Как найти разность векторов по правилу треугольника

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

  • Сумма векторов

    • Формула сложения векторов

    • Свойства сложения векторов

  • Разность векторов

    • Формула вычитания векторов

  • Примеры задач

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Правило треугольника для сложения векторов

Геометрическая интерпретация:

Суммой a и b является вектор c, начало которого совпадает с началом a, а конец – с концом b. При этом конец вектора a должен совпадать с началом вектора b.

Для сложения векторов также используется правило параллелограмма.

Правило параллелограмма для сложения векторов

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c, совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

ci = ai + bi

Элементы вектора c равняются попарной сумме соответствующих элементов a и b.

Для плоских задач a + b = {ax + bx; ay + by}
Для трехмерных задач a + b = {ax + bx; ay + by; az + bz}
Для n-мерных векторов a + b = {a1 + b1; a2 + b2; … an + bn}

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: (a + b) + c = a + (b + c)

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (-a) = 0

Примечание: Вектор a коллинеарен и равен по длине a, но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Правило треугольника для вычитания векторов

Если из вектора a вычесть b, то получится c, причем должно соблюдаться условие: b + c = a

Формула вычитания векторов

ci = ai – bi

Элементы вектора c равны попарной разности соответствующих элементов a и b.

Для плоских задач ab = {ax — bx; ay — by}
Для трехмерных задач ab = {ax — bx; ay — by; az — bz}
Для n-мерных векторов ab = {a1 — b1; a2 — b2; … an — bn}

Примеры задач

Задание 1
Вычислим сумму векторов a = {3; 5} и b = {2; 7}.

Решение:
a + b = {3 + 2; 5 + 7} = {5; 12}.

Задание 2
Найдем разность векторов a = {4; 8; -2} и b = {-1; 9; 5}.

Решение:
ab = {4 – (-1); 8 – 9; -2 – 5} = {5; -1; -7}.

Сложение
и вычитание векторов.

Сумма
двух векторов. Законы сложения векторов. Правило параллелограмма.

     Представим себе такую ситуацию.
Направляясь из школы домой, вам захотелось пить и вы решили зайти сначала в
магазин, а затем уже домой. Цель достигнута: вы из школы добрались домой.
Сейчас мы описали принцип первого правила сложения векторов.

Правило треугольника.

     Чтобы найти вектор суммы двух векторов  и , нужно:

1)   совместить параллельным переносом начало вектора  с концом
вектора
;

2)   провести вектор из начала вектора  в конец
вектора
;

3)   получившийся вектор и есть вектор суммы: .

                                              

     Если к вектору  прибавить
нулевой вектор
 по правилу
треугольника, то получим вектор
, т.е.
справедливо равенство: 
.

Утверждение. Если  и  –
произвольные точки, то
.

Например, .

Сложение векторов подчиняется алгебраическим законам.

ТЕОРЕМА.
Для любых векторов  и  справедливы
равенства:

                      (переместительный
закон)

                      (сочетательный
закон).

                                          
Дано: 

                                 
Доказать: 1)  

                                                     2)  

Доказательство.

Доказательство теоремы в случае, когда
векторы коллинеарны достаточно простое. Его вы можете провести самостоятельно.
Мы рассмотрим случай, когда данные векторы неколлинеарны.

1). Отметим произвольную точку  и отложим от этой точки
вектор
. Воспользуемся правилом
треугольника и прибавим к нему вектор
. Вектором суммы этих двух
векторов является вектор
. (Рисунок слева).

Теперь от точки  и отложим вектор . По правилу треугольника
прибавим к нему вектор
. Вектором суммы этих двух
векторов является вектор
. (Рисунок справа).

 – параллелограмм и точка  совпадает с точкой . Значит, , т.е.

2). От точки  отложим вектор , от точки  отложим вектор , а от точки  – вектор . Найдём суммы векторов по
правилу треугольника.

Теорема доказана.

     При доказательстве первой формулы получился параллелограмм,
причём, из точки
 выходят два вектора  и , а вектор их суммы является
диагональю параллелограмма. На основе этого возникает второе правило
геометрического сложения векторов.

Правило параллелограмма.

     Чтобы найти вектор суммы двух векторов  и , нужно:

1)   совместить параллельным переносом начала векторов  и  ;

2)      на этих векторах достроить параллелограмм;

3)   вектором суммы   является
вектор, который лежит на диагонали параллелограмма, имеющий своё начало в
начале исходных векторов.

Сумма
нескольких векторов.

     Сложение нескольких векторов происходит по принципу правила
треугольника. Складываются два вектора, к вектору суммы прибавляется следующий
вектор и т.д. Приведём пример.

Сложить векторы .

Отметим точку  и отложим от неё вектор . Прибавим к нему вектор  по правилу треугольника. . Теперь к вектору  прибавим вектор . . К вектору  прибавляем вектор . . Осталось к вектору  прибавить вектор . .

Итак, . Значит, суммой векторов  является вектор, с началом
в начале первого вектора и концом – в конце последнего. Такое сложение векторов
называется правилом многоугольника.

Правило многоугольника.

     Чтобы найти вектор суммы нескольких  векторов, нужно:

1)      последовательно совместить параллельным переносом начало
последующего вектора с концом предыдущего
;

2)      вектором суммы всех векторов является вектор, с началом в
начале первого вектора и концом – в конце последнего.

Вычитание
векторов.

 Определение. Разностью
двух векторов
 и  называется такой вектор , что при
сложении его с вектором 
 получается
вектор
.

Вычитание
векторов можно производить, руководствуясь двумя понятиями: следствием из
правила треугольника сложения векторов; определением разности двух чисел. Разберём
каждое из них.

    
Сложим векторы
 и  по правилу треугольника. По
рисунку видно, что
. Отсюда,  и . Значит, разность двух
векторов можно составить, совмещая их начала, либо совмещая их концы. Отсюда
два правила:

I правило
вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно:

1)      совместить параллельным переносом начала этих векторов;

2)      вектором разности  является вектор с началом в конце второго вектора
и концом в конце первого вектора.

II правило
вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно:

1)      совместить параллельным переносом концы этих векторов;

2)      вектором разности  является вектор с началом в начале первого
вектора и концом в начале второго вектора.

Далее, из алгебры мы знаем, что для того, чтобы
из числа
 вычесть
число
, нужно к числу  прибавить
число, противоположное числу
, т.е. . Такое же
правило справедливо и для векторов.

ТЕОРЕМА.
Для любых векторов  справедливо
равенство:

                                                  

  

                                    Дано: 

                           Доказать:

Доказательство.

1. Найдём разность векторов  по
I правилу. Вектором разности является
вектор
 (рисунок слева). А теперь
найдём сумму векторов
 по правилу
треугольника, где
 – вектор,
противоположный вектору
. Вектором
суммы является вектор
 (рисунок
справа). Не трудно заметить, что
. Они сонаправлены и имеют
одинаковые модули.

2. А теперь докажем то же самое аналитически. По определению
разности
векторов,

Что и требовалось доказать.

Из этой теоремы следует третье правило
вычитания векторов.

III правило
вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно к первому вектору прибавить вектор, противоположный
второму.

Используя это правило вычитания векторов,
способ сложения векторов выбирается произвольно.

1. Вектор  является суммой векторов  и . Определите, какой из четырёх рисунков верный.

2. Проведите векторы . Какая геометрическая фигура у вас
получилась?

3. Вектор  является разностью векторов  и . Определите, какой из четырёх рисунков
верный.

4. Вектор  является суммой векторов  и . Определите, какой из четырёх рисунков
верный.

5. Выразите
вектор
 через векторы , используя рисунок.

6. Выразите
вектор
 через векторы , используя рисунок.

7. Упростите выражения:

8. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

9. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

10. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

11. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

12. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

13. В квадрате   проведены диагонали  и  . Укажите номера верных утверждений.

1)  

2)  

3)  

4)  

5)  

6)  

7)  

8)   

14.  – параллелограмм. Найдите сумму векторов .

15.  – прямоугольник. Диагонали  и  пересекаются в точке . Укажите номера верных утверждений.

1)  

2)  

3)  

4)  

5)  

6)  

7)  

8)   

9)  

10)

16.  – параллелограмм. Выразите векторы  и  через векторы  и .

17.  – параллелограмм. Выразите векторы  и  через векторы  и .

18.  – прямоугольник. Выразите векторы  и  через векторы  и .

19.  – параллелограмм. Выразите векторы  и  через векторы  и .

20. Найдите длины
векторов
, изображённых на клетчатой бумаге с
размерами клетки 1 х 1.

21. Две стороны
прямоугольника
 равны 20 и 21. Найдите длину суммы
векторов
 и .

22. Две стороны
прямоугольника
 равны 7 и 24. Найдите длину разности
векторов
 и .

23. На каждом рисунке
найдите длину вектора
 (размеры клетки 1 х 1).

24. На каждом рисунке
найдите длину суммы векторов
 и  (размеры клетки 1 х 1).

25. На каждом рисунке
найдите длину разности векторов
 и , изображённых на клетчатой бумаге с
размерами клетки 1 х 1.

Вычитание векторов


Вычитание векторов

4.6

Средняя оценка: 4.6

Всего получено оценок: 184.

4.6

Средняя оценка: 4.6

Всего получено оценок: 184.

Вычитание векторов часто вызывает проблемы у учеников. Это связано с тем, что вычитание в геометрии нужно выполнять очень осторожно, чтобы не получалось отрицательных чисел. А вектор может быть отрицательным, положительным, нулевым – это вызывает много ошибок, которых можно избежать просто один раз разобравшись в вопросе.

Вектор

Вектор – одно из самых интересных явлений в математике. Это первая величина во всем школьном курсе, которая имеет две характеристики: направление и размер. Вектором называют направленный отрезок, то есть отрезок, у которого стрелкой указали направление движения.

Представьте, вы прошли километр от дома до парка. Если поставить точку в начальном положении и стрелку в конечном, то результат движениям будет являться вектором. Ведь он имеет направление: от дом до парка. При этом у результата движения есть и размер, в нашем случае это один километр.

Ученики часто пугаются отрицательных векторов, но в этом нет ничего страшного. Вектор это направление некого движения, а любое движение относительно, то есть зависит от системы отсчета.

В любую систему отчета входит точка отчета, система координат и прибор для измерения времени.

Если вектор поместить в любую систему координат, даже если это будет простой координатный луч, то вектор может быть направлен в одну сторону с системой координат, но может и в разные. Если вектор и система координат направлены в разные стороны, то вектор будет отрицательным.

Вектор в системе координат

Рис. 1. Вектор в системе координат.

При этом противоположным направлением считается любое в половине плоскости, в другую сторону которой направлен вектор.

Особые случаи векторов

Первый вопрос, который возникает у множества учеников, это возможность существования нуля в системе векторов. Ноль у векторов есть, только это не число, а точка. Любую точку можно считать нулевым вектором. Нулевой вектор появляется в результате сложения коллинеарных разнонаправленных векторов.

Нулевой вектор

Рис. 2. Нулевой вектор.

Коллинеарными называют вектора, которые лежат на одной прямой. Эти векторы могут быть сонаправлены или противоположно направлены. При этом векторы, которые лежат на одной прямой так же считаются коллинеарными, так как любая прямая параллельна самой себе. Это не трудно понять, но запомнить название лучше наизусть, так как в тематике векторов, это определение встречается довольно часто.

Результат сложения или вычитания коллинеарных векторов будет коллинеарным для каждого из начальных построений. Поэтому найти результат такой операции можно арифметически, да и построить треугольник или параллелограмм из коллинеарных векторов не получится.

Вычитание векторов

Результатом вычитания векторов может быть:

  • Вектор. Если вычитание производилось в системе координат, то результат может быть положительным или отрицательным
  • Нулевой вектор или точка
  • Никаких других результатов быть не может

Вычитание векторов

Рис. 3. Вычитание векторов.

Для того, чтобы вычесть один вектор из другого, любой из векторов заменяется на противоположный и выполняется сложение по правилу треугольника или параллелограмма. Таким образом, меняется знак вектора.

В математической записи это выглядит так:

АВ-МР=АВ+РМ – в математической записи первая буква означает начало вектора, вторая – конец. Так можно без чертежа обозначить направление.

Заключение

Что мы узнали?

Мы поговорили о векторах и их частных случаях. Обсудили, как правильно вычитать вектора и что может получиться в результате такого вычитания. Привели пример правильной записи вычитания 2 векторов.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Руслан Галандских

    10/10

  • Нина Трофимова

    5/10

Оценка статьи

4.6

Средняя оценка: 4.6

Всего получено оценок: 184.


А какая ваша оценка?

Вычитание векторов

Содержание:

  • Как происходит вычитание векторов
  • Как производится вычитание векторов по координатам
  • Основные правила вычисления

    • Правило треугольника
    • Правило параллелограмма
  • Примеры задач на понятие разности векторов

Как происходит вычитание векторов

Определение

Вычитание векторов — это арифметическое действие в геометрии, при котором из одного вектора отнимают другой. 

Чтобы вычесть (overrightarrow b) из (overrightarrow а), нужно найти такой (overrightarrow с), сложение которого с вектором (overrightarrow b) составляло бы (overrightarrow а).

Таким образом, формула разности будет выглядеть так:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

(overrightarrow а-overrightarrow b=overrightarrow а+left(-overrightarrow bright))

Если задан (overrightarrow а), то можно построить противоположный ему (-overrightarrow а), равный по длине, но противоположно направленный. Тогда происходит сведение двух противоположно направленных векторов к нулевому:

(overrightarrow а+left(-overrightarrow аright)=0)

Как производится вычитание векторов по координатам

Если необходимо произвести вычитание векторов по координатам, то следует просто вычесть соответствующие точки. То есть если из (overrightarrow а) отнимается (overrightarrow b), то из X1 отнимаем X2, из Y1 Y2 и из Z1 Z2.

Проиллюстрируем координатное пространство: 

Вычитание векторов по координатам

 

Основные правила вычисления

Для того, чтобы найти значение разности векторов, можно использовать несколько способов.

Правило треугольника

Чтобы графически продемонстрировать разность, необходимо отложить от произвольной точки вектор (overrightarrow а), из его начала (overrightarrow b). Тогда вектор, начало которого совпадает с концом ( overrightarrow b), а конец — с концом (overrightarrow a), и будет искомым вектором разности (overrightarrow a;-;overrightarrow b). Проиллюстрируем это:

Правило треугольника

 

Правило параллелограмма

Если два неколлинеарных, то есть непараллельных вектора (overrightarrow а) и (overrightarrow b) имеют общее начало, то их разностью является вектор, совпадающий с диагональю параллелограмма, построенного на (overrightarrow а) и (overrightarrow b), причем начало этой диагонали совпадает с концом (overrightarrow b), а конец — с концом (overrightarrow а)

Если векторы (overrightarrow а) и (overrightarrow b) заданы в некотором промежутке:

(overrightarrow a=left(а_1;а_2right),;overrightarrow b=left(b_1;b_2right))

то, чтобы найти координаты их разности (overrightarrow a;-;overrightarrow b), необходимо от точек (overrightarrow a) отнять соответствующие точки (overrightarrow b):

(overrightarrow a;-;overrightarrow b=left(a_1;a_2right)-left(b_1;b_2right)=left(a_1-b_1;a_2-b_2right))

Проиллюстрируем правило многоугольника:

Правило параллелограмма

 

Примеры задач на понятие разности векторов

Задача 1

Дано

(overrightarrow a;=left(2;-1right),;overrightarrow b=left(0;2right))

Найти: (overrightarrow с=2overrightarrow a-3overrightarrow b;)

Решение

Найдем координаты (2overrightarrow a) и (3overrightarrow b). Для этого умножим каждую на два и три: 

(2overrightarrow а=2timesleft(2;-1right)=left(2times2;2timesleft(-1right)right)=left(4;-2right), 3overrightarrow b=3timesleft(0;2right)=left(3times0;3times2right)=left(0;6right))

Тогда искомый вектор: 

(overrightarrow с=2overrightarrow a-3overrightarrow b=left(4;-2right)-left(0;6right)=left(4-0;;-2-6right)=left(4;-8right))

Ответ: (overrightarrow с=left(4;-8right).)

Задача 2

Дано

(Аleft(1;-1;0right),;Вleft(2;3;-1right),;Сleft(0;-1;0right),;Dleft(1;0;2right))

Найти: координаты (overrightarrow{AB}-overrightarrow{CD}.)

Решение

Для начала найдем проекции (overrightarrow{AB}) и (overrightarrow{CD}).

Для этого от координат конца вектора, то есть точек B и D, нужно отнять соответствующие проекции его начала, то есть точек А и С. 

(overrightarrow{AB}=left(2-1;3-left(-1right);-1-0right)=left(1;4;-1right),;overrightarrow{CD}=left(1-0;0-left(-1right);2-0right)=left(1;1;2right))

Тогда для нахождения координат разности (overrightarrow{AB}-overrightarrow{CD}), от координат первого вычтем координаты второго:

(overrightarrow{AB}-overrightarrow{CD}=left(1;4;-1right)-left(1;1;2right)=left(1-1;4-1;-1-2right)=left(0;3;-3right))

Ответ: (overrightarrow{AB}-overrightarrow{CD}=left(0;3;-3right))

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 4)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec <0>)

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( <- , — , — > right) )

Умножение вектора на число

Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .

Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:

Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;

Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )

Обозначение: ( overrightarrow=koverrightarrow ) .

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Геометрическая интерпретация:

Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .

Для сложения векторов также используется правило параллелограмма.

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

Элементы вектора c равняются попарной сумме соответствующих элементов a и b .

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач a + b = x + bx; ay + by>
Для трехмерных задач a + b = x + bx; ay + by; az + bz>
Для n-мерных векторов a + b = 1 + b1; a2 + b2; . an + bn>

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: ( a + b ) + c = a + ( b + c )

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (- a ) = 0

Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:

Формула вычитания векторов

Элементы вектора c равны попарной разности соответствующих элементов a и b .

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач a — b = x — bx; ay — by>
Для трехмерных задач a — b = x — bx; ay — by; az — bz>
Для n-мерных векторов a — b = 1 — b1; a2 — b2; . an — bn>

Примеры задач

Задание 1
Вычислим сумму векторов и .

Задание 2
Найдем разность векторов и .

Сложение векторов

Сумма векторов

Свойства сложения векторов:

Для любых векторов

3) свойство прибавления нулевого вектора:

4) сумма противоположных векторов равна нулевому вектору:

Достаточно сравнить координаты векторов, стоящих в левой и правой частях этих равенств:

Так как соответствующие координаты равны, то эти векторы равны.

(О сложении векторов)

Каковы бы ни были точки A, B, C, имеет место векторное равенство:

Что и требовалось доказать.

Правило треугольника построения суммы двух векторов

Чтобы построить сумму двух векторов по правилу треугольника, надо от конца одного вектора отложить другой вектор и провести вектор от начала первого к концу второго вектора.

Например,

(то есть это правило следует из теоремы о сложении векторов).

Правило параллелограмма построения суммы двух векторов

Чтобы построить сумму двух векторов по правилу параллелограмма, надо отложить эти векторы от общего начала. Сумма векторов есть диагональ параллелограмма, построенного на этих векторах и имеющая с ними общее начало.

Например,

Правило параллелограмма построения суммы векторов применяется лишь для неколлинеарных векторов.

При любом способе построения суммы неколлинеарных векторов получим одинаковый результат.

Построить сумму векторов

1) Чтобы построить сумму векторов по правилу треугольника, отложим от конца вектора

Сумма этих векторов равна вектору, проведённому от начала первого вектора (a) к концу второго (b).

2) Чтобы построить сумму векторов по правилу параллелограмма, отложим векторы

от общего начала.

Достроим на этих векторах параллелограмм.

Сумма

равна вектору, лежащему на диагонали параллелограмма и имеющему с ними общее начало.

1) Сумма двух сонаправленных коллинеарных векторов равна вектору, сонаправленному этим векторам, длина которого равна сумме длин данных векторов.

2) Сумма двух противоположно направленных векторов равна вектору, направление которого совпадает с направлением вектора, модуль которого больше, а длина равна разности этих векторов.

Фактически в обоих случаях мы используем правило треугольника сложения векторов:

от конца первого вектора откладываем вектор, равный второму, и строим сумму как вектор в направлении от начала первого вектора к концу второго.

Из неравенства треугольника следует ещё два свойства сложения векторов:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти свои лайки на ютубе
  • Как составить план для изложения по русскому языку 4 класс
  • Как найти площадь прямоугольника через диагональ угол
  • Как найти мой открытый порт
  • Потеряла папку с документами как найти

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии