Кому и для чего будет полезна статья?
- Статья о задачах на движение полезна учащимся 4 класса, родителям и учителям.
- Помогает развить логическое мышление и математические навыки.
- Предоставляет примеры и объяснения простых задач на движение.
- Улучшает понимание концепций расстояния, времени и скорости.
- Дает полезные советы и подходы к решению задач.
- Помогает учителям подготовить уроки и объяснить материал ученикам.
- Способствует активному и интересному изучению физики и математики.
- Развивает навыки и готовит к дальнейшему изучению наук.
Существует несколько типов задач на движение. Примеры решения всех типов задач с пояснениями мы рассмотрим в этой статье.
Задачи на нахождение скорости, времени и расстояния
Ниже вы найдете базовые задачи по теме движения с ответами, которые школьники проходят в 4 классе.
Скорость
Рассмотрим простую задачу на движение в 4 классе:
Андрей пробежал расстояние 200 метров за 40 секунд. Какова была его скорость?
Решение:
Для решения задачи используем формулу скорости:
Скорость = Расстояние / Время
В данной задаче известны расстояние (200 метров) и время (40 секунд). Подставляем эти значения в формулу:
Скорость = 200 м / 40 с = 5 м/с
Таким образом, скорость Андрея равна 5 метров в секунду.
Время
Рассмотрим простую задачу на нахождение времени в 4 классе:
Вася пробежал расстояние 300 метров со скоростью 10 м/с. За какое время он пробежал это расстояние?
Решение:
Для решения задачи используем формулу времени:
Время = Расстояние / Скорость
В данной задаче известны расстояние (300 метров) и скорость (10 м/с). Подставляем эти значения в формулу:
Время = 300 м / 10 м/с = 30 секунд
Таким образом, Вася пробежал расстояние 300 метров за 30 секунд.
Расстояние
Давай рассмотрим простую задачу на нахождение расстояния в 4 классе:
Петя прошел пешком 15 метров за 5 секунд. Какое расстояние он пройдет за 10 секунд?
Решение:
Для решения задачи используем формулу расстояния:
Расстояние = Скорость × Время
В данной задаче известны скорость (15 метров за 5 секунд) и время (10 секунд). Подставляем эти значения в формулу:
Расстояние = 15 м/с × 10 с = 150 метров
Таким образом, Петя пройдет 150 метров за 10 секунд.
Задачи на движение в одном направлении
Задачи на движении в одном направлении относятся к одному из трех основных видов задач на движение.
Если два объекта выехали из одного пункта одновременно, то, поскольку они имеют разные скорости, объекты удаляются друг от друга. Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:
Если из одного пункта выехал один объект, а спустя некоторое время в том же направлении вслед за ним выехал другой объект, то они могут как сближаться, так и удаляться друг от друга.
Если скорость объекта, движущегося впереди, меньше движущегося вслед за ним объекта, то второй догоняет первого и они сближаются.
Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:
Если скорость объекта, который идет впереди, больше скорости объекта, который движется следом, то второй не сможет догнать первого и они удаляются друг от друга.
Скорость удаления находим аналогично — из большей скорости вычитаем меньшую:
Задачи на скорость сближения
Задача 1
Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?
Решение:
Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалится от города на:
40 · 4 = 160 (км)
Второй автомобиль движется быстрее первого, значит каждый час расстояние между автомобилями будет сокращаться на разность их скоростей:
60 — 40 = 20 (км/ч) – это скорость сближения автомобилей
Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся:
160 : 20 = 8 (ч)
Решение задачи по действиям можно записать так:
1) 40 · 4 = 160 (км) – расстояние между автомобилями
2) 60 — 40 = 20 (км/ч) – скорость сближения автомобилей
3) 160 : 20 = 8 (ч)
Ответ: Второй автомобиль догонит первый через 8 часов.
Задача 2
Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
Решение:
Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов:
5 — 4 = 1 (км/ч)
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого:
5 : 1 = 5 (ч)
Решение задачи по действиям можно записать так:
1) 5 — 4 = 1 (км/ч) – это скорость сближения пешеходов
2) 5 : 1 = 5 (ч)
Ответ: Через 5 часов второй пешеход догонит первого.
Задача 3
Из одного села в одном направлении одновременно выехали два велосипедиста. Скорость одного из них — 15 км/ч, скорость другого — 12 км/ч. Какое расстояние будет через ними через 4 часа?
Решение:
1) 15-12=3 (км/ч) скорость удаления велосипедистов
2) 3∙4=12 (км) такое расстояние будет между велосипедистами через 4 часа.
Ответ: Через 4 часа расстояние между велосипедистами составит 12 км.
Задача 4
Из села на станцию одновременно вышел пешеход и выехал велосипедист. Через 2 часа велосипедист опережал пешехода на 12 км. Найти скорость пешехода, если скорость велосипедиста 10 км/ч.
Решение:
1) 12:2=6 (км/ч) скорость удаления велосипедиста и пешехода
2) 10-6=4 (км/ч) скорость пешехода.
Ответ: Скорость пешехода составляет 4 км/ч.
Задачи на скорость удаления
Задача 1
Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго – 40 км/ч.
- Чему равна скорость удаления между автомобилями?
- Какое расстояние будет между автомобилями через 3 часа?
- Через сколько часов расстояние между ними будет 200 км?
Решение:
Сначала узнаем скорость удаления автомобилей друг от друга, для этого вычтем из большей скорости меньшую:
80 — 40 = 40 (км/ч)
Каждый час автомобили отдаляются друг от друга на 40 км. Теперь можно узнать сколько километров будет между ними через 3 часа, для этого скорость удаления умножим на 3:
40 · 3 = 120 (км)
Чтобы узнать через сколько часов расстояние между автомобилями станет 200 км, надо расстояние разделить на скорость удаления:
200 : 40 = 5 (ч)
Ответ:
- Скорость удаления между автомобилями равна 40 км/ч.
- Через 3 часа между автомобилями будет 120 км.
- Через 5 часов между автомобилями будет расстояние в 200 км.
Движение навстречу друг другу
Если два объекта движутся навстречу друг другу, то они сближаются. Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:
Скорость сближения больше, чем скорость каждого из них.
Задача 1
Из поселка и города навстречу друг другу, одновременно выехали два автобуса. Один автобус до встречи проехал 100 км со скоростью 25 км/час. Сколько километров до встречи проехал второй автобус, если его скорость 50 км/час.
Решение:
1) 100 : 25 = 4 (часа ехал один автобус)
2) 50 * 4 = 200
Решение в виде выражения: 50 * (100 : 25) = 200
Ответ: второй автобус проехал до встречи 200 км.
Расстояние между двумя пристанями 90 км. От каждой из них одновременно навстречу друг другу вышли два теплохода. Сколько часов им понадобится чтобы встретиться, если скорость первого 20 км/час, а второго 25 км/час?
Решение:
1) 25 + 20 = 45 (сумма скоростей теплоходов)
2) 90 : 45 = 2
Решение в виде выражения:90 : (20 + 25) = 2
Ответ: Теплоходы встретятся через 2 часа.
Задача 3
От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?
Решение:
1) 63 * 4 = 252 (прошел 1 поезд)
2) 564 — 252 =312 (прошел 2 поезд)
3) 312 : 4 = 78
Решение в виде выражения (63 * 4 — 252) : 4 = 78
Ответ: Скорость второго поезда 78 км/час.
Задача 4
Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?
Решение:
1) 12+10=22 (км/ч) скорость сближения велосипедистов
2) 22∙3=66 (км) было между велосипедистами в начале пути.
Ответ: Расстояние между велосипедистами в начале пути было 66 км.
Задача 5
Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого — 60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?
Решение:
1) 60+50=110 (км/ч) скорость сближения поездов
2) 440:110=4 (ч) время, через которое поезда встретятся.
Ответ: Поезда встретятся через 4 часа.
Движение в противоположных направлениях
Если два объекта движутся в противоположных направлениях, то они удаляются. Чтобы найти скорость удаления, надо сложить скорости этих объектов:
Скорость удаления больше скорости любого из них.
Задача 1
Из поселка вышли одновременно в противоположных направлениях два пешехода. Средняя скорость одного пешехода – 5 км/ч, другого – 4 км/ч. Через сколько часов расстояние между ними будет 27 км ?
Решение:
Чтобы найти время движения пешеходов, нужно знать расстояние и скорость пешеходов. Мы знаем, что за каждый час один пешеход удаляется от поселка на 5 км, а другой пешеход удаляется от поселка на 4 км. Можем найти их скорость удаления.
1.
(км/ч)
Мы знаем скорость удаления и знаем все расстояние – 27 км. Можем найти время, через которое пешеходы удалятся друг от друга на 27 км, для этого нужно расстояние разделить на скорость.
2.
(ч)
Ответ: Через три часа расстояние между переходами будет 27 км.
Задача 2
Из поселка вышли одновременно в противоположных направлениях два пешехода. Через 3 часа расстояние между ними было 27 км. Первый пешеход шел со скоростью 5 км/ч. С какой скоростью шел второй пешеход ?
Решение:
Чтобы узнать скорость второго пешехода, надо знать расстояние, которое он прошел, и его время в пути. Чтобы узнать, какое расстояние прошел второй пешеход, надо знать, какое расстояние прошел первый пешеход и общее расстояние. Общее расстояние мы знаем. Чтобы найти расстояние, которое прошел первый пешеход, надо знать его скорость и его время в пути. Средняя скорость движения первого пешехода – 5 км/ч, его время в пути – 3 часа. Если среднюю скорость умножить на время в пути, получим расстояние, которое прошел пешеход:
1.
(км)
Мы знаем общее расстояние и знаем расстояние, которое прошел первый пешеход. Можем теперь узнать, какое расстояние прошел второй пешеход.
2.
(км)
Теперь мы знаем расстояние, которое прошел второй пешеход, и время, проведенное им в пути. Можем найти его скорость.
3.
(км/ч)
Ответ: Скорость второго пешехода – 4 км/ч.
Задача 3
Товарный и пассажирский поезда движутся в противоположных направлениях. Скорость товарного 45 км/ч, скорость пассажирского — 70 км/ч. Сейчас между ними 20 км. Какое расстояние будет между ними через 2 часа ?
Решение:
1) 70+45=115 (км/ч) скорость удаления поездов
2) 115∙2=230 (км) пройдут поезда вместе за 2 часа
3) 230+20=250 (км) такое расстояние между поездами будет через 2 часа.
Ответ: Через 2 часа расстояние между поездами составит 250 км.
Задача 4
Из одного пункта одновременно в противоположных направлениях выехали два мотоциклиста. Скорость одного из них — 60 км/ч, скорость другого — 40 км/ч. Через какое время расстояние между ними станет равным 300 км?
Решение:
1) 60+40=100 (км/ч) скорость удаления мотоциклистов
2) 300:100=3 (ч) через такое время расстояние между ними будет 300 км.
Ответ: Расстояние между мотоциклистами станет 300 км через 3 часа.
Что мы узнали?
В статье были рассмотрены различные варианты задач и примерами их решений, которые пригодятся всем четвероклассникам.
В 4 классе школьники решают простые задачи на движение, связанные с понятиями расстояния, времени и скорости.
Они изучают задачи, которые требуют определения скорости по известному расстоянию и времени, или определения времени по известной скорости и расстоянию.
Школьники решают задачи, связанные с равномерным прямолинейным движением, где известны расстояние и время, и нужно найти скорость.
Они также могут сталкиваться с задачами, где требуется определить расстояние по известной скорости и времени.
Задачи на движение помогают ребятам развить навыки анализа и применения математических концепций к реальным ситуациям.
Задачи на движение навстречу друг другу (встречное движение) — один из трех основных видов задач на движение.
Если два объекта движутся навстречу друг другу, то они сближаются:
Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:
Скорость сближения больше, чем скорость каждого из них.
Скорость, время и расстояние связаны между собой формулой пути:
Рассмотрим некоторые задачи на встречное движение.
Задача 1
Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?
Решение:
Условие задач на движение удобно оформлять в виде таблицы:
v, км/ч |
t, ч |
s, км |
|
I велосипедист |
12 |
3 |
? |
II велосипедист |
10 |
3 |
? |
1) 12+10=22 (км/ч) скорость сближения велосипедистов
2) 22∙3=66 (км) было между велосипедистами в начале пути.
Ответ: 66 км.
Задача 2
Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого — 60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?
Решение:
v, км/ч |
t, ч |
s, км |
|
I поезд |
60 |
? |
? |
II поезд |
50 |
? |
? |
1) 60+50=110 (км/ч) скорость сближения поездов
2) 440:110=4 (ч) время, через которое поезда встретятся.
Ответ: через 4 ч.
Задача 3.
Два пешехода находились на расстоянии 20 км друг от друга. Они вышли одновременно навстречу друг другу и встретились через 2 часа. Скорость одного пешехода 6 км/ч. Найти скорость другого пешехода.
v, км/ч |
t, ч |
s, км |
|
I пешеход |
6 |
2 |
? |
II пешеход |
? |
2 |
? |
1) 20:2=10 (км/ч) скорость сближения пешеходов
2) 10-6=4 (км/ч) скорость другого пешехода.
Ответ: 4 км/ч.
ВИДЕОУРОК
Объекты движения движутся в
одном направлении, выезжая из одного пункта одновременно.
Рассмотрим случай,
когда объекты движения могут двигаться в одном направлении, причём с различной
скоростью.
Например, из одного
пункта одновременно могут выехать велосипедист и мотоциклист, причём скорость
велосипедиста может составлять 20 км/час,
а скорость мотоциклиста – 40 км/час.
После начала
движения, через один час, мотоциклист будет впереди велосипедиста на 20 км. Это
связано с тем, что за один час он преодолевает на 20
км больше, чем велосипедист. Поэтому каждый час
расстояние между велосипедистом и мотоциклистом будет увеличиваться на двадцать
километров. В данном случае 20 км/час являются скоростью удаления мотоциклиста от
велосипедиста. Через два часа расстояние, пройденное велосипедистом, будет
составлять 40
км. Мотоциклист же проедет 80
км, отдалившись от велосипедиста
ещё на 20
км. Тогда расстояние между ними
составит уже 40
км.
Чтобы найти
скорость удаления при движении в одном направлении, нужно из большей скорости
вычесть меньшую скорость.
В приведённом
примере, скорость удаления составляет 20 км/час.
Её можно найти путём вычитания скорости велосипедиста из скорости мотоциклиста.
Скорость велосипедиста составляла 20 км/час,
а скорость мотоциклиста – 40
км/час. Скорость
мотоциклиста больше, поэтому из 40 вычитаем
20.
40 км/час –
20
км/час = 20
км/час.
ЗАДАЧА:
Из города в одном и том же направлении выехали легковой
автомобиль и автобус. Скорость автомобиля
120
км/час, а скорость автобуса 80 км/час. Какое расстояние будет между ними через 1
час ? 2
часа ?
РЕШЕНИЕ:
Найдём скорость удаления. Для этого из большей скорости
вычтем меньшую скорость:
120 км/час – 80 км/час = 40 км/час.
Каждый час легковой автомобиль отдаляется от автобуса
на 40
километров. За один час расстояние между автомобилем и автобусом будет 40
км. За 2
часа в два раза больше:
40 ∙ 2 = 80 (км).
ОТВЕТ: 80 км
ЗАДАЧА:
Из одного пункта в одном направлении одновременно выехали
два мотоциклиста. Скорость одного 35 км/час,
а скорость другого составляла 80% скорости первого мотоциклиста. Какое
расстояние будет между ними через 5 часов ?
РЕШЕНИЕ:
Найдём скорость второго мотоциклиста. Она составляет 80% скорости первого
мотоциклиста. Поэтому чтобы найти скорость второго мотоциклиста, нужно
найти 80% от 35 км/час.
35 ∙ 0,80 = 28 км/час.
Первый мотоциклист двигается на 7 км/час быстрее:
35 км/час – 28
км/час = 7 км/час.
За один час первый мотоциклист преодолевает на 7 км больше. С каждым часом он будет отдаляться от
второго мотоциклиста на эти 7 км. Через 5 час первый
мотоциклист пройдёт:
35 ∙ 5 = 175 (км),
а второй:
28 ∙ 5 = 140 (км),
Определим расстояние, которое будет между ними через 5
час:
175 км – 140
км = 35 км.
ОТВЕТ: 35 км
ЗАДАЧА:
Автомобиль и автобус выехали одновременно из одного
пункта в одном направлении. Скорость автомобиля
53
км/час, скорость автобуса 41
км/час. Через сколько часов после выезда автомобиль будет впереди автобуса
на 48
км ?
РЕШЕНИЕ:
Найдём скорость удаления автомобиля от автобуса:
53 км/час – 41
км/час = 12 км/час.
С каждым часом автомобиль будет удаляться от автобуса
на 12
км. Чтобы узнать через сколько часов автомобиль будет впереди автобуса на 48
км, нужно определить сколько раз 48 км содержат
по 12
км:
48 : 12 = 4 (час).
ОТВЕТ: 4 час
ЗАДАЧА:
Из одного города одновременно в одном направлении
выехали грузовик со скоростью 48 км/год и
легковой автомобиль со скоростью 64 км/год. Каким будет расстояние между ними
через 3 часа после начала движения ?
РЕШЕНИЕ:
64 – 48 = 16 (км) – на столько километров увеличится расстояние между автомобилями каждый
час.
16 ∙ 3 = 48 (км) –
расстояние между автомобилями через 3 час.
ОТВЕТ: 48
км
ЗАДАЧА:
Из города Минск в Смоленск, расстояние между
которыми 346
км, отправились одновременно велосипедист и автомобилист. Скорость
автомобиля 20 м/сек, а велосипедиста
20 км/час.
Какое расстояние будет между ними через 2 часа ?
РЕШЕНИЕ:
Нельзя складывать разные единицы измерения, поэтому надо
перевести метры в секунду в километры в час. Так как в
1 километре – 1000 метров, а в
1 часе – 3600 секунд, тогда
1 км/час = 1000 : 3600 = 5/18 м/сек.
Составим пропорцию:
1 км/час ———— 5/18 м/сек,
х км/час ———— 20 м/сек,
Скорость автомобиля – 72 км/час.
Так как автомобилист и
велосипедист выехали из одного места и двигаются в одном направлении,
расстояние между ними за один час будет нарастать со скоростью:
72 – 20 = 52 (км/час).
А через 2 часа оно будет равно:
52 ∙ 2 = 104 (км).
ОТВЕТ: 104
км
Объекты движения движутся в
одном направлении, выезжая из разных пунктов одновременно.
Рассмотрим
ситуацию, в которой объекты начали своё движение из разных пунктов, но в одном
направлении.
Пусть имеется дом,
школа и аттракцион. От дома до школы 700 м.
Два пешехода отправились в аттракцион в одно и то же время. Причём первый
пешеход отправился в аттракцион от дома со скоростью 100 м/мин, а второй пешеход отправился в аттракцион от школы со
скоростью 80 м/мин. Какое расстояние будет между пешеходами через 2 минуты ? Через сколько минут после начала движения
первый пешеход догонит второго ?
Ответим на первый
вопрос задачи – какое расстояние будет между пешеходами через две минуты ?
Определим
расстояние, пройденное первым пешеходом за
2
мин. Он двигался со
скоростью 100 м/мин. За две минуты он пройдёт в два раза больше, то
есть 200 м.
100 ∙ 2 = 200 (м).
Определим
расстояние, пройденное вторым пешеходом за
2
мин. Он двигался со
скоростью 80 м/мин. За две минуты он пройдёт в два раза больше, то
есть 160 м.
80 ∙ 2 = 160 (м).
Теперь нужно найти
расстояние между пешеходами. Чтобы найти расстояние между пешеходами, можно к
расстоянию от дома до школы (700 м) прибавить расстояние, пройденное вторым пешеходом (160 м)
и из полученного результата вычесть расстояние, пройденное первым пешеходом (200 м).
700 м + 160 м = 860 м,
860 м – 200 м = 660 м.
Либо из расстояния
от дома до школы (700 м) вычесть расстояние, пройденное первым пешеходом (200 м),
и к полученному результату прибавить расстояние, пройденное вторым пешеходом (160 м).
700 м – 200 м = 500 м,
500 м + 160 м = 660 м.
Таким образом,
через две минуты расстояние между пешеходами будет составлять 660 м.
Ответим на
следующий вопрос задачи. Через сколько минут после начала движения первый
пешеход догонит второго ? Посмотрим
какой была ситуация в самом начале пути – когда пешеходы ещё не начали
движение. Расстояние между пешеходами в начале пути составляло 700 м. Но уже через минуту после начала движения расстояние
между ними будет составлять 680 м,
поскольку первый пешеход двигается на 20 м быстрее второго:
100 м ∙ 1 = 100 м,
80 м ∙ 1 = 80 м,
700 м + 80 м – 100 м =
= 780 м – 100 м = 680 м.
Через две минуты
после начала движения, расстояние уменьшится ещё на 20 м и будет
составлять 660 м.
100 м ∙ 2 = 200 м,
80 м ∙ 2 = 160 м,
700 м + 160 м – 200 м =
= 860 м – 200 м = 660 м.
Через три минуты
расстояние уменьшится ещё на 20 м и будет уже составлять 640 м.
100 м ∙ 3 = 300 м,
80 м ∙ 3 = 240 м,
700 м + 240 м – 300 м =
= 940 м – 300 м = 640 м.
Мы видим, что с
каждой минутой первый пешеход будет приближаться ко второму на 20 м, и, в конце концов, догонит его. Можно сказать, что
скорость равная двадцати метрам в минуту является скоростью сближения
пешеходов. Правила нахождения скорости сближения и удаления при движении в
одном направлении идентичны.
Чтобы найти
скорость сближения при движении в одном направлении, нужно из большей скорости
вычесть меньшую скорость.
А раз
изначальные 700 м с каждой минутой
уменьшаются на одинаковые 20 м,
то можно узнать сколько раз 700 м содержат по
20 м, тем самым определим, через сколько минут первый пешеход
догонит второго:
700 : 20 = 35.
Значит, через 35
мин после начала движения первый пешеход догонит
второго. Узнаем, сколько метров прошёл к этому времени каждый пешеход.
Первый двигался со
скоростью 100 м/мин. За 35 мин он прошёл в
35 раз больше:
100 м ∙ 35 = 3500 м.
Второй двигался со
скоростью 80 м/мин. За 35 мин он прошёл в
35 раз больше:
80 м ∙ 35 = 2800 м.
Первый прошёл 3500 м, а второй 2800 м.
Первый прошёл на 700 м больше, поскольку он шёл от дома. Если
вычесть эти 700
м из 3500 м,
то мы получим 2800 м.
ЗАДАЧА:
Из двух сёл, расстояние между которыми 40
км, одновременно в одном направлении выехали автобус и велосипедист. Скорость
велосипедиста 15 км/час, а скорость автобуса 35 км/час.
Через сколько часов автобус догонит велосипедиста ?
РЕШЕНИЕ:
Найдём скорость сближения:
35 км/час – 15 км/час = 20 км/час.
Определим, через сколько часов автобус догонит
велосипедиста:
40 : 20 = 2 (час).
ОТВЕТ: 2 час
ЗАДАЧА:
Расстояние между двумя посёлками равно 24
км. Из этих посёлков одновременно в одном направлении вышли пешеход, и выехал
велосипедист. Впереди шёл пешеход. Через сколько часов после начала движения
велосипедист догонит пешехода, если пешеход шёл со скоростью 4
км/час, а велосипедист ехал со скоростью
12
км/час ?
РЕШЕНИЕ:
12 – 4 = 8 (км) – на столько уменьшилось расстояние между велосипедистом и пешеходом за
один час.
24 : 8 = 3 (час) – время, за которое
велосипедист догнал пешехода.
ОТВЕТ: 3
год
Объекты движения движутся в
одном направлении, но один из объектов начал своё движение раньше другого.
Рассмотрим
ситуацию, в которой объекты движутся в одном направлении, но один из объектов
начал своё движение раньше другого.
Пусть имеется дом и
школа. Первый пешеход отправился в школу со скоростью 80 м/мин. Через 5 мин вслед за ним в школу отправился второй
пешеход со скоростью 100 м/мин.
Через сколько минут второй пешеход догонит первого ?
Второй пешеход
начал своё движение через 5 мин.
К этому времени первый пешеход уже отдалился от него на какое-то расстояние.
Найдём это расстояние. Для этого умножим его скорость (80 м/мин)
на 5
мин.
80 ∙ 5 = 400 (м).
Первый пешеход
отдалился от второго на 400 м.
Поэтому в момент, когда второй пешеход начнёт своё движение, между ними будут
эти самые 400 м. Но второй пешеход двигается со скоростью 100 м/мин. То есть двигается на
20 м быстрее первого
пешехода, а значит с каждой минутой расстояние между ними будет уменьшаться
на 20 м. Надо узнать через сколько минут второй пешеход догонит
первого. Например, уже через минуту расстояние между пешеходами будет
составлять 380 м. Первый пешеход к своим
400 м пройдёт ещё 80 м, а второй
пройдёт 100 м. Расстояние между пешеходами в момент движения второго
пешехода необходимо разделить на скорость сближения пешеходов. Скорость
сближения в данном случае равна двадцати метрам. Поэтому, чтобы определить
через сколько минут второй пешеход догонит первого, нужно 400 м разделить на 20.
400 : 20 = 20 (мин).
Значит, через 20
мин второй пешеход догонит первого.
ЗАДАЧА:
Легковая машина, скорость которой 62 км/час,
догоняет грузовую машину, скорость которой
47 км/час.
Через сколько времени и на каком расстоянии от начала движения легковая машина
догонит грузовую, если первоначальное расстояние между ними было 60
км ?
РЕШЕНИЕ:
Найдём скорость сближения:
62 км/час – 47 км/час = 15 км/час.
Если первоначально расстояние между машинами было 60
км, то с каждым часом это расстояние будет уменьшаться на 15
км, и в конце концов легковая машина догонит грузовую. Чтобы узнать, через
сколько часов это произойдёт, нужно определить сколько раз 60
км содержит
по 25
км.
60 : 15 = 4 (час).
Узнаем, на каком расстоянии от начала движения, легковая
машина догнала грузовую машину. Для этого умножим скорость легковой машины на
время её движения до встречи.
62 ∙ 4 = 248 (км)
ОТВЕТ: 4 час, 248 км
ЗАДАЧА:
Мотоциклист, скорость которого 43 км/час, догоняет велосипедиста, скорость которого 13 км/час. Через сколько часов мотоциклист догонит
велосипедиста, если первоначальное расстояние между ними было 120
км ?
РЕШЕНИЕ:
Найдём скорость сближения:
43 км/час – 13 км/час = 30 км/час.
Если первоначальное расстояние между мотоциклистом и
велосипедистом было 120 км, то с каждым часом это расстояние будет уменьшаться
на 30
км, и, в конце концов, мотоциклист догонит велосипедиста. Чтобы узнать, через
сколько часов это произойдёт, нужно определить сколько раз 120
км содержит по 30
км:
120 : 30 = 4 (час).
Значит, через 4 часа мотоциклист
догонит велосипедиста.
ОТВЕТ: 4 час
ЗАДАЧА:
Велосипедист, скорость которого 12 км/час, догоняет велосипедиста, скорость которого
составляет 75% от его скорости. Через 6
час второй велосипедист догнал
велосипедиста, ехавшего первым. Какое расстояние было между ними первоначально ?
РЕШЕНИЕ:
Определим скорость велосипедиста, ехавшего впереди. Для
этого найдём 75% от скорости велосипедиста, ехавшего сзади:
612 ∙ 0,75 = 9 (км/час).
Узнаем, сколько километров проехал каждый велосипедист до
того как второй догнал первого:
12 ∙ 6 = 72 (км),
9 ∙ 6 = 54 (км).
Узнаем, какое расстояние было между ними первоначально.
Для этого из расстояния, пройденного вторым велосипедистом (который догонял) вычтем расстояние, пройденное первым
велосипедистом (которого догоняли).
72 км – 54 км = 18 км.
ОТВЕТ: 18 км
ЗАДАЧА:
Из пункта А выехал велосипедист и едет по направлению
пункта В со средней скоростью 12
км/час. Через 2
час из этого же пункта отправился в том
же направлении второй велосипедист со скоростью
18 км/час. Через сколько часов и на каком расстоянии
от А второй велосипедист догонит первого ?
РЕШЕНИЕ:
Определим, какое расстояние проходит первый велосипедист
до выезда второго:
12 × 2 = 24 (км).
Определим, на сколько километров больше проходит в час
второй велосипедист, чем первый:
18 – 12 = 6 (км).
Найдём через сколько часов после своего выезда второй
велосипедист догонит первого:
24 км : 6 км = 4 (час),
а теперь определим, на каком расстоянии от А второй велосипедист догонит первого:
18 × 4 = 72 (км).
ОТВЕТ:
4
час, 72 км.
ЗАДАЧА:
Первый турист проехал
2
часа на велосипеде со скоростью 16
км/час. Отдохнув 2 часа, он отправился дальше с прежней скоростью.
Спустя 4
часа после старта велосипедиста ему вдогонку выехал второй турист на мотоцикле
со скоростью 56 км/час. На каком расстоянии от места старта мотоциклист
догонит велосипедиста ?
РЕШЕНИЕ:
Пусть туристы отправились из точки А.
Тогда В –
место стоянки велосипедиста, далее за точкой
В точка С – место, в котором мотоциклист догнал велосипедиста (точки А,
В и С находятся на одной прямой). Пусть АС = S.
Велосипедист проехал это расстояние за s/16
час, а мотоциклист – за s/56
час. Тогда из условия задачи:
s/16 – s/56 = 2.
Откуда S = 44,8 км
ОТВЕТ: 44,8 км
Задания к уроку 20
- Задание 1
- Задание 2
- Задание 3
Другие уроки:
- Урок 1. Отношение величин
- Урок 2. Пропорции
- Урок 3. Величины прямо пропорциональные
- Урок 4. Величины обратно пропорциональные
- Урок 5. Пропорциональное деление
- Урок 6. Проценты
- Урок 7. Нахождение процентов данного числа (задачи)
- Урок 8. Нахождение числа по его процентам (задачи)
- Урок 9. Нахождение процентного отношения двух чисел (задачи)
- Урок 10. Простые и сложные проценты
- Урок 11. Задачи на время
- Урок 12. Задачи на нахождение чисел по их сумме или разности
- Урок 13. Задачи на нахождение чисел по их сумме или разности и отношению
- Урок 14. Среднее арифметическое
- Урок 15. Среднее арифметическое (задачи)
- Урок 16. Масштаб карты или чертежа
- Урок 17. Определение расстояния на местности и действительных размеров предметов с помощью масштаба
- Урок 18. Определение расстояния на карте или чертеже с помощью масштаба
- Урок 19. Задачи на встречное движение
- Урок 21. Задачи на движение в противоположных направлениях
- Урок 22. Задачи на движение по реке
- Урок 23. Задачи на совместную работу
Математика
5 класс
Урок № 35
Задачи на движение
Перечень вопросов, рассматриваемых в теме:
- Понятия скорости, времени, расстояния.
- Формулы нахождения скорости, времени, расстояния.
- Понятия скорости сближения, скорости удаления.
Глоссарий по теме
Расстояние – это длина от одного пункта до другого.
Большие расстояния, в основном, измеряются в метрах и километрах.
Расстояние обозначается латинской буквой S.
Чтобы найти расстояние, надо скорость умножить на время движения:
S = v ∙ t
Скорость – это расстояние, пройденное телом за единицу времени. Под единицей времени подразумевается 1 час, 1 минута или 1 секунда.
Скорость обозначается латинской буквой v.
Чтобы найти скорость, нужно расстояние разделить на время движения:
v = S : t
Время – это продолжительность каких-то действий, событий.
Время движения обозначается маленькой латинской буквой t.
Чтобы найти время, нужно расстояние разделить на скорость движения:
t = S : v
Скорость сближения – это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.
Чтобы найти скорость сближения, нужно сложить скорости объектов.
Скорость удаления – это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.
Чтобы найти скорость удаления, нужно сложить скорости объектов.
Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.
Основная литература
1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К., Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.
2. Потапов М. К., Шевкин А. В. Математика. Книга для учителя. 5 – 6 классы — М.: Просвещение, 2010
Дополнительная литература
1. Чесноков А. С., Нешков К. И. Дидактические материалы по математике 5 кл. – М.: Академика учебник, 2014
2. Бурмистрова Т. А. Математика. Сборник рабочих программ. 5–6 классы // Составитель Бурмистрова Т. А.
3. Потапов М. К. Математика: дидактические материалы. 6 кл. // Потапов М. К., Шевкин А. В. — М.: Просвещение, 2010
Теоретический материал для самостоятельного изучения
Очень часто нам встречаются задачи на нахождение скорости, времени и расстояния. Что же всё это такое? Сейчас нам предстоит в этом разобраться.
Расстояние – это длина от одного пункта до другого. (Например, расстояние от дома до школы 2 километра). В основном большие расстояния измеряются в метрах и километрах. Общепринятое обозначение расстояния – заглавная латинская буква S.
Скоростью называют расстояние, пройденное телом за единицу времени. Под единицей времени подразумевается 1 час, 1 минута или 1 секунда. Скорость обозначается маленькой латинской буквой v.
Рассмотрим задачу:
Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до спортплощадки 200 метров. Первый школьник добежал за 50 секунд. Второй за 100 секунд. Кто из ребят бежал быстрее?
Решение:
Быстрее бежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. Чтобы найти скорость, нужно расстояние разделить на время движения.
Давайте найдём скорость первого школьника. Для этого разделим 200 метров на время движения первого школьника, то есть на 50 секунд:
200 м : 50 с = 4
Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).
У нас расстояние дано в метрах, а время в секундах. Значит, скорость измеряется в метрах в секунду:
200 м : 50 с = 4 (м/с)
Скорость движения первого школьника составляет 4 метра в секунду.
Теперь найдём скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника:
200 м : 100 c = 2 (м/с)
Скорость движения первого школьника – 4 (м/с).
Скорость движения второго школьника – 2 (м/с).
4 (м/с) > 2 (м/с)
Скорость первого школьника больше. Значит, он бежал до спортплощадки быстрее.
Иногда возникает ситуация, когда требуется узнать, за какое время тело преодолеет то или иное расстояние. Время движения обозначается маленькой латинской буквой t.
Рассмотрим задачу:
От дома до спортивной секции 1200 метров. Мы должны доехать туда на велосипеде. Наша скорость будет 600 метров в минуту. За какое время мы доедем до спортивной секции?
Решение:
Если за одну минуту мы будем проезжать 600 метров, то сколько таких минут нам понадобится для преодоления тысячи двухсот метров? Очевидно, что надо разделить 1200 метров на то расстояние, которое мы будем проезжать за одну минуту, то есть на 600 метров. Тогда мы получим время, за которое мы доедем до спортивной секции:
1200 : 600 = 2 (мин)
Ответ: мы доедем до спортивной секции за 2 минуты.
Скорость, время и расстояние связаны между собой.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время:
S = v ∙ t
Рассмотрим задачу:
Мы вышли из дома и направились в магазин. Мы дошли до магазина за 15 минут. Наша скорость была 60 метров в минуту. Какое расстояние мы прошли?
Решение:
Если за одну минуту мы прошли 60 метров, то сколько таких отрезков по шестьдесят метров мы пройдём за 15 минут? Очевидно, что умножив 60 метров на 15 минут, мы определим расстояние от дома до магазина:
v = 60 (м/мин)
t = 15 (минут)
S = v ∙ t = 60 ∙ 15 = 900 (метров)
Ответ: мы прошли 900 метров.
Если известно время и расстояние, то можно найти скорость:
v = S : t
Рассмотрим задачу:
Расстояние от дома до школы 800 метров. Школьник дошёл до этой школы за 8 минут. Какова была его скорость?
Скорость движения школьника – это расстояние, которое он проходит за одну минуту. Если за 10 минут он преодолел 800 метров, то какое расстояние он преодолевал за одну минуту?
Чтобы ответить на этот вопрос, нужно разделить расстояние на время движения школьника:
S = 800 метров
t = 8 минут
v = S : t = 800 : 8 = 100 (м/мин)
Ответ: скорость школьника была 100 м/мин.
Если известна скорость и расстояние, то можно найти время:
t = S : v
Рассмотрим задачу:
От дома до спортивной секции 600 метров. Мы должны дойти до неё пешком. Наша скорость будет 120 метров в минуту (120 м/мин). За какое время мы дойдём до спортивной секции?
Если за одну минуту мы будем проходить 120 метров, то сколько таких минут со ста двадцатью метрами будет в шестистах метрах?
Чтобы ответить на этот вопрос, нужно 600 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 120. Тогда мы получим время, за которое мы дойдём до спортивной секции:
S = 600 метров
v = 120 (м/мин)
t = S : v = 600 : 120 = 5 (минут).
Ответ: мы дойдём до спортивной секции за 5 минут.
Итак, все рассмотренные нами формулы мы можем представить в виде треугольника для лучшего запоминания:
Теперь рассмотрим типы задач на движение.
Задачи на сближение.
Скорость сближения – это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.
Например, если из двух пунктов навстречу друг другу отправятся два пешехода, причём скорость первого будет 100 метров в минуту, а второго – 105 метров в минуту, то скорость сближения будет составлять 100 плюс 105, то есть 205 метров в минуту. Значит, каждую минуту расстояние между пешеходами будет уменьшаться на 205 метров.
Чтобы найти скорость сближения, нужно сложить скорости объектов.
Задача.
Из двух пунктов навстречу друг другу выехали одновременно два велосипедиста. Скорость первого велосипедиста 13 км/ч, а скорость второго – 15 км/ч. Через 3 часа они встретились. Определите расстояние между населёнными пунктами.
Решение:
- Найдём скорость сближения велосипедистов:
13 км/ч + 15 км/ч = 28 км/ч
- Определим расстояние между населёнными пунктами. Для этого скорость сближения умножим на время движения:
28 ∙ 3 = 84 км
Ответ: расстояние между населёнными пунктами 84 км.
Задачи на скорость удаления.
Скорость удаления – это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.
Например, если два пешехода отправятся из одного и того же пункта в противоположных направлениях, причём скорость первого будет 4 км/ч, а скорость второго 6 км/ч, то скорость удаления будет составлять 4 плюс 6, то есть 10 км/ч. Каждый час расстояние между двумя пешеходами будет увеличиваться на 10 километров.
Чтобы найти скорость удаления, нужно сложить скорости объектов.
Рассмотрим задачу:
С причала одновременно в противоположных направлениях отправились теплоход и катер. Скорость теплохода составляла 60 км/ч, скорость катера 130 км/ч. Какое расстояние будет между ними через 2 часа?
Решение:
- Определим скорость удаления. Для этого сложим их скорости:
60 + 130 = 190 км/ч.
Получили скорость удаления равную 190 км/ч. Данная скорость показывает, что за час расстояние между теплоходом и катером будет увеличиваться на 190 километров.
- Чтобы узнать какое расстояние будет между ними через два часа, нужно 190 умножить на 2:
190 ∙ 2 = 380 км.
Ответ: через 2 часа расстояние между теплоходом и катером будет составлять 380 километров.
Задачи на движение объектов в одном направлении.
В предыдущих пунктах мы рассматривали задачи, в которых объекты (люди, машины, лодки) двигались либо навстречу друг другу, либо в противоположных направлениях. В первом случае мы находили скорость сближения – в ситуации, когда два объекта двигались навстречу друг другу. Во втором случае мы находили скорость удаления – в ситуации, когда два объекта двигались в противоположных направлениях. Но объекты также могут двигаться в одном направлении, причём с различной скоростью.
Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.
Рассмотрим задачу:
Из города в одном и том же направлении выехали легковой автомобиль и автобус. Скорость автомобиля 130 км/ч, а скорость автобуса 90 км/ч. Какое расстояние будет между ними через 1 час? Через 3 часа?
Решение:
- Найдём скорость удаления. Для этого из большей скорости вычтем меньшую:
130 км/ч − 90 км/ч = 40 км/ч
- Каждый час легковой автомобиль отдаляется от автобуса на 40 километров. За один час расстояние между автомобилем и автобусом будет 40 км. За 3 часа в три раза больше:
40 ∙ 3 = 120 км
Ответ: через один час расстояние между автомобилем и автобусом будет 40 км, через три часа – 120 км.
Рассмотрим ситуацию, в которой объекты начали своё движение из разных пунктов, но в одном направлении.
Задача.
Пусть на одной улице имеется дом, школа и аттракцион. Дом находится на одном конце улицы, аттракцион на другом, школа между ними. От дома до школы 900 метров. Два пешехода отправились в аттракцион в одно и то же время. Причём первый пешеход отправился в аттракцион от дома со скоростью 90 метров в минуту, а второй пешеход отправился в аттракцион от школы со скоростью 85 метров в минуту. Какое расстояние будет между пешеходами через 3 минуты? Через сколько минут после начала движения первый пешеход догонит второго?
Решение:
- Определим расстояние, пройденное первым пешеходом за 3 минуты. Он двигался со скоростью 90 метров в минуту. За три минуты он пройдёт в три раза больше, то есть 270 метров:
90 ∙ 3 = 270 метров
- Определим расстояние, пройденное вторым пешеходом за 3 минуты. Он двигался со скоростью 85 метров в минуту. За три минуты он пройдёт в три раза больше, то есть 255 метров:
85 ∙ 3 = 255 метров
- Теперь найдём расстояние между пешеходами. Чтобы найти расстояние между пешеходами, можно к расстоянию от дома до школы (900м) прибавить расстояние, пройденное вторым пешеходом (255м), и из полученного результата вычесть расстояние, пройденное первым пешеходом (270м):
900 + 255 = 1155 м
1155 – 270 = 885 м
Либо из расстояния от дома до школы (900 м) вычесть расстояние, пройденное первым пешеходом (270 м), и к полученному результату прибавить расстояние, пройденное вторым пешеходом (255 м):
900 – 270 = 630 м
630 + 255 = 885 м
Таким образом, через три минуты расстояние между пешеходами будет составлять 885 метров.
- Теперь давайте ответим на вопрос: через сколько минут после начала движения первый пешеход догонит второго?
В самом начале пути между пешеходами было расстояние 900 м. Через минуту после начала движения расстояние между ними будет составлять 895 метров, поскольку первый пешеход двигается на 5 метров в минуту быстрее второго:
90 ∙ 1 = 90 м
85 ∙ 1 = 85 м
900 + 85 – 90 = 985 – 90 = 895 м
Через три минуты после начала движения расстояние уменьшится на 15 метров и будет составлять 885 метров. Это был наш ответ на первый вопрос задачи:
90 ∙ 3 = 270 м
85 ∙ 3 = 255 м
900 + 255 – 270 = 1155 – 270 = 885 м
Можно сделать вывод, что каждую минуту расстояние между пешеходами будет уменьшаться на 5 метров.
А раз изначальные 900 метров с каждой минутой уменьшаются на одинаковые 5 метров, то мы можем узнать сколько раз 900 метров содержат по 5 метров, тем самым определяя через сколько минут первый пешеход догонит второго:
900 : 5 = 180 минут.
Ответ: через три минуты расстояние между пешеходами будет составлять 885 метров, первый пешеход догонит второго через 180 минут = 3 часа.
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Заполните таблицу:
S |
v |
t |
|
1. |
135 км |
9 км/ч |
____ ч |
2. |
____ м |
12 м/с |
4 с |
3. |
132 м |
____ м/мин |
11 мин |
Для заполнения пропусков воспользуемся формулами нахождения скорости, времени, расстояния:
- Надо найти время: t = S : v
135 : 9 = 15 часов.
- Надо найти расстояние: S = v ∙ t
12 ∙ 4 = 48 м.
- Надо найти скорость: v = S : t
132 : 11 = 12 м/мин.
Верный ответ:
S |
v |
t |
|
1. |
135 км |
9 км/ч |
15 часов |
2. |
48 м |
12 м/с |
4 с |
3. |
132 м |
12 м/мин |
11 мин |
№2. Тип задания: единичный / множественный выбор
Выберите верный ответ к задаче:
Из пунктов А и В, расстояние между которыми 300 км, отправились одновременно навстречу друг другу мотоциклист и автомобилист. Скорость автомобиля 60 км/ч, а мотоцикла 30 км/ч. Какое расстояние будет между ними через 3 часа?
Варианты ответов:
- 70
- 30
- 270
- 240
Эта задача относится к типу задач на сближение, т.е. нам надо:
- сложить скорости мотоциклиста и автомобилиста:
60 + 30 = 90 км/ч – скорость сближения;
- узнать, сколько километров они пройдут за 3 часа вместе. Для этого:
90 ∙ 3 = 270 км;
- из общего расстояния нам осталось вычесть пройденное:
300 – 270 = 30 км
Верный ответ: 2. 30 км.
Задачи на движение (скорость, время и расстояние) являются одной из основных типов задач по математике, которые должен уметь решать каждый школьник. В данной статье рассмотрены все типы задач на движение:
— простые задачи на скорость, время и расстояние;
— задачи на встречное и противоположное движение;
— задачи на движение в одном направлении (на сближение и удаление);
— решение задач на движение по реке.
Скорость, время и расстояние: определения, обозначения, формулы
скорость = расстояние: время — формула нахождения скорости;
время = расстояние: скорость — формула нахождения времени;
расстояние = скорость · время — формула нахождения расстояния.
Скорость – это расстояние, пройденное за единицу времени: за 1 секунду, за 1 минуту, за 1 час и так далее.
Пример обозначения: 7 км/ч (читается: семь километров в час).
Если весь путь проходится с одинаковой скоростью, то такое движение называется равномерным.
На сайте представлены калькуляторы онлайн, с помощью которых можно перевести скорость, время и расстояние в другие единицы измерения:
1.Конвертер единиц измерения скорости
2.Конвертер единиц измерения времени
3.Конвертер единиц измерения расстояния (длины)
Примеры простых задач.
Задача 1.
Автомобиль проехал 180 км за 2 часа. Чему равна скорость автомобиля?
Решение: 180:2=90 (км/ч.)
Ответ: Скорость автомобиля равна 90 км/ч.
Задача 2.
Автобус проехал путь в 240 км со скоростью 80 км/ч. Сколько времени ехал автобус?
Решение: 240:80=3 (ч.)
Ответ: Автобус проехал 3 часа.
Задача 3.
Грузовик ехал 5 часов со скоростью 70 км/ч. Какое расстояние проехал грузовик за это время?
Решение: 70 · 3 = 350 (км)
Ответ: Грузовик за 5 часов проехал 350 км.
Задачи на встречное движение
В таких задачах два объекта движутся навстречу друг другу.
Задачи на встречное движение можно решать двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость сближения объектов (как сумму их скоростей), общие время и расстояние. Скорость сближения — это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.
Задача 4.
Из двух пунктов навстречу друг другу одновременно выехали два поезда и встретились через 3 часа. Первый поезд ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. На каком расстоянии друг от друга находятся пункты?
Решение:
Первый способ. Найти расстояние, которое проехал каждый автобус, и сложить полученные данные:
80*3=240 (км) – проехал 1й автобус, 70*3=210 (км) – проехал 2й поезд,
240+210=450 (км) – проехали два поезда.
Второй способ. Найти скорость сближения поездов, то есть на сколько сокращалось расстояние между ними каждый час; а затем найти расстояние:
80+70=150 (км/ч), 150*3=450 (км).
Ответ: города находятся на расстоянии 450 км.
Задача 5.
Из двух городов навстречу друг другу одновременно выехали два автобуса. Первый автобус ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. Какое расстояние будет между ними через 2 часа, если расстояние между городами 450 км?
Решение:
Первый способ. Определить, сколько километров проехал каждый автобус и найти расстояние, которое осталось проехать:
80*2=160 (км)-проехал 1й автобус, 70*2=140 (км)-проехал 2й автобус,
160+140=300 (км)-проехали два автобуса, 450-300=150 (км)-осталось проехать.
Второй способ. Найти скорость сближения автобусов и умножить ее на время в пути.
80*70=150 (км/ч) – скорость сближения; 150*2=300 (км) – проехали два автобуса; 450-300=150 (км) – осталось проехать.
Ответ: Через 2часа расстояние между автобусами будет 150 км.
Задачи на движение в противоположных направлениях
В таких задачах два объекта движутся в противоположных направлениях, отдаляясь друг от друга. В таком типе задачи используется скорость удаления. Задачи на движение в противоположных направлениях также можно решить двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость удаления объектов (как сумму их скоростей), общие время и расстояние. Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.
Задача 6.
Два автомобиля выехали одновременно из одного и того же пункта в противоположных направлениях. Скорость первого автомобиля 100 км/ч, скорость второго – 70 км/ч. Какое расстояние будет между автомобилями через 4 часа?
Решение:
Первый способ. Определить расстояние, которое проехал каждый автомобиль и найти сумму полученных результатов:
1) 100 · 4 = 400 (км) – проехал первый автомобиль
2) 70 · 4 = 280 (км) – проехал второй автомобиль
400 + 280 = 680 (км)
Второй способ. Найти скорость удаления, то есть значение увеличения расстояния между автомобилями за каждый час, а затем скорость удаления умножить на время в пути.
100 + 70= 170 км/ч – это скорость удаления автомобилей.
170 · 4 = 680 (км)
Ответ: Через 4 часа между автомобилями будет 680 км.
Задача 7.
Из двух населённых пунктов, расстояние между которыми 40 км, вышли в противоположных направлениях два туриста. Первый турист шёл со скоростью 4 км/ч, а второй — 5 км/ч. Какое расстояние между туристами будет через 5 часов?
Решение:
Первый способ. Определить сколько километров прошёл каждый из туристов за 5 часов, сложить полученные результаты, а затем к полученному расстоянию прибавить расстояние между населенными пунктами.
1) 4 · 5 = 20 (км) – прошёл первый турист;
2) 5 · 5 = 25 (км) – прошёл второй турист;
3) 20 + 25 = 45 (км);
4) 45 + 40 = 85 (км).
Второй способ. Найти скорость удаления пешеходов, затем найти пройденное расстояние, к полученному результату прибавить расстоянием между населёнными пунктами.
4 + 5 = 9 (км/ч);
9 · 5 = 45 (км);
45 + 40 = 85 (км);
Ответ: Через 5 часов расстояние между пешеходами будет 85 км.
Задачи на движение в одном направлении
В таких задачах два объекта движутся в одном направлении с разной скоростью, при этом они сближаются друг с другом или отдаляются друг от друга. Соответственно находится скорость сближения или скорость удаления объектов.
Формула нахождения скорости сближения или удаления двух объектов, которые движутся в одном направлении: из большей скорости вычесть меньшую.
Задача 8.
Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?,
Решение:
Задачу можно решить с помощью уравнения.
В этом случае скорость первого автомобиля 40 км/час, время в пути на 4 часа больше, чем время второго автомобиля (или t+4). Скорость второго автомобиля 60 км/час, время в пути – t. Расстояние оба автомобиля проехали одинаковое. Поэтому можно составить уравнение: 40*(t+4)=60*t. Отсюда получаем t=8 (часов) – время в пути второго автомобиля, за которое он догонит первый.
Решение задачи без использования уравнения.
Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалиться от города на: 40 · 4 = 160 (км).
Второй автомобиль движется быстрее первого, значит, каждый час расстояние между автомобилями будет сокращаться на разность их скоростей: 60 — 40 = 20 (км/ч) – это скорость сближения.
Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся: 160 : 20 = 8 (ч)
Ответ: Второй автомобиль догонит первый через 8 часов.
Задача 9.
Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов: 5 — 4 = 1 (км/ч).
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого: 5 : 1 = 5 (ч)
Ответ: Через 5 часов второй пешеход догонит первого.
Задача 10.
Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго – 40 км/ч.
1) Чему равна скорость удаления между автомобилями?
2) Какое расстояние будет между автомобилями через 3 часа?
3) Через сколько часов расстояние между ними будет 200 км?
Решение:
1) 80 — 40 = 40 (км/ч) — скорость удаления автомобилей друг от друга.
2) 40 · 3 = 120 (км) – расстояние между ними через 3 часа./
3) 200 : 40 = 5 (ч) – время, через которое расстояние между автомобилями станет 200 км.
Ответ:
1) Скорость удаления между автомобилями равна 40 км/ч.
2) Через 3 часа между автомобилями будет 120 км.
3) Через 5 часов между автомобилями будет расстояние в 200 км.
Задачи на движение по реке
Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.
Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки. Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.
Задача 11.
Лодка движется по реке. За сколько часов она преодолеет расстояние 120 км, если ее собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?
Решение:
1) лодка движется по течению реки.
27 + 3 = 30 (км/ч) – скорость лодки по течению реки.
120 : 30 = 4 (ч) – проплывет путь.
2) лодка движется против течения реки.
27 — 3 = 24 (км/ч) — скорость лодки против течения реки
120 : 24 = 5 (ч) – проплывет путь.
Ответ:
1) При движении по течению реки лодка потратит 4 часа на путь.
2) При движении против течения реки лодка потратит 5 часов на путь.
Итак, для решения задач на движение:
- Основная формула:S=ν*t;
- Нужно сделать чертеж, который поможет определить тип задачи.
- Все цифры нужно привести в единые единицы измерения: длина и время
Заключение.
Решая много задач по данной теме, ученик обязательно научится быстро ориентироваться в понятиях «скорость», «время» и «расстояние» и быстро решать задачи всех типов.
Весь курс начальной школы (за 1-4 классы) в краткой форме на сайте edu.intmag24.ru. С помощью курса можно быстро повторить основные моменты и правила по предметам: русский язык, математика, окружающий мир.
Для решения более сложных задач на движение посмотрите, как составлять схемы и таблицы данных для наглядного представления и структурирования данных.