрушаются при нагрузках. Кристаллические решетки в обычных условиях не восстанавливаются, так как для их образования нужны высокие температуры и давление.

Прочные контакты между элементами обеспечивают упругость грунта – способность после уменьшения нагрузки восстанавливать свой объем и форму. Коллоидные контакты даже после смещения частично возобновляются. Это увеличивает способность грунтов сопротивляться сдвигу.

На сцепление влияют и другие характеристики:

  • Пористость и плотность
    Сцепление рыхлого грунта с большим количеством пор всегда слабее.
  • Влажность
    При высокой влажности вокруг мелких глинистых частиц образуются пленки воды. Чем больше их толщина, тем слабее связи между зернами и агрегатами, а значит – и сцепление. Влажность влияет в основном на показатели глинистого грунта.
  • Минеральный состав
    Минералы грунта определяют тип связей между его химическими элементами. Самые прочные они у магматических и метаморфических пород, образованных в недрах земли при высоких температурах и давлении. Несколько ниже сцепление у осадочных скальных и глинистых связных грунтов.

Сцепление бывает:

  • Структурным – оно обеспечивается химическими контактами между отдельными элементами грунта; присутствует в нем изначально
  • Удельным – оно определяется во время испытаний на сдвиг и напрямую зависит от вертикальных нагрузок

Сцепление обеспечивает устойчивость грунта при воздействии касательных сдвигающих сил, влияет на прочность и несущую способность. При высоком показателе грунтовый массив становится надежным основанием под фундаментом или дорожным полотном.

Методы определения удельного сцепления

Показатель определяют в ходе испытаний грунтов на устойчивость к сдвигу, в лаборатории или полевых условиях.

Лабораторные методы испытания

В лаборатории пользуются несколькими методами:

  • Одноплоскостным срезом – быстрым неконсолидированным и медленным консолидировано-дренированным
  • Трехосным сжатием – неконсолидировано-недренированным, консолидировано-недренированным, консолидировано-дренированым

При использовании консолидированных методик грунт дополнительно уплотняют. При дренированном испытании влагу отводят через систему дренажей, при недренированном берут водонасыщенный материал или с естественной влажностью.

Подробнее о лабораторных методиках вы можете прочитать в статье Прочность грунта на сдвиг. Здесь же мы расскажем, как вычисляется удельное сцепление.

Одноплоскостный срез

Этим методом определяют два типа напряжения – нормальное, или вертикальное (σ) и горизонтальное, или касательное (τ). Их максимальные значения соответствуют силе давления, при которой происходит сдвиг или смещение частиц относительно друг друга. Для определения сцепления нужно провести несколько опытов. Полученные данные отмечают на графике. Участок, который находится между нулевой точкой (местом пересечения осей) и местом начала кривой на оси ординат, соответствует силе сцепления.

Показатель вычисляют и по формуле:

Формула для вычисления удельного сцепления при одноплоскостном срезе

Когда обрабатывают экспериментальные точки графика, проводят более сложные вычисления:

Формула для вычисления удельного сцепления при помощи сложной формулы

Трехосное сжатие

По этой методике вычисляют эффективное значение удельного сцепления (с’).
Используется уравнение:

Формула для вычисления эффективного удельного сцепления при трехосном сжатии

Полевые методики испытаний

Испытание грунтов в массиве дает более приближенные к естественным условиям результаты. Чаще всего это делают в карьерах, подземных выработках, строительных котлованах перед закладкой фундамента.

Сцепление в полевых условиях определяют методом среза образцов. Прямо в выработке с помощью кольца от массива отделяют определенный объем грунта. Затем с помощью установки с анкерным устройством делают срез. Деформации фиксируют измерительными приборами. Детальнее о способе проведения опыта вы можете прочитать в статье Угол внутреннего трения грунта.

Удельное сцепление определяется после построения графика. На нем отмечают данные касательных и вертикальных напряжений, полученные на одном и том же массиве не менее, чем в трех опытах. Величиной сцепления будет отрезок на оси ординат от нулевой точки до начала линии графика.

Готовые показатели

На практике часто пользуются уже готовыми данными для разных типов грунтов. Они прописаны в СП 22.13330.2016. Показатели сцепления представлены в таблицах.

Таблица удельного сцепления песков разной крупности

Таблица удельного сцепления песков разной крупности

Таблица удельного сцепления глинистых грунтов

Таблица удельного сцепления глинистых грунтов

Как мы видим из приведенных таблиц, у песков сцепление очень слабое. В глинистых грунтах показатель намного выше, но он уменьшается с увеличением пористости и текучести.

Практическое значение показателя

Удельное и структурное сцепление больше всего влияет на прочность скальных и глинистых грунтов при сдвиге. У песков этот параметр больше зависит от угла внутреннего трения. Сцепление лишь незначительно влияет на прочность пылеватых и мелких песков.

Сцепление можно определить в ходе опытов или взять готовую цифру из нормативных документов. Показатель используется для расчета напряжений при испытаниях на сдвиг.

Информация о сцеплении грунтов необходима при:

  • Закладке фундаментов и возведении домов любого типа
  • Строительстве промышленных объектов
  • Прокладке автомобильных трасс, железных дорог, взлетных полос аэродромов
  • Прокладке грунтовых дорог, обустройстве пешеходных зон
  • Строительстве дамб, плотин, трубопроводов, путепроводов
  • Разработке карьеров и подземных шахт
  • Укреплении речных берегов и горных склонов
  • Прогнозировании горных обвалов, размыва берегов во время наводнений

Подробно о всех перечисленных пунктах, а также о расчете напряжений при испытаниях на сдвиг вы можете прочитать в статье Прочность грунта на сдвиг.

Определение удельного сцепления и других прочностных характеристик грунта требует опыта и специального оборудования. Поэтому услугу по определению этого показателя нужно заказывать у специалистов.

  • Печать

Удельное сцепление грунта

Удельное сцепление грунта — прочностная характеристика, определяемая как сопротивление структурных связей нескальных грунтов любому перемещению связываемых ими частиц.

Основные характеристики параметра

За нормативное значение удельного сцепления грунта принимают величину прямолинейной зависимости сопротивления срезу от давления, рассчитанное методом наименьших квадратов.

Обозначается сn или просто с, измеряется в кПа (кгс/см2). Определяется по формуле:

c = τ – р tg(φ),

где τ – сопротивление сдвигу, р – вертикальное давление, tg(φ) – коэффициент внутреннего трения.

Величина зависит от структурной прочности просадочного грунта (песчаные и пылевато-глинистые почвы), его вида, степени влажности и в некоторой мере от плотности.

Нормативные значения удельного сцепления сn для песчаных и пылевато-глинистых нелёссовых грунтов четвертичных отложений приведены в таблицах на сайте elima.ru

Применение показателя

По удельному сцеплению определяется прочность нескальных грунтов для строительства и эксплуатации зданий и сооружений, построенных на них.

Для вычисления несущей способности основания удельное сцепление грунта желательно рассчитывать экспериментально, но можно применять табличные данные, приведенные в ссылке выше.

Более подробно об удельном сцеплении грунта читайте в методическом пособии «Механика грунтов».

Сопротивление грунта срезу характеризуется касательными напряжениями в предельном состоянии, когда наступает разрушение грунта [4]. Соотношение между предельными касательными τ и нормальными к площадкам сдвига σ напряжениями выражается условием прочности Кулона-Мора

τ = σ tgφ + c,

(1.5)

где φ — угол внутреннего трения; с — удельное сцепление.

Характеристики прочности φ и с определяют в лабораторных и полевых условиях. Для предварительных, а также окончательных расчетов оснований зданий и сооружений II и III класса допускается принимать значения φ и с по табл. 1.17 и 1.18.

ТАБЛИЦА 1.17. НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИИ c, кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ, град, ПЕСЧАНЫХ ГРУНТОВ

Песок Характеристика Значения с и φ при коэффициенте пористости e
0,45 0,55 0,65 0,75
Гравелистый и крупный с
φ
2
43
1
40
0
38

Средней крупности с
φ
3
40
2
38
1
35

Мелкий с
φ
6
38
4
36
2
32
0
28
Пылеватый с
φ
8
36
6
34
4
30
2
26

Примечание. Приведенные в таблице значения относятся к кварцевым пескам (см. табл. 1.12).

ТАБЛИЦА 1.18. НОРМАТИВНЫЕ ЗНАЧЕНИЯ УДЕЛЬНЫХ СЦЕПЛЕНИЯ c, кПа, И УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ, град, ПЫЛЕВАТО-ГЛИНИСТЫХ ГРУНТОВ ЧЕТВЕРТИЧНЫХ ОТЛОЖЕНИЙ

Грунт Показатель текучести Характеристика Значения с и φ при коэффициенте пористости е
0,45 0,55 0,65 0,75 0,85 0,95 1,05
Супесь 0 < IL ≤ 0,25 с
φ
21
30
17
29
15
27
13
24



0,25 < IL ≤ 0,75 с
φ
19
28
15
26
13
24
11
21
9
18


Суглинок 0 < IL ≤ 0,25 с
φ
47
26
37
25
31
24
25
23
22
22
19
20

0,25 < IL ≤ 0,5 с
φ
39
24
34
23
28
22
23
21
18
19
15
17

0,5 < IL ≤ 0,75 с
φ


25
19
20
18
16
16
14
14
12
12
Глина 0 < IL ≤ 0,25 с
φ

81
21
68
20
54
19
47
18
41
16
36
14
0,25 < IL ≤ 0,5 с
φ


57
18
50
17
43
16
37
14
32
11
0,5 < IL ≤ 0,75 с
φ


45
15
41
14
36
12
33
10
29
7

Примечание. Значения с и φ не распространяются на лёссовые грунты.

1.5.1. Определение прочностных характеристик в лабораторных условиях

В практике исследований грунтов применяют метод среза грунта по фиксированной плоскости в приборах одноплоскостного среза. Для получения φ и с необходимо провести срез не менее трех образцов грунта при различных значениях вертикальной нагрузки. По полученным в опытах значениям сопротивления срезу τ строят график линейной зависимости τ = f(σ) и находят угол внутреннего трения φ и удельное сцепление с (рис. 1.5).

Зависимость сопротивления срезу грунта от нормального напряжения

Рис. 1.5. Зависимость сопротивления срезу грунта τ от нормального напряжения σ

Различают две основные схемы опыта: медленный срез предварительно уплотненного до полной консолидации образца грунта (консолидировано-дренированное испытание) и быстрый срез без предварительного уплотнения (неконсолидировано-недренированное испытание).

Значения φ и с, полученные по методике медленного консолидированного среза, используются для определения расчетного сопротивления грунта, а также для оценки несущей способности основания, находящегося в стабилизированном состоянии (все напряжения от внешней нагрузки восприняты скелетом грунта). Значения φ и с, полученные по методике быстрого неконсолидированного среза, используются для определения несущей способности медленно уплотняющихся водонасыщенных суглинков и глин, илов, сапропелей, заторфованных грунтов и торфов. В таких грунтах возможно возникновение нестабилизированного состояния (наличие избыточного давления в поровой воде) вследствие их медленной консолидации или быстрой передачи нагрузки от сооружения (силосы, резервуары, склады сырья и т.п.).

Метод определения характеристик прочности φ и с в условиях трехосного сжатия в большей степени соответствует напряженному состоянию грунта в основании сооружения. Испытание проводится на приборе, в котором образец грунта подвергается всестороннему гидростатическому давлению и добавочному вертикальному (осевому). Для определения прочностных характеристик грунтов проводят серию испытаний при различных соотношениях давлений, доводя образец до разрушения, в результате каждого опыта получают значения наибольшего σ1 и наименьшего σ3 главных нормальных напряжений в момент разрушения. Графически зависимость между главными касательными и нормальными напряжениями представляют с помощью кругов Мора, каждый из которых строится на разности напряжений σ1 и σ3(рис. 1.6).

Круги Мора по результатам испытания грунта в приборе трехосного сжатия

Рис. 1.6. Круги Мора по результатам испытания грунта в приборе трехосного сжатия

Общая касательная к этим кругам удовлетворяет условию прочности (1.5) и позволяет определить характеристики φ и с.

В приборах трехосного сжатия проводят следующие испытания:

  • – недренированное — дренирование воды из образца грунта отсутствует в течение всего опыта;
  • – консолидировано-недренированное — дренирование обеспечивается в процессе приложения гидростатического давления и образец полностью уплотняется, в процессе приложения осевых нагрузок дренирование отсутствует;
  • – дренированное — дренирование обеспечивается в течение всего испытания.

Недренированные испытания водонасыщенных грунтов проводят для определения прочностных характеристик, выражаемых через общие (тотальные) напряжения. Дренированные испытания проводят для определения прочностных характеристик, выражаемых через эффективные напряжения. При этом в процессе опыта должно быть достигнуто полностью консолидированное состояние грунта. Прочностные характеристики грунтов, выражаемые через эффективные напряжения, могут быть определены также для образцов грунта, испытанных в неполностью консолидированном состоянии, при условии измерения в процессе опыта давления в поровой воде.

Количественной характеристикой прочности скальных грунтов является предел прочности на одноосное сжатие Rc, определяемый раздавливанием образца грунта и вычисляемый по формуле

Rс = P/F,

(1.6)

где Р — нагрузка в момент разрушения образца грунта; F — площадь поперечного сечения образца грунта.

1.5.2. Определение прочностных характеристик в полевых условиях

Полевое испытание на срез в заданной плоскости целика грунта, заключенного в кольцевую обойму, аналогично лабораторному испытанию на срез в одноплоскостных срезных приборах. Испытания проводятся в шурфах, котлованах, штреках и т.д. Для получения характеристик φ и с определяют сопротивление срезу не менее чем трех целиков при различных вертикальных нагрузках. Схемы испытаний принимаются те же, что и в лабораторных условиях. Значения φ и с находят на основе построения зависимости (1.5), как это показано на рис. 1.5.

Полевое определение характеристик φ и с в стенах буровой скважины проводится методами кольцевого и поступательного среза. Схемы испытаний приведены на рис. 1.7. Эти методы применяются для испытаний грунтов на глубинах до 10 м (кольцевой срез) и до 20 м (поступательный срез). В методе кольцевого среза используется распорный штамп с продольными лопастями, в методе поступательного среза — с поперечными лопастями. С помощью распорного штампа лопасти вдавливаются в стенки скважины и создастся нормальное давление на стенки. В методе кольцевого среза грунт срезается вследствие приложения крутящего момента, а в методе поступательного среза — выдергивающей силы. Для получения φ и с необходимо провести не менее трех срезов при различных нормальных давлениях на стенки скважины и построить зависимость τ = f (σ) (см. рис. 1.5).

Схемы испытаний грунта в скважинах на срез

Рис. 1.7. Схемы испытаний грунта в скважинах на срез

а — кольцевой; б — поступательный; в — вращательный крыльчаткой: 1 — лопасти; 2 — распорные штампы; 3 — скважины; 4 — штанги; 5 — устройства для создания и измерения усилия

Метод вращательного среза с помощью крыльчатки, вдавливаемой в массив грунта или в забой буровой скважины (см. рис. 1.7), позволяет определить сопротивление срезу τ, поэтому его рекомендуется применять при слабых пылевато-глинистых грунтах, илах, сапропелях, заторфованных грунтах и торфах, так как для них угол внутреннего трения практически равен нулю и можно принять с = τ. Испытания крыльчаткой проводят на глубинах до 20 м.

Для определения характеристик прочности в полевых условиях применяют методы выпирания и обрушения грунта в горных выработках. Значения φ и с вычисляют из условий предельного равновесия выпираемого и обрушаемого массива грунта.

Угол внутреннего трения песчаных грунтов может быть определен с помощью статического и динамического зондирования. По данным статического зондирования угол φ имеет следующие значения:

qc, МПа 1 2 4 7 12 20 30
φ, град 26 28 30 32 34 36 38

Значения φ по данным динамического зондирования приведены в табл. 1.19. Для сооружений I и II класса является обязательным сопоставление данных зондирования с результатами испытаний тех же грунтов на срез. Для сооружений III класса допускается определять φ только по результатам зондирования.

ТАБЛИЦА 1.19. ЗНАЧЕНИЯ УГЛОВ ВНУТРЕННЕГО ТРЕНИЯ φ ПЕСЧАНЫХ ГРУНТОВ ПО ДАННЫМ ДИНАМИЧЕСКОГО ЗОНДИРОВАНИЯ

Песок Значения φ, град, МПа при qd, МПа
2 3,5 7 11 14 17,5
Крупный и средней крупности 30 33 33 38 40 41
Мелкий 28 30 33 35 37 38
Пылеватый 28 28 30 32 34 35

Удельное сцепление грунта

Сцепление грунта (с) – это один из параметров, от которого зависит прочность грунта при сдвиге. Его вычисляют по формуле соотношением вертикального и касательного напряжений или определяют на графике. Измеряется сцепление в килопаскалях (кПа).

На показатель влияет тип химических связей в породе. Свойство характерно для глинистых и скальных грунтов. Устойчивость к сдвигу несвязных дисперсных грунтов обеспечивает трение между отдельными зернами , поэтому сцепление в этом случае играет минимальную роль.

От чего зависит сцепление грунта и на что оно влияет

Сцепление обеспечивают химические связи между молекулами минеральных компонентов грунтов.

Основные разновидности связей:

  • Коллоидные – это электрохимические контакты между молекулами минералов и воды
  • Цементационные – связи между частицами и минералами, которые играют роль цемента
  • Кристаллизационные – связи между отдельными молекулами, образующими кристаллические решетки

Наименьшей силой обладают коллоидные или водно-коллоидные связи. Больше всего на них влияет влажность. Но это единственный тип структурных связей, способный восстанавливаться после разрушения. Встречаются они в глинистых грунтах.

Цементационные связи достаточно прочные. Они характерны для литифицированных (окаменевших) глин и некоторых скальных грунтов. После разрушения такие связи не восстанавливаются. Но они могут опять возникать в массивах через несколько десятилетий или столетий.

Кристаллизационные связи присутствуют в скальных грунтах и некоторых глинистых. Они прочные , но необратимо разрушаются при нагрузках. Кристаллические решетки в обычных условиях не восстанавливаются, так как для их образования нужны высокие температуры и давление.

Прочные контакты между элементами обеспечивают упругость грунта – способность после уменьшения нагрузки восстанавливать свой объем и форму. Коллоидные контакты даже после смещения частично возобновляются. Это увеличивает способность грунтов сопротивляться сдвигу.

На сцепление влияют и другие характеристики:

  • Пористость и плотность
    Сцепление рыхлого грунта с большим количеством пор всегда слабее.
  • Влажность
    При высокой влажности вокруг мелких глинистых частиц образуются пленки воды. Чем больше их толщина, тем слабее связи между зернами и агрегатами, а значит – и сцепление. Влажность влияет в основном на показатели глинистого грунта.
  • Минеральный состав
    Минералы грунта определяют тип связей между его химическими элементами. Самые прочные они у магматических и метаморфических пород , образованных в недрах земли при высоких температурах и давлении. Несколько ниже сцепление у осадочных скальных и глинистых связных грунтов.

Сцепление бывает:

  • Структурным – оно обеспечивается химическими контактами между отдельными элементами грунта; присутствует в нем изначально
  • Удельным – оно определяется во время испытаний на сдвиг и напрямую зависит от вертикальных нагрузок

Сцепление обеспечивает устойчивость грунта при воздействии касательных сдвигающих сил, влияет на прочность и несущую способность. При высоком показателе грунтовый массив становится надежным основанием под фундаментом или дорожным полотном.

Методы определения удельного сцепления

Показатель определяют в ходе испытаний грунтов на устойчивость к сдвигу, в лаборатории или полевых условиях.

Лабораторные методы испытания

В лаборатории пользуются несколькими методами:

  • Одноплоскостным срезом – быстрым неконсолидированным и медленным консолидировано-дренированным
  • Трехосным сжатием – неконсолидировано-недренированным, консолидировано-недренированным, консолидировано-дренированым

При использовании консолидированных методик грунт дополнительно уплотняют. При дренированном испытании влагу отводят через систему дренажей , при недренированном берут водонасыщенный материал или с естественной влажностью.

Подробнее о лабораторных методиках вы можете прочитать в статье Прочность грунта на сдвиг. Здесь же мы расскажем, как вычисляется удельное сцепление.

Одноплоскостный срез

Этим методом определяют два типа напряжения – нормальное, или вертикальное (σ) и горизонтальное, или касательное (τ). Их максимальные значения соответствуют силе давления, при которой происходит сдвиг или смещение частиц относительно друг друга. Для определения сцепления нужно провести несколько опытов. Полученные данные отмечают на графике. Участок, который находится между нулевой точкой (местом пересечения осей) и местом начала кривой на оси ординат, соответствует силе сцепления.

Показатель вычисляют и по формуле:

Когда обрабатывают экспериментальные точки графика, проводят более сложные вычисления:

Трехосное сжатие

По этой методике вычисляют эффективное значение удельного сцепления (с’).
Используется уравнение:

Полевые методики испытаний

Испытание грунтов в массиве дает более приближенные к естественным условиям результаты. Чаще всего это делают в карьерах, подземных выработках, строительных котлованах перед закладкой фундамента.

Сцепление в полевых условиях определяют методом среза образцов. Прямо в выработке с помощью кольца от массива отделяют определенный объем грунта. Затем с помощью установки с анкерным устройством делают срез. Деформации фиксируют измерительными приборами. Детальнее о способе проведения опыта вы можете прочитать в статье Угол внутреннего трения грунта.

Удельное сцепление определяется после построения графика. На нем отмечают данные касательных и вертикальных напряжений , полученные на одном и том же массиве не менее, чем в трех опытах. Величиной сцепления будет отрезок на оси ординат от нулевой точки до начала линии графика.

Готовые показатели

На практике часто пользуются уже готовыми данными для разных типов грунтов. Они прописаны в СП 22.13330.2016. Показатели сцепления представлены в таблицах.

Таблица удельного сцепления песков разной крупности

Таблица удельного сцепления глинистых грунтов

Как мы видим из приведенных таблиц, у песков сцепление очень слабое. В глинистых грунтах показатель намного выше, но он уменьшается с увеличением пористости и текучести.

Практическое значение показателя

Удельное и структурное сцепление больше всего влияет на прочность скальных и глинистых грунтов при сдвиге. У песков этот параметр больше зависит от угла внутреннего трения. Сцепление лишь незначительно влияет на прочность пылеватых и мелких песков.

Сцепление можно определить в ходе опытов или взять готовую цифру из нормативных документов. Показатель используется для расчета напряжений при испытаниях на сдвиг.

Информация о сцеплении грунтов необходима при:

  • Закладке фундаментов и возведении домов любого типа
  • Строительстве промышленных объектов
  • Прокладке автомобильных трасс, железных дорог, взлетных полос аэродромов
  • Прокладке грунтовых дорог , обустройстве пешеходных зон
  • Строительстве дамб, плотин, трубопроводов, путепроводов
  • Разработке карьеров и подземных шахт
  • Укреплении речных берегов и горных склонов
  • Прогнозировании горных обвалов, размыва берегов во время наводнений

Подробно о всех перечисленных пунктах, а также о расчете напряжений при испытаниях на сдвиг вы можете прочитать в статье Прочность грунта на сдвиг.

Определение удельного сцепления и других прочностных характеристик грунта требует опыта и специального оборудования. Поэтому услугу по определению этого показателя нужно заказывать у специалистов.

Источник

Удельное сцепление (с) глинистых грунтов (понятие и значение)

Таблица нормативных значения удельного сцепления и угла внутреннего трения глинистых (супесчаных, суглинистых) грунтов, приведена в таблице А.2 приложения СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*.

Выделим нормативные значения удельного сцепления глинистого грунта.

Удельное сцепление грунта, сn, кПа, при коэффициенте пористости, равном

0,45 0,55 0,65 0,75 0,85 0,95 1,05 Супесь твердая и полутвердая от 0 до 0,25 21 17 15 13 — — — Супесь тугопластичная и мягкопластичная от 0,25 до 0,75 19 15 13 11 9 — — Суглинки твердые и полутвердые от 0 до 0,25 47 37 31 25 22 19 — Суглинки тугопластичные от 0,25 до 0,5 39 34 28 23 18 15 — Суглинки мягкопластичные от 0,5 до 0,75 — — 25 20 16 14 12 Глины твердые и полутвердые от 0 до 0,25 — 81 68 54 47 41 36 Глины тугопластичные от 0,25 до 0,5 — — 57 50 43 37 32 Глины мягкопластичные от 0,5 до 0,75 — — 45 41 36 33 29

Для промежуточных значений коэффициентов пористости (е) глинистого грунта, значения удельного сцепления определяются интерполяцией (Онлайн-Интерполятор)

Источник

Угол внутреннего трения грунта

Угол внутреннего трения (ϕ) – это отношение вертикального или нормального напряжения к горизонтальному (касательному). Их совместное действие провоцирует смещение частиц грунта относительно друг друга. На показатель влияет сила трения. Его определяют при испытаниях связных и несвязных дисперсных грунтов на устойчивость к сдвигу.

От чего зависит и на что влияет угол внутреннего трения

Для понимания сути этого параметра нужно представить себе откос, на который действует гравитация. Чем больше крутизна стенок , тем сильнее напряжение, которое возникает из-за силы тяжести. В какой-то момент сцепление между частицами разрушается, и они смещаются.

Наклон стенки по отношению к основанию, при котором она остается стабильной, называют углом естественного откоса. У дисперсных несвязных грунтов он совпадает с углом внутреннего трения. Зерна в них скрепляются только за счет трения между собой. В связных и скальных грунтах устойчивость к сдвигу обеспечивается еще и сцеплением, которое обеспечивается более прочными связями – коллоидными, цементационными и кристаллическими. Детальнее о них вы можете прочитать в статье Прочность грунта.

В таблице даны значения углов естественного откоса для разных типов грунтов.

Угол естественного откоса в природном сложении, утрамбованном и разрыхленном состоянии отличается. В следующей таблице мы разместили значения показателя для некоторых грунтов и пород после их разрыхления.

При испытаниях на сопротивляемость сдвигу на грунт воздействуют две силы – одна направлена сверху вниз (нормальная, или вертикальная нагрузка), другая горизонтально (касательная). Угол внутреннего трения напрямую зависит от вертикального давления. По вектору своего действия она похожа на гравитацию – сила направлена сверху вниз.

Как видно из приведенных выше описаний , показатель находится в прямой зависимости от силы трения.

На нее, в свою очередь, влияют:

  • Текстура поверхности
    Зерна с гладкой поверхностью легче смещаются относительно друг друга.
  • Форма
    Контакты между частицами неправильной формы более прочные, чем между круглыми.
  • Гранулометрический состав
    В мелкозернистых грунтах больше суммарная площадь поверхности элементов. Это значит, что количество контактов между ними тоже больше.
  • Пористость
    В материале с большим количеством пор частицы находятся на большем расстоянии и слабее контактируют между собой. В результате они легче сдвигаются.

Прочность на сдвиг во многом зависит от угла внутреннего трения. Чем большее вертикальное давление может выдержать массив без деформации, перемещения частиц и потери целостности, тем выше его несущая способность.

Дальше мы рассмотрим, как определяется показатель.

Как определить угол внутреннего трения

Испытания грунта на определение исключительно угла внутреннего трения не проводят. Показатель вычисляют опытным путем, во время которого определяется прочность грунтов на сдвиг. Испытания проводятся в лабораторных или полевых условиях.

Лабораторные испытания

Лабораторные методики испытания грунтов описывает ГОСТ 12248-2010.

Они включают:

  • Одноплоскостной срез
  • Трехосное сжатие

Каждый из них также в свою очередь делится на несколько методов.

Одноплоскостной срез может быть:

  • Быстрым неконсолидированным – для водонасыщенных просадочных, глинистых и плодородных грунтов с текучестью менее 0,5
  • Медленным консолидировано-дренированным – для всех остальных грунтов без учета влаги в порах

Трехосное сжатие включает в себя методы:

  • Неконсолидировано-недренированный – для материалов с природным сложением, без отведения влаги в дренаж
  • Консолидировано-недренированный – с насыщенным влагой и р азуплотненным грунтом
  • Консолидировано-дренированный – грунт сначала насыщают влагой и разуплотняют, затем отводят воду через дренаж и повторно уплотняют

Детальнее об этих методиках вы можете прочитать в статье Прочность грунта на сдвиг.

При использовании метода одноплоскостного среза сначала вычисляют вертикальное (σ) и касательное (τ) напряжение по формулам:

Испытания проводятся минимум 3 раза. Полученные цифры отмечают на графике.

Угол внутреннего трения зависит от τ и σ. Он выражается уравнением:

При наличии более прочных связей в грунтах добавляют еще показатель сцепления (с).

Чтобы точно вычислить угол внутреннего трения, обрабатывают экспериментальные данные τ, отмеченные точками на графике.

Затем проводят расчеты по формуле:

При трехосном сжатии вычисляют эффективный угол внутреннего трения (ϕ’).

Методы полевых испытаний

Для определения показателя непосредственно в массиве используется метод среза целиков грунта – небольших образцов, только частично отделенных от массива. Грунт испытывают в строительных котлованах, карьерах, шахтах. Его срезают в заданной фиксированной плоскости , одновременно сжимая сверху вниз. Описание методики можно найти в ГОСТ 20276-2012.

Испытывать можно грунты со следующими параметрами:

  • Естественным сложением и влажностью
  • Насыпные и намывные с любой влажностью
  • Крупнообломочные, с нарушенным сложением, определенными параметрами влажности и плотности

Чтобы найти угол внутреннего трения, опыт повторяют трижды. Срезают грунт в одном месте и на одинаковой глубине.

Оборудование

В исследовании используются такие приборы:

  • Кольцо, диаметр которого по внутреннему ободку 200 мм, а высота составляет его половину
  • Штампы жесткие, которые свободно помещаются в кольце, но плотно прилегают к его стенкам
  • Приспособления для создания давления на грунт
  • Срезающий механизм с анкером; он обеспечивает касательную нагрузку в строго определенной плоскости, с разрешенными колебаниями не более 30 мм
  • Прибор, измеряющий деформации и давление

Испытания проводятся со ступенчатой или непрерывной нагрузкой.

Подготовка к испытаниям

С помощью кольца из массива вырезают образец грунта.

Порядок работы:

  1. Стенки кольца изнутри покрывают жиром.
  2. Грунт разравнивают и ставят на него кольцо , при этом внимательно следят, чтобы оно не перекосилось.
  3. На кольцо надавливают руками или домкратом, чтобы оно вошло в массив. Грунт вокруг обрезают и удаляют.
  4. Когда над ободком появится грунт, его выравнивают. Сверху насыпают слой песка с низкой влажностью, толщиной 1-2 см для глинистого и 3 см для крупнообломочного грунта. Это необходимо для лучшего выравнивания поверхности и контакта со штампом, чтобы нагрузка равномерно распределялась на весь объем грунта.
  5. Под кольцом, между его краем и массивом, оставляют зазор 1-2 см (но не менее половины от наибольшего диаметра зерен и включений грунта). В этом месте будет проходить срез. Крупнообломочные грунты отделяют от массива на 1-2 см ниже кольца, закрывают его и переносят образец к испытательному механизму.
  6. Когда все готово, штамп припасовывают к кольцу и готовят срезной механизм.
  7. Далее измерительный прибор, которым будут фиксировать смещение грунта и уменьшение его высоты, приводят в готовность.

Для проведения опыта выбирают один из трех методов:

  • Медленный консолидированно-дренированный
  • Быстрый неконсолидированный
  • Метод «плашек» на специально подготовленной поверхности

Детальнее о них читайте в продолжении текста.

Медленный консолидировано-дренированный срез

Образец уплотняют штампом. Нужно создать давление (р), при котором грунт будут срезать для определения его сопротивления (τ). Давление увеличивают ступенями, их показатели мы разместили в таблице.

Стабильное давление на каждой ступени выдерживают:

  • Пески и грунты из крупных обломков – 5 мин
  • Глинистые грунты – 30 мин
  • Органические почвы – 60 мин

Последняя ступень выдерживается до момента, когда частицы перестают смещаться, а объем пробы остается одинаковым (наступает стабилизация деформаций). Этот момент наступает приблизительно за одинаковое время у однотипных грунтов.

В таблице показаны цифры давления, при котором происходит стабилизация деформаций при сжатии и срезе.

Когда образец уплотняют, фиксируют его сжатие (изменение высоты, деформацию):

  • У крупнообломочных грунтов данные отмечают в начале и конце промежуточных ступеней. На последней порядок фиксации следующий: первые 30 мин – записывают изменения каждые 10 мин, вторые 30 мин – каждые 15 мин. Дальше фиксацию проводят каждые полчаса , пока высота пробы не перестанет изменяться.
  • При испытании глинистых грунтов на промежуточных ступенях изменения высоты отмечают каждые 10 мин. Порядок фиксации деформаций на последней ступени: первый час – каждые 15 мин, второй час – каждые 30 мин, после этого ежечасно до момента стабилизации высоты.

Когда грунт уплотнен и зазор установлен, переходят к следующему этапу – плавному или ступенчатому срезанию.

При ступенчатом срезе нагрузка по касательной на каждой ступени не должна превосходить вертикальное давление больше, чем на 10%. Деформации замеряют каждые 2 минуты, пока они не стабилизируются.

Стабилизацией считают момент, когда за определенный отрезок времени кольцо перемещается не более, чем на 1 мм. Значения времени для разных типов грунтов даны в таблице выше.

Опыт заканчивается, если после очередного увеличения нагрузки грунтовые пласты резко смещаются по отношению друг к другу (срываются) либо если образец деформирован больше, чем на 10%.

Если грунт срезают непрерывно, деформации также фиксируются каждые 2 минуты. Скорость среза для некоторых разновидностей грунтов подана в таблице.

Непрерывное срезание заканчивают тогда , когда скорость повышается до максимума и начинает снижаться либо возникает деформация, превосходящая 10%.

После окончания опыта с применением любого из описанных способов отбирают часть грунта, чтобы определить влажность.

Неконсолидированный быстрый срез

Быстрым неконсолидированным срезом проводят испытания глинистых грунтов. Вертикальное давление передается в одну ступень. В таблице поданы его значения. Именно при таком давлении будет проводиться срез.

Если грунт под давлением выдавливается из кольца, опыт повторяют со сниженной нагрузкой. В этом случае она может не соответствовать приведенным в таблице данным.

Когда давление достигает нужных цифр, грунт срезают. Сделать это нужно не позднее, чем через 5 минут после начала подачи нагрузки.

При ступенчатом способе среза давление по горизонтали не должно превышать нагрузку по вертикали больше, чем на 10%. Перерывы между ступенями делают в 10-30 с. При непрерывном методе грунт срезают со скоростью 5-20 мм/мин.

Метод «плашек»

Метод применяется на глинистых грунтах, если к объекту предъявляются особые требования. Опыт проводят после завершения испытаний образцов с природной влажностью и естественным сложением. Перед его началом поверхность подготавливают.

Порядок проведения работ:

  1. Все механизмы (кроме анкера), которые остались в земле после предыдущего опыта, извлекают.
  2. Кольцо с его содержимым переворачивают вверх той поверхностью, на которой срезался грунт.
  3. Выемку зачищают и р азравнивают. Участок округляют, его диаметр должен на 20-30 см превосходить диаметр кольца.
  4. Кольцо опять переворачивают и ставят его на выравненный участок.
  5. Кольцо поднимают на 5-10 мм, чтобы между его нижним ободком и массивом получился зазор.
  6. Монтируют оборудование.
  7. Грунт срезают до тех пор, пока его сопротивление сдвигу не достигнет стабильных цифр.

После завершения среза часть оборудования убирают, давление домкрата снижают до ноля. Фиксируют изменение высоты грунтовой пробы. Данные горизонтальных сдвигов берут из предыдущих опытов.

Гидродомкратом, закрепленным на стенке, грунт передвигают на место, которое он занимал до срезания. В этот момент приборы зафиксируют нулевую отметку. Домкрат убирают и проводят опыт методом медленного сдвига.

Обработка результатов

Вычисление результатов после завершения испытаний любым из описанных методов будет одинаковым.

На основании трех проведенных опытов строят график. На оси абсцисс отмечают вертикальное или нормальное напряжение, на оси ординат – касательное. Точки соединяют линией. Затем перпендикулярно оси ординат проводят условную линию. Угол между этой прямой и графиком и будет углом внутреннего трения.

На практике часто польз у ются готовыми значениями угла внутреннего трения для разных грунтов. Они фиксируются при стандартных нагрузках – 1 кг/м2.

Данные угла внутреннего трения разных типов грунтов вы можете найти в таблицах. Они соответствуют требованиям СП 22.13330.2016.

Угол внутреннего трения для песков

Угол внутреннего трения для глинистых грунтов

Практическое применение показателя

Угол внутреннего трения и еще один показатель – сцепление – используются для расчета сопротивления грунтов сдвигу.

Сопротивление сдвигу, или прочность на сдвиг важно знать в таких ситуациях:

  • При постройке зданий
  • При строительстве автомобильных и железных дорог
  • При возведении дамб и плотин
  • При разработке закрытых шахт и открытых карьеров
  • Для прогноза риска оползней в горной местности
  • Для укрепления крутых склонов и берегов рек

Детальнее об этом вы можете узнать в статье Прочность грунта на сдвиг.

Угол внутреннего трения – это один из параметром , определяющий устойчивость грунтов к сдвигу. Вычисляют его после лабораторных или полевых испытаний. На практике часто пользуются готовыми показателями. Для проведения исследований необходима профессиональная техника и опыт. Услугу оказывают геодезические компании. Заказать ее стоит перед началом любого строительства, ведь от качества грунтового основания зависит прочность и долговечность всего здания или дороги.

Источник

При рассмотрении равновесия
отдельной частицы песчаного грунта на
открытом откосе.

φ – угол естественного откоса.

Из рассматриваемого равновесия этой
частицы можно написать следующее
уравнение: f = T/N= (Gsinφ)/(Gcosφ)
=tgφ,T-
сдвигающая сила,S–
удерживающая сила,G–
сила тяжести,N– нормаль
к плоскости сдвига,f–
коэффициент трения.

Под
действием внешней нагрузки в отдельных
точках грунтового массива напряжения
могут превысить связи между частицами.
При этом возникают скольжения и сдвиги
одних частиц или агрегатов по другим и
может нарушиться сплошность грунта,
т.е. прочность его будет превышена. Под
прочностью подразумевается свойство
материала сопротивляться разрушению
или развитию больших пластичных
деформаций, приводящих к недопустимым
искажениям формы тела.

С
– удельное сцепление грунта

— характеризует связность грунта, зависит
от наличия жестких и водно-коллоидных
связей, структуры грунта.

Внутренние сопротивления препятствуют
сдвигу частиц. В идеально сыпучих телах
будет лишь трение, возникающее в точках
контакта частиц. В идеально связных
грунтах (вязкие дисперсные глины)
перемещение частиц будут сопротивления
только внутренних структур связей и
вязкость водно-коллоидных оболочек.
Природные глины обладают как вязкими
(водно-коллоидными) так и жесткими
кристаллическими связями, до тех пор
пока действие напряжений внутренних
связей не преодолены. Глины ведут себя
как твердые тела, обладающие лишь
упругими связями сцепления. Под силами
сцепления будем подразумевать сцепление
структурных связей всякому перемещению
связных частиц независимо от величины
внешнего давления. Если нагрузка будет
такова, что эффективные напряжения
превзойдут прочность жестких структурных
связей. То в точках контакта частиц и
по поверхности их водно-коллоидных
оболочек сдвижению частиц будут
сопротивляться еще оставшиеся и вновь
возникающие водно-коллоидные связи.

Для характеристики сил трения между
частицами внутри массива вводиться
понятие угла внутреннего трения — φи уд. сцепление – С.

tgφ– характеризует
соотношение между нормальным и сдвиговым
напряжениями внутри массива, а С –
сопротивление структурных связей
всякому перемещению.

φ и С – основные прочностные показатели
сопротивления грунта сдвигу.

32. Угол внутреннего трения и удельное сцепление

Для характеристики сил трения между
частицами внутри массива вводиться
понятие угла внутреннего трения — φи уд. сцепление – С.

tgφ– характеризует
соотношение между нормальным и сдвиговым
напряжениями внутри массива, а С –
сопротивление структурных связей
всякому перемещению.

φ и С – основные прочностные показатели
сопротивления грунта сдвигу.

Под
действием внешней нагрузки в отдельных
точках грунтового массива напряжения
могут превысить связи между частицами.
При этом возникают скольжения и сдвиги
одних частиц или агрегатов по другим и
может нарушиться сплошность грунта,
т.е. прочность его будет превышена. Под
прочностью подразумевается свойство
материала сопротивляться разрушению
или развитию больших пластичных
деформаций, приводящих к недопустимым
искажениям формы тела.

С
– удельное сцепление грунта

— характеризует связность грунта, зависит
от наличия жестких и водно-коллоидных
связей, структуры грунта.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как в архиве найти нужное слово
  • Как найти вектор разности двух векторов
  • Подключение по локальной сети ограничено или отсутствует windows xp как исправить
  • Как найти отца которого никогда не знала
  • Стиральная машина аристон ошибка f06 как исправить ошибку

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии