Вычисление ранга матрицы методом элементарных преобразований (алгоритм Гаусса).
Под элементарными преобразованиями строк (столбцов) матрицы понимают следующие действия:
- Перемена мест двух строк (столбцов).
- Умножение всех элементов строки (столбца) на некоторое число $aneq 0$.
- Суммирование всех элементов одной строки (столбца) с соответствующими элементами иной строки (столбца), умноженными на некое действительное число.
Если применить к строкам или столбцам матрицы $A$ некое элементарное преобразование, то получим новую матрицу $B$. В этом случае $rang{A}=rang{B}$, т.е. элементарные преобразования не изменяют ранг матрицы.
Если $rang A=rang B$, то матрицы $A$ и $B$ называются эквивалентными. Тот факт, что матрица $A$ эквивалентна матрице $B$, записывают так: $Asim B$.
Часто используется и такая запись: $Arightarrow B$, которая означает, что матрица $B$ получена из матрицы $A$ применением некоего элементарного преобразования.
При нахождении ранга методом Гаусса работать можно как со строками, так и со столбцами. Удобнее работать со строками, поэтому в примерах на этой странице преобразования выполняются именно над строками матриц.
Отмечу, что транспонирование не изменяет ранг матрицы, т.е. $rang{A}=rang{A^T}$. Этим свойством в некоторых случаях удобно пользоваться (см. пример №3), так как при необходимости строки легко сделать столбцами и наоборот.
Краткое описание алгоритма
Введём несколько терминов. Нулевая строка – строка, все элементы которой равны нулю. Ненулевая строка – строка, хоть один элемент которой отличен от нуля. Ведущим элементом ненулевой строки называется её первый (считая слева направо) отличный от нуля элемент. Например, в строке $(0;0;5;-9;0)$ ведущим будет третий элемент (он равен 5).
Ранг любой нулевой матрицы равен 0, поэтому станем рассматривать матрицы, отличные от нулевых. Конечная цель преобразований матрицы – сделать её ступенчатой. Ранг ступенчатой матрицы равен количеству ненулевых строк.
Рассматриваемый метод нахождения ранга матрицы состоит из нескольких шагов. На первом шаге используется первая строка, на втором шаге – вторая и так далее. Когда под той строкой, которую мы используем на текущем шаге, остаются лишь нулевые строки, или же не остаётся строк вовсе, то алгоритм прекращается, так как полученная матрица будет ступенчатой.
Теперь обратимся к тем преобразованиям над строками, которые выполняются на каждом шаге алгоритма. Пусть под текущей строкой, которую нам нужно использовать на данном шаге, имеются ненулевые строки, причём $k$ – номер ведущего элемента текущей строки, а $k_{min}$ – наименьший из номеров ведущих элементов тех строк, которые лежат ниже текущей строки.
- Если $klt{k_{min}}$, то переходим к следующему шагу алгоритма, т.е. к использованию следующей строки.
- Если $k=k_{min}$, то производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Если появляются нулевые строки, то переносим их в низ матрицы. Затем переходим к следующему шагу алгоритма.
- Если $kgt{k_{min}}$, то меняем местами текущую строку с одной из тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. После этого производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Если таких строк нет, то переходим к следующему шагу алгоритма. Если появляются нулевые строки, то переносим их в низ матрицы.
Как конкретно происходит обнуление ведущих элементов, рассмотрим на практике. Буквами $r$ (от слова «row») станем обозначать строки: $r_1$ – первая строка, $r_2$ – вторая строка и так далее. Буквами $c$ (от слова «column») станем обозначать столбцы: $c_1$ – первый столбец, $c_2$ – второй столбец и так далее.
В примерах на данной странице буквой $k$ я стану обозначать номер ведущего элемента текущей строки, а запись $k_{min}$ будет использована для обозначения наименьшего из номеров ведущих элементов строк, лежащих под текущей строкой.
Пример №1
Найти ранг матрицы $A=left(begin{array}{ccccc}
-2 & 3 & 1 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
4 & -11 & -5 & 12 & 18 \
-9 & 6 & 0 & -2 & 21 \
-5 & 5 & 1 & 1 & 1
end{array} right)$.
Решение
Данная матрица не является нулевой, а значит её ранг больше нуля. Перейдём к первому шагу алгоритма.
Первый шаг
На первом шаге мы работаем с первой строкой. В первой строке заданной нам матрицы ведущим является первый элемент, т.е. номер ведущего элемента первой строки $k=1$. Посмотрим на строки, расположенные под первой строкой. Ведущие элементы в этих строках имеют номера 4, 1, 1 и 1. Наименьшим из этих номеров есть $k_{min}=1$. Так как $k=k_{min}$, то производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Иными словами, нужно обнулить ведущие элементы третьей, четвёртой и пятой строк.
В принципе, можно приступать к обнулению указанных выше элементов, однако для тех преобразований, которые выполняются для обнуления, удобно, когда ведущим элементом используемой строки является единица. Это не обязательно, но очень упрощает расчёты. У нас ведущим элементом первой строки есть число -2. Чтобы заменить «неудобное» число единицей (или числом (-1)) есть несколько вариантов. Можно, например, умножить первую строку на 2, а затем от первой строки вычесть пятую. А можно просто поменять местами первый и третий столбцы. После перестановки столбцов №1 и №3 получим новую матрицу, эквивалентную заданной матрице $A$:
$$
left(begin{array}{ccccc}
-2 & 3 & 1 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
4 & -11 & -5 & 12 & 18 \
-9 & 6 & 0 & -2 & 21 \
-5 & 5 & 1 & 1 & 1
end{array}right)overset{c_1leftrightarrow{c_3}}{sim}
left(begin{array}{ccccc}
boldred{1} & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
normblue{-5} & -11 & 4 & 12 & 18 \
0 & 6 & -9 & -2 & 21 \
normgreen{1} & 5 & -5 & 1 & 1
end{array}right)
$$
Ведущим элементом первой строки стала единица. Номер ведущего элемента первой строки не поменялся: $k=1$. Номера ведущих элементов строк, расположенных ниже первой, таковы: 4, 1, 2, 1. Наименьший номер $k_{min}=1$. Так как $k=k_{min}$, то производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Это значит, что нужно обнулить ведущие элементы третьей и пятой строк. Эти элементы выделены синим и зелёным цветами.
Чтобы обнулить нужные элементы, будем выполнять операции со строками матрицы. Запишу эти операции отдельно:
$$
begin{aligned}
&r_3-frac{normblue{-5}}{boldred{1}}cdot{r_1}=r_3+5r_1;\
&r_5-frac{normgreen{1}}{boldred{1}}cdot{r_1}=r_5-r_1.
end{aligned}
$$
Запись $r_3+5r_1$ означает, что к элементам третьей строки прибавили соответствующие элементы первой строки, умноженные на пять. Результат записывают на место третьей строки в новую матрицу. Если с устным выполнением такой операции возникают сложности, то это действие можно выполнить отдельно:
$$
r_3+5r_1
=(-5;;-11;;4;;12;;18)+5cdot(1;;3;;-2;;0;;-4)=\
=(-5;;-11;;4;;12;;18)+(5;;15;;-10;;0;;-20)
=(0;;4;;-6;;12;;-2).
$$
Действие $r_5-r_1$ выполняется аналогично. В результате преобразований строк получим такую матрицу:
$$
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
-5 & -11 & 4 & 12 & 18 \
0 & 6 & -9 & -2 & 21 \
1 & 5 & -5 & 1 & 1
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3+5r_1 \ phantom{0} \ r_5-r_1 end{array}sim
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
0 & 4 & -6 & 12 & -2 \
0 & 6 & -9 & -2 & 21 \
0 & 2 & -3 & 1 & 5
end{array}right)
$$
На этом первый шаг можно считать законченным. Так как под первой строкой остались ненулевые строки, то нужно продолжать работу. Единственный нюанс: в третьей строке полученной матрицы все элементы делятся нацело на 2. Чтобы уменьшить числа и упростить себе расчёты, умножим элементы третьей строки на $frac{1}{2}$, а затем уже перейдём ко второму шагу:
$$
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
0 & 4 & -6 & 12 & -2 \
0 & 6 & -9 & -2 & 21 \
0 & 2 & -3 & 1 & 5
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ 1/2cdot{r_3} \ phantom{0} \ phantom{0} end{array}sim
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
0 & 2 & -3 & 6 & -1 \
0 & 6 & -9 & -2 & 21 \
0 & 2 & -3 & 1 & 5
end{array}right)
$$
Второй шаг
На втором шаге мы работаем с второй строкой. Во второй строке матрицы ведущим является четвёртый элемент, т.е. номер ведущего элемента второй строки $k=4$. Посмотрим на строки, расположенные под второй строкой. Ведущие элементы в этих строках имеют номера 2, 2 и 2. Наименьшим из этих номеров есть $k_{min}=2$. Так как $kgt{k_{min}}$, то нужно поменять местами текущую вторую строку с одной из тех строк, у которых номер ведущего элемента равен $k_{min}$. Иными словами, надо поменять вторую строку с третьей, четвёртой или пятой. Я выберу пятую строку (это позволит избежать появления дробей), т.е. поменяю местами пятую и вторую строки:
$$
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
0 & 2 & -3 & 6 & -1 \
0 & 6 & -9 & -2 & 21 \
0 & 2 & -3 & 1 & 5
end{array}right)
overset{r_2leftrightarrow{r_5}}{sim}
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & boldred{2} & -3 & 1 & 5 \
0 & normblue{2} & -3 & 6 & -1 \
0 & normgreen{6} & -9 & -2 & 21 \
0 & 0 & 0 & 5 & -6
end{array}right)
$$
Опять обратимся ко второй строке. Теперь ведущим в ней является второй элемент (он выделен красным цветом), т.е. $k=2$. Наименьшим из номеров ведущих элементов нижележащих строк (т.е. из чисел 2, 2 и 4) будет $k_{min}=2$. Так как $k=k_{min}$, то производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Это значит, что нужно обнулить ведущие элементы третьей и четвёртой строк. Эти элементы выделены синим и зелёным цветами.
Отмечу, что на предыдущем шаге ведущим элементом текущей строки с помощью перестановки столбцов была сделана единица. Это было выполнено, чтобы избежать работы с дробями. Здесь тоже можно поставить единицу на место ведущего элемента второй строки: например, поменяв местами второй и четвёртый столбцы. Однако делать это мы не станем, так как дробей и так не возникнет. Действия со строками будут такими:
$$
begin{aligned}
&r_3-frac{normblue{2}}{boldred{2}}cdot{r_2}=r_3-r_2;\
&r_4-frac{normgreen{6}}{boldred{2}}cdot{r_2}=r_4-3r_2.
end{aligned}
$$
Выполняя указанные операции, придём к такой матрице:
$$
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 2 & -3 & 6 & -1 \
0 & 6 & -9 & -2 & 21 \
0 & 0 & 0 & 5 & -6
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3-r_2 \ r_4-3r_2 \ phantom{0} end{array}sim
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 0 & 0 & 5 & -6 \
0 & 0 & 0 & -5 & 6 \
0 & 0 & 0 & 5 & -6
end{array}right)
$$
Второй шаг закончен. Так как под второй строкой остались ненулевые строки, то переходим к третьему шагу.
Третий шаг
На третьем шаге мы работаем с третьей строкой. В третьей строке матрицы ведущим является четвёртый элемент, т.е. номер ведущего элемента третьей строки $k=4$. Посмотрим на строки, расположенные под третьей строкой. Ведущие элементы в этих строках имеют номера 4 и 4, наименьший из которых $k_{min}=4$. Так как $k=k_{min}$, то производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Это значит, что нужно обнулить ведущие элементы четвёртой и пятой строк. Преобразования, которые выполняются с этой целью, полностью аналогичны тем, что осуществлялись ранее:
$$
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 0 & 0 & 5 & -6 \
0 & 0 & 0 & -5 & 6 \
0 & 0 & 0 & 5 & -6
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ phantom{0} \ r_4+r_3 \ r_5-r_3 end{array}sim
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 0 & 0 & 5 & -6 \
0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0
end{array}right)
$$
Под третьей строкой остались лишь нулевые строки. Это значит, что преобразования закончены. Мы привели матрицу к ступенчатому виду. Так как приведённая матрица содержит три ненулевых строки, то её ранг равен 3. Следовательно, и ранг исходной матрицы равен трём, т.е. $rang A=3$. Полное решение без пояснений таково:
$$
left(begin{array}{ccccc}
-2 & 3 & 1 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
4 & -11 & -5 & 12 & 18 \
-9 & 6 & 0 & -2 & 21 \
-5 & 5 & 1 & 1 & 1
end{array}right)overset{c_1leftrightarrow{c_3}}{sim}
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
-5 & -11 & 4 & 12 & 18 \
0 & 6 & -9 & -2 & 21 \
1 & 5 & -5 & 1 & 1
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3+5r_1 \ phantom{0} \ r_5-r_1 end{array}sim
$$
$$
simleft(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
0 & 4 & -6 & 12 & -2 \
0 & 6 & -9 & -2 & 21 \
0 & 2 & -3 & 1 & 5
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ 1/2cdot{r_3} \ phantom{0} \ phantom{0} end{array}sim
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 0 & 0 & 5 & -6 \
0 & 2 & -3 & 6 & -1 \
0 & 6 & -9 & -2 & 21 \
0 & 2 & -3 & 1 & 5
end{array}right)
overset{r_2leftrightarrow{r_5}}{sim}
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 2 & -3 & 6 & -1 \
0 & 6 & -9 & -2 & 21 \
0 & 0 & 0 & 5 & -6
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3-r_2 \ r_4-3r_2 \ phantom{0} end{array}sim
$$
$$
simleft(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 0 & 0 & 5 & -6 \
0 & 0 & 0 & -5 & 6 \
0 & 0 & 0 & 5 & -6
end{array}right)
begin{array} {l} phantom{0}\ phantom{0}\ phantom{0} \ r_4+r_3 \ r_5-r_3 end{array}sim
left(begin{array}{ccccc}
1 & 3 & -2 & 0 & -4 \
0 & 2 & -3 & 1 & 5 \
0 & 0 & 0 & 5 & -6 \
0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0
end{array}right)
$$
Ответ: $rang A=3$.
Пример №2
Найти ранг матрицы $A=left(begin{array}{ccccc}
11 & -13 & 61 & 10 & -11\
2 & -2 & 11 & 2 & -2\
-3 & 5 & -17 & -2 & 3\
4 & 0 & 24 & 7 & -8
end{array} right)$.
Решение
Данная матрица не является нулевой, а значит её ранг больше нуля. Перейдём к первому шагу алгоритма.
Первый шаг
На первом шаге мы работаем с первой строкой. В первой строке заданной нам матрицы ведущим является первый элемент, т.е. номер ведущего элемента первой строки $k=1$. Посмотрим на строки, расположенные под первой строкой. Ведущие элементы в этих строках имеют номер 1, т.е. наименьший из номеров ведущих элементов нижележащих строк есть $k_{min}=1$. Так как $k=k_{min}$, то нужно произвести обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Иными словами, нужно обнулить ведущие элементы второй, третьей и четвёртой строк.
Для удобства расчётов сделаем так, чтобы ведущим элементом первой строки стала единица. В предыдущем примере для этого мы меняли местами столбцы, однако с этой матрицей такое действие не пройдёт – в данной матрице нет элементов, равных единице. Выполним одно вспомогательное действие: $r_1-5r_2$. Тогда ведущий элемент первой строки станет равен 1.
$$
left(begin{array}{ccccc}
11 & -13 & 61 & 10 & -11\
2 & -2 & 11 & 2 & -2\
-3 & 5 & -17 & -2 & 3\
4 & 0 & 24 & 7 & -8
end{array} right)
begin{array} {l} r_1-5r_2\ phantom{0}\ phantom{0} \ phantom{0} end{array}sim
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
2 & -2 & 11 & 2 & -2\
-3 & 5 & -17 & -2 & 3\
4 & 0 & 24 & 7 & -8
end{array} right)
$$
Ведущим элементом первой строки стала единица. Обнулим ведущие элементы нижележащих строк:
$$
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
2 & -2 & 11 & 2 & -2\
-3 & 5 & -17 & -2 & 3\
4 & 0 & 24 & 7 & -8
end{array} right)
begin{array} {l} phantom{0}\ r_2-2r_1\ r_3+3r_1 \ r_4-4r_1 end{array}sim
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & -4 & 1 & -2 & 0\
0 & 12 & 0 & 7 & -4
end{array} right)
$$
Первый шаг закончен. Так как под первой строкой остались ненулевые строки, то нужно продолжать работу.
Второй шаг
На втором шаге работаем с второй строкой. Во второй строке матрицы ведущим является второй элемент, т.е. номер ведущего элемента второй строки $k=2$. Ведущие элементы в нижележащих строках имеют тот же номер 2, поэтому $k_{min}=2$. Так как $k=k_{min}$, то производим обнуление ведущих элементов тех нижележащих строк, у которых номер ведущего элемента равен $k_{min}$. Это значит, что нужно обнулить ведущие элементы третьей и четвёртой строк.
$$
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & -4 & 1 & -2 & 0\
0 & 12 & 0 & 7 & -4
end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3+r_2 \ r_4-3r_2 end{array}sim
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & 0 & 0 & 0 & 0\
0 & 0 & 3 & 1 & -4
end{array} right)
$$
Появилась нулевая строка. Опустим её в низ матрицы:
$$
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & 0 & 0 & 0 & 0\
0 & 0 & 3 & 1 & -4
end{array} right)
overset{r_3leftrightarrow{r_4}}{sim}
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & 0 & 3 & 1 & -4\
0 & 0 & 0 & 0 & 0
end{array} right)
$$
Второй шаг закончен. Заметьте, что мы уже получили ступенчатую матрицу. Впрочем, мы можем формально закончить наш алгоритм. Так как под второй строкой остались ненулевые строки, то следует перейти к третьему шагу и работать с третьей строкой, однако под третьей строкой ненулевых строк нет. Следовательно, преобразования завершены.
К слову, полученная нами матрица является трапециевидной. Трапециевидная матрица – это частный случай ступенчатой матрицы.
Так как данная матрица содержит три ненулевых строки, то её ранг равен 3. Следовательно, и ранг исходной матрицы равен трём, т.е. $rang{A}=3$. Полное решение без пояснений таково:
$$
left(begin{array}{ccccc}
11 & -13 & 61 & 10 & -11\
2 & -2 & 11 & 2 & -2\
-3 & 5 & -17 & -2 & 3\
4 & 0 & 24 & 7 & -8
end{array} right)
begin{array} {l} r_1-5r_2\ phantom{0}\ phantom{0} \ phantom{0} end{array}sim
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
2 & -2 & 11 & 2 & -2\
-3 & 5 & -17 & -2 & 3\
4 & 0 & 24 & 7 & -8
end{array} right)
begin{array} {l} phantom{0}\ r_2-2r_1\ r_3+3r_1 \ r_4-4r_1 end{array}sim
$$
$$
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & -4 & 1 & -2 & 0\
0 & 12 & 0 & 7 & -4
end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3+r_2 \ r_4-3r_2 end{array}sim
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & 0 & 0 & 0 & 0\
0 & 0 & 3 & 1 & -4
end{array}right)overset{r_3leftrightarrow{r_4}}{sim}
left(begin{array}{ccccc}
1 & -3 & 6 & 0 & -1\
0 & 4 & -1 & 2 & 0\
0 & 0 & 3 & 1 & -4\
0 & 0 & 0 & 0 & 0
end{array} right)
$$
Ответ: $rang A=3$.
Пример №3
Найти ранг матрицы $A=left(begin{array}{ccc}
0 & 2 & -4 \
-1 & -4 & 5 \
3 & 1 & 7 \
0 & 5 & -10 \
2 & 3 & 0
end{array} right)$.
Решение
Иногда в процессе решения удобно транспонировать матрицу. Так как ранг транспонированной матрицы равен рангу исходной матрицы, то такая операция вполне допустима. В этом примере будет рассмотрен как раз такой случай. В ходе преобразований возникнут две одинаковые строки $(0;;1;;-2)$ (первая и четвёртая). В принципе, можно выполнить действие $r_4-r_1$, тогда четвёртая строка обнулится, однако это лишь удлинит решение на одну запись, поэтому выполнять обнуление четвёртой строки не станем.
$$
left(begin{array}{ccc}
0 & 2 & -4 \
-1 & -4 & 5 \
3 & 1 & 7 \
0 & 5 & -10 \
2 & 3 & 0
end{array} right)
begin{array} {l} 1/2cdot{r_1}\ phantom{0}\ phantom{0} \ 1/5cdot{r_4} \phantom{0} end{array}sim
left(begin{array}{ccc}
0 & 1 & -2 \
-1 & -4 & 5 \
3 & 1 & 7 \
0 & 1 & -2 \
2 & 3 & 0
end{array} right)sim
$$
$$
simleft(begin{array}{ccccc}
0&-1&3&0&2\
1&-4&1&1&3\
-2&5&7&-2&0
end{array} right)
overset{r_1leftrightarrow{r_2}}{sim}
left(begin{array}{ccccc}
1&-4&1&1&3\
0&-1&3&0&2\
-2&5&7&-2&0
end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3+2r_1 end{array}sim
$$
$$
left(begin{array}{ccccc}
1&-4&1&1&3\
0&-1&3&0&2\
0&-3&9&0&6
end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3-3r_2 end{array}sim
left(begin{array}{ccccc}
1&-4&1&1&3\
0&-1&3&0&2\
0&0&0&0&0
end{array} right)
$$
Ранг преобразованной матрицы равен 2, поэтому и ранг исходной матрицы $rang{A}=2$. В принципе, можно было найти ранг и без транспонирования матрицы: поменять местами первую строку с второй, третьей или пятой и продолжить обычные преобразования со строками. Метод сведения матрицы к ступенчатому виду допускает вариации процесса решения.
Ответ: $rang A=2$.
Пример №4
Найти ранг матрицы $A=left(begin{array}{cccccc}
0 & -1 & 2 & -4 & 0 & 5 \
0 & 0 &5 &0 &2 &3 \
0 & 0 & 10 & 0& -4&1
end{array} right)$.
Решение
Данная матрица не является нулевой, т.е. её ранг больше нуля. Перейдём к первому шагу алгоритма.
Первый шаг
На первом шаге мы работаем с первой строкой. В первой строке заданной нам матрицы ведущим является второй элемент, т.е. номер ведущего элемента первой строки $k=2$. Рассмотрим строки, расположенные под первой строкой. Ведущие элементы в этих строках имеют номер 3, т.е. наименьший из номеров ведущих элементов нижележащих строк есть $k_{min}=3$. Так как $klt{k_{min}}$, то переходим к следующему шагу алгоритма.
Второй шаг
На втором шаге мы работаем с второй строкой. Во второй строке ведущим является третий элемент, т.е. номер ведущего элемента второй строки $k=3$. Под второй строкой расположена лишь одна третья строка, номер ведущего элемента которой равен 3, поэтому $k_{min}=3$. Так как $k=k_{min}$, то производим обнуление ведущего элемента третьей строки:
$$
left(begin{array}{cccccc}
0 & -1 & 2 & -4 & 0 & 5 \
0 & 0 &5 &0 &2 &3 \
0 & 0 & 10 & 0& -4&1
end{array} right)
begin{array} {l} phantom{0}\ phantom{0}\ r_3-2r_2 end{array}sim
left(begin{array}{cccccc}
0 & -1 & 2 & -4 & 0 & 5 \
0 & 0 &5 &0 &2 &3 \
0 & 0 & 0 & 0& -8&-5
end{array} right)
$$
Получена ступенчатая матрица. Ранг преобразованной матрицы, а следовательно и ранг исходной матрицы, равен 3.
Ответ: $rang A=3$.
Пример №5
Найти ранг матрицы $A=left(begin{array}{ccccc}
0&0&0&0&6\
9&0&0&0&-11\
5&2&0&0&-5.
end{array} right)$.
Решение
Иногда можно свести матрицу к ступенчатой с помощью одних лишь перестановок строк или столбцов. Это бывает, разумеется, крайне редко, однако удачная перестановка позволяет существенно упростить решение.
$$
left(begin{array}{ccccc}
0&0&0&0&6\
9&0&0&0&-11\
5&2&0&0&-5
end{array} right)
overset{r_1leftrightarrow{r_3}}{sim}
left(begin{array}{ccccc}
5&2&0&0&-5\
9&0&0&0&-11\
0&0&0&0&6
end{array} right)
overset{с_1leftrightarrow{с_4}}{sim}
left(begin{array}{ccccc}
0&2&0&5&-5\
0&0&0&9&-11\
0&0&0&0&6
end{array} right)
$$
Матрица приведена к ступенчатой, $rang{A}=3$.
Ответ: $rang A=3$.
Рассмотрим
еще один способ нахождения ранга матрицы.
Определение 5.4.
Элементарными
преобразованиями матрицы
называются следующие преобразования:
-
умножение
строки матрицы на число, отличное от
нуля; -
прибавление
к элементам какой-либо строки (столбца)
матрицы соответствующих элементов
другой строки (столбца), умноженных на
произвольное число; -
вычеркивание
нулевой
строки.
Замечание 5.3.
С помощью преобразований 1 и 2 можно
поменять местами любые две строки
(столбца) матрицы.
Определение 5.5.
Матрица А
называется ступенчатой,
если она имеет вид:
,
aii
≠ 0,
i = 1,
2, …, r,
r k.
Замечание 5.4.
Условие r k
всегда может быть достигнуто
транспонированием матрицы.
Теорема 5.2.
Применение
к произвольной матрице цепочки
элементарных преобразований не меняет
ее ранга.
Теорема 5.3.
Любую
матрицу с помощью элементарных
преобразований можно привести к
ступенчатому виду.
Теорема 5.4.
Ранг
ступенчатой матрицы равен количеству
ее ненулевых строк.
Определение 5.6.
Первый ненулевой элемент строки
называется ее ведущим
элементом.
Из
этих теорем следует практический способ
нахождения ранга матрицы: с
помощью элементарных преобразований
привести матрицу к ступенчатому виду
и определить количество ее ненулевых
строк.·
Пример 5.3.
Найти ранг матрицы А =
с помощью элементарных преобразований.
Решение.
Приводим
матрицу с помощью элементарных
преобразований к ступенчатому виду.
Выберем в 1-ой строке ведущий элемент.
Это (–1). В столбце под этим элементом
следует получить нули. Для этого к 2-ой
строке прибавим 1-ю, умноженную на 2, а к
3-ей строке прибавим 1-ую, умноженную на
3; получим матрицу:
.
Выбираем
ведущий элемент во второй строке и
получим нули в столбце под ним: к 3-ей
строке прибавим 2-ую, умноженную на (–2),
в результате получим следующую матрицу:
.
Получена
матрица ступенчатого вида, в которой
две ненулевые строки, следовательно,
ранг исходной равен 2, т. е. rang A = 2.
5.4. Понятие обратной матрицы и способы ее нахождения
Пусть
дана квадратная матрица А.
Определение 5.7.
Матрица А–1
называется обратной
для матрицы А,
если АА–1 = А–1А = Е.
Определение 5.8.
Квадратная матрица А
называется невырожденной,
если ее определитель не равен нулю.
Заметит,
что ранг невырожденной матрицы порядка
n
равен n.
Определение 5.9.
Квадратная матрица А
называется вырожденной,
если ее определитель равен нулю.
Определение 5.10.
Матрицей, присоединенной
к матрице А,
называется матрица А*,
где А* = ,
Аij
– алгебраическое
дополнение элемента аij
для всех индексов i,
j = 1,
2, …n.
Теорема 5.5.
Для вырожденной матрицы не существует
обратной матрицы.
Теорема 5.6.
Для невырожденной матрицы А
существует обратная матрица, причем
только одна. Обратная матрица может
быть найдена по формуле: А–1 = А*.
Алгоритм нахождения обратной матрицы
Рассмотрим
один из способов нахождения обратной
матрицы к данной с помощью алгебраических
дополнений. Пусть дана квадратная
матрица А.
-
Находим
определитель матрицы |A|.
Если |A| = 0,
то у матрицы А
нет обратной (теорема 5.5). Если |A| ≠ 0,
то обратная матрица существует, и
переходим к пункту 2. -
Находим
алгебраические дополнения всех элементов
матрицы А. -
Составляем
присоединенную
матрицу
А*. -
Находим
А–1
по указанной формуле (теорема 5.6).
Пример 5.4.
Найти матрицу, обратную для матрицы
А = .
Решение.
Определитель
матрицы А
равен 1, то есть не равен нулю. Тогда
находим алгебраические дополнения
элементов матрицы. А11 = 3,
А21 = –5,
А12 = –1,
А22 = 2.
Составляем присоединенную матрицу А*,
получаем А* = .
С учетом формулы А–1 = А*
находим обратную матрицу А–1,
А–1 = =
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Перед тем как начать знакомство с темой, необходимо повторить правила нахождения определителей второго, третьего и высших порядков. Также необходимо знать, что детерминант 1-го порядка — число. Рассмотрим 2 метода вычисления ранга матриц.
Онлайн-калькулятор
Метод окаймляющих миноров
Для нахождения ранга матрицы данным методом требуется уметь находить миноры матриц.
Рангом матрицы QQ называется наивысший порядок миноров, среди которых есть хотя бы один отличный от 00.
При этом ранг матрицы не может превышать порядка матрицы: 0⩽rang Qm×n⩽min(m,n)0leqslant rang Q_{mtimes n}leqslant min (m, n).
Обозначить ранг матрицы QQ можно следующим образом: rang Qrang Q или r(Q)r(Q).
Если ранг матрицы QQ равен rr, то это означает, что в матрице QQ имеется отличный от нуля минор порядка rr. При этом всякий минор порядка больше, чем rr равен нулю.
Исходя из определения ранга матрицы, следует, что если все миноры первого порядка (т. е. элементы матрицы QQ) равны 00, то rang Q=0rang Q=0. Если один из миноров первого порядка отличен от 00, а все миноры второго порядка равны 00, то rang Q=1rang Q=1. Если все миноры kk-го порядка равны 00, или миноров kk-го порядка не существует, то rang Q=k−1rang Q=k-1.
Рассмотрим примеры нахождения ранга матриц данным методом.
Пример 1
Найти ранг матрицы методом окаймляющих миноров
F=(03−1210−2−10)F=begin{pmatrix}0&3&-1\2&1&0\-2&-1&0end{pmatrix}.
Данная матрица имеет размер 3×33times3, поэтому ее ранг не может быть больше 33, т.е. rang F⩽3rang Fleqslant3.
Перейдем к вычислению ранга матрицы.
Среди миноров 1-го порядка (т.е. элементов определителя) есть хотя бы один, не равный 00, поэтому rang F≥1rang Fgeq1.
Перейдем к проверке миноров 2-го порядка. Например, на пересечении строк №1 и №2 и столбцов №1 и №2 получим минор: ∣0321∣=0⋅1−2⋅3=0−6=−6begin{vmatrix}0&3\2&1end{vmatrix}=0cdot1-2cdot3=0-6=-6. Значит, среди миноров 2-го порядка есть хотя бы один, не равный 00 и поэтому rang F≥2rang Fgeq2.
Перейдем к проверке миноров 3-го порядка. Минор 3-го порядка — определитель матрицы FF, поскольку она состоит из 3 строк и 3 столбцов: ∣03−1210−2−10∣=0begin{vmatrix}0&3&-1\2&1&0\-2&-1&0end{vmatrix}=0. Значит, ранг матрицы FF равен 22, или rang F=2rang F=2.
Пример 2
Найти ранг матрицы методом окаймляющих миноров
K=(21−23−121213−15−2−21243−31)K=begin{pmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}.
Данная матрица имеет размер 5×45times4. Из чисел 55 и 44 минимальным является 44, поэтому ее ранг не может быть больше 44, а значит rang K⩽4rang Kleqslant4.
Перейдем к вычислению ранга матрицы.
Среди миноров 1-го порядка (т.е. элементов определителя) есть хотя бы один, не равный 00, поэтому rang K≥1rang Kgeq1.
Перейдем к проверке миноров 2-го порядка. Например, на пересечении строк №1 и №2 и столбцов №1 и №2 получим минор: ∣21−12∣=2⋅2−(−1)⋅1=4+1=5begin{vmatrix}2&1\-1&2end{vmatrix}=2cdot2-(-1)cdot1=4+1=5. Значит, среди миноров 2-го порядка есть хотя бы один, не равный 00 и поэтому rang K≥2rang Kgeq2.
Перейдем к проверке миноров 3-го порядка. Например, на пересечении строк №1, №3 и №5 и столбцов №2, №3 и №4 получим минор:
∣1−233−153−31∣=1⋅(−1)⋅1+(−2)⋅5⋅3+3⋅(−3)⋅3−3⋅(−1)⋅3−(−2)⋅1⋅3−1⋅5⋅(−3)=−1−30−27+9+6+15=−28begin{vmatrix}1&-2&3\3&-1&5\3&-3&1end{vmatrix}=1cdot(-1)cdot1+(-2)cdot5cdot3+3cdot(-3)cdot3-3cdot(-1)cdot3-(-2)cdot1cdot3-1cdot5cdot(-3)=-1-30-27+9+6+15=-28.
Значит, среди миноров 3-го порядка есть хотя бы один, не равный 00 и поэтому rang K≥3rang Kgeq3.
Перейдем к проверке миноров 4-го порядка. Например, на пересечении строк №1, №2, №3 и №4 и столбцов №1, №2, №3 и №4 получим минор:
∣21−23−121213−15−2−212∣=2(−1)1+1∣2123−15−212∣−(−1)2+1∣1−233−15−212∣+(−1)3+1∣1−23212−212∣−2(−1)4+1∣1−232123−15∣=2(−1)2∣2123−15−212∣−(−1)3∣1−233−15−212∣+(−1)4∣1−23212−212∣−2(−1)5∣1−232123−15∣=2∣2123−15−212∣+∣1−233−15−212∣+∣1−23212−212∣+2∣1−232123−15∣=2(−4+6−10−4−10−6)−2+9+20−6−5+12+2+6+8+6−2+8+2(5−6−12−9+2+20)=−56+56+0=0begin{vmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2end{vmatrix}=2(-1)^{1+1}begin{vmatrix}2&1&2\3&-1&5\-2&1&2end{vmatrix}-(-1)^{2+1}begin{vmatrix}1&-2&3\3&-1&5\-2&1&2end{vmatrix}+(-1)^{3+1}begin{vmatrix}1&-2&3\2&1&2\-2&1&2end{vmatrix}-2(-1)^{4+1}begin{vmatrix}1&-2&3\2&1&2\3&-1&5end{vmatrix}=2(-1)^{2}begin{vmatrix}2&1&2\3&-1&5\-2&1&2end{vmatrix}-(-1)^{3}begin{vmatrix}1&-2&3\3&-1&5\-2&1&2end{vmatrix}+(-1)^{4}begin{vmatrix}1&-2&3\2&1&2\-2&1&2end{vmatrix}-2(-1)^{5}begin{vmatrix}1&-2&3\2&1&2\3&-1&5end{vmatrix}=2begin{vmatrix}2&1&2\3&-1&5\-2&1&2end{vmatrix}+begin{vmatrix}1&-2&3\3&-1&5\-2&1&2end{vmatrix}+begin{vmatrix}1&-2&3\2&1&2\-2&1&2end{vmatrix}+2begin{vmatrix}1&-2&3\2&1&2\3&-1&5end{vmatrix}=2(-4+6-10-4-10-6)-2+9+20-6-5+12+2+6+8+6-2+8+2(5-6-12-9+2+20)=-56+56+0=0.
Остальные миноры 4-го порядка также равны нулю:
∣21−23−121213−1543−31∣=0begin{vmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\4&3&-3&1end{vmatrix}=0,
∣21−23−1212−2−21243−31∣=0begin{vmatrix}2&1&-2&3\-1&2&1&2\-2&-2&1&2\4&3&-3&1end{vmatrix}=0,
∣21−2313−15−2−21243−31∣=0begin{vmatrix}2&1&-2&3\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{vmatrix}=0,
∣−121213−15−2−21243−31∣=0begin{vmatrix}-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{vmatrix}=0.
Значит, ранг матрицы KK равен 33, или rang K=3rang K=3.
Данный метод не всегда удобен, поскольку связан с вычислением большого количества определителей. Рассмотрим метод нахождения ранга матриц, который наиболее часто применяется на практике.
Метод Гаусса (метод элементарных преобразований)
Метод основан на элементарных преобразованиях матриц, под которыми будем понимать такие преобразования, в результате которых сохраняется эквивалентность матриц:
- перестановка местами любых двух рядов (строк или столбцов) матрицы;
- умножение любого ряда матрицы (строки или столбца) на некоторое число, отличное от нуля;
- прибавление к любому ряду (строке или столбцу) матрицы другого ряда (строки или столбца), умноженного на некоторое число, отличное от нуля.
Рангом матрицы называется количество ненулевых строк матрицы после ее приведения к ступенчатому виду при помощи элементарных преобразований над строками и столбцами.
Рассмотрим суть данного метода на примерах.
Пример 1
Найти ранг матрицы методом Гаусса F=(03−1210−2−10)F=begin{pmatrix}0&3&-1\2&1&0\-2&-1&0end{pmatrix}.
Приведем матрицу FF с помощью элементарных преобразований к ступенчатому виду.
Поменяем местами строки №1 и №2:
(03−1210−2−10)∼(21003−1−2−10)begin{pmatrix}0&3&-1\2&1&0\-2&-1&0end{pmatrix}sim begin{pmatrix}2&1&0\0&3&-1\-2&-1&0end{pmatrix}.
Прибавим к строке №3 строку №1, умноженную на 1:
(21003−1−2−10)∼(21003−1000)begin{pmatrix}2&1&0\0&3&-1\-2&-1&0end{pmatrix}simbegin{pmatrix}2&1&0\0&3&-1\0&0&0end{pmatrix}.
С помощью элементарных преобразований мы привели матрицу FF к ступенчатому виду. В ней остались 2 ненулевые строки, следовательно, rang F=2rang F=2.
Пример 2
Найти ранг матрицы методом Гаусса
K=(21−23−121213−15−2−21243−31)K=begin{pmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}.
Приведем матрицу KK с помощью элементарных преобразований к ступенчатому виду.
Поменяем местами строки №1 и №2:
(21−23−121213−15−2−21243−31)∼(−121221−2313−15−2−21243−31)begin{pmatrix}2&1&-2&3\-1&2&1&2\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\2&1&-2&3\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}.
Поменяем местами строки №2 и №4:
(−121221−2313−15−2−21243−31)∼(−1212−2−21213−1521−2343−31)begin{pmatrix}-1&2&1&2\2&1&-2&3\1&3&-1&5\-2&-2&1&2\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\-2&-2&1&2\1&3&-1&5\2&1&-2&3\4&3&-3&1end{pmatrix}.
Поменяем местами строки №3 и №4:
(−1212−2−21213−1521−2343−31)∼(−1212−2−21221−2313−1543−31)begin{pmatrix}-1&2&1&2\-2&-2&1&2\1&3&-1&5\2&1&-2&3\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\1&3&-1&5\4&3&-3&1end{pmatrix}.
Поменяем местами строки №4 и №5:
(−1212−2−21221−2313−1543−31)∼(−1212−2−21221−2343−3113−15)begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\1&3&-1&5\4&3&-3&1end{pmatrix}sim begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}.
Прибавим к строке №2 строку №1, умноженную на -2:
(−1212−2−21221−2343−3113−15)∼(−12120−6−1−221−2343−3113−15)begin{pmatrix}-1&2&1&2\-2&-2&1&2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}.
Прибавим к строке №3 строку №1, умноженную на 2:
(−12120−6−1−221−2343−3113−15)∼(−12120−6−1−2050743−3113−15)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\2&1&-2&3\4&3&-3&1\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\4&3&-3&1\1&3&-1&5end{pmatrix}.
Прибавим к строке №4 строку №1, умноженную на 4:
(−12120−6−1−2050743−3113−15)∼(−12120−6−1−205070111913−15)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\4&3&-3&1\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\1&3&-1&5end{pmatrix}.
Прибавим к строке №5 строку №1, умноженную на 1:
(−12120−6−1−205070111913−15)∼(−12120−6−1−20507011190507)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\1&3&-1&5end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}.
Прибавим к строке №2 строку №3, умноженную на 1:
(−12120−6−1−20507011190507)∼(−12120−1−150507011190507)begin{pmatrix}-1&2&1&2\0&-6&-1&-2\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}.
Прибавим к строке №5 строку №3, умноженную на -1:
(−12120−1−150507011190507)∼(−12120−1−150507011190000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&5&0&7end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&0&0&0end{pmatrix}.
Прибавим к строке №3 строку №2, умноженную на 5:
(−12120−1−150507011190000)∼(−12120−1−1500−532011190000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&5&0&7\0&11&1&9\0&0&0&0end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&11&1&9\0&0&0&0end{pmatrix}.
Прибавим к строке №4 строку №2, умноженную на 11:
(−12120−1−1500−532011190000)∼(−12120−1−1500−53200−10640000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&11&1&9\0&0&0&0end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&0&-10&64\0&0&0&0end{pmatrix}.
Прибавим к строке №4 строку №3, умноженную на -2:
(−12120−1−1500−53200−10640000)∼(−12120−1−1500−53200000000)begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&0&-10&64\0&0&0&0end{pmatrix}sim begin{pmatrix}-1&2&1&2\0&-1&-1&5\0&0&-5&32\0&0&0&0\0&0&0&0end{pmatrix}.
С помощью элементарных преобразований мы привели матрицу KK к ступенчатому виду. В ней остались 3 ненулевые строки, следовательно, rang K=3rang K=3.
Любым из рассмотренных методов можно найти ранг матрицы.
Наши эксперты готовы оказать вам помощь с решением задачи онлайн по самым низким ценам!
Тест по теме «Ранг матрицы»
Нахождение ранга матрицы — примеры решения
Содержание:
- Что такое ранг матрицы — понятие, для чего используется
-
Как определить ранг матрицы, примеры
- Нахождение ранга матрицы по определению
- Нахождение ранга матрицы методом окаймляющих миноров
- Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)
Что такое ранг матрицы — понятие, для чего используется
Возьмем случайную матрицу (underset{mtimes n}A) и натуральное число k, меньшее или равное числам m и n. Вычеркивая в ней произвольным образом (m — k) строк и (n — k) столбцов, мы получим квадратные подматрицы меньше размера исходной, k-го порядка. Определители таких подматриц будут минорами k-го порядка матрицы (underset{mtimes n}A.)
Минор k-го порядка матрицы A — это определитель k-го порядка с элементами, которые расположены на пересечении любых k строк и любых k столбцов.
Всего из матрицы (underset{mtimes n}A) получится выделить (C_m^kC_n^k) миноров k-го порядка.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Например, из (underset{3times 4}A) мы получим 12 миноров 1-го порядка, 18 — 2-го и 4 — 3-го.
Если среди матричных элементов (a_{ij}) (i = 1, 2 … m; j = 1, 2 … n) есть отличные от нуля, то существует натуральное число r, которое обладает следующими свойствами:
- У матрицы А есть ненулевой минор r-го порядка.
- Любой из миноров этой матрицы порядка r + 1 или выше будет нулевым.
Число r с такими характеристиками — ранг матрицы A.
Ранг матрицы — это наивысший порядок ее ненулевых миноров.
Устоявшегося обозначения ранга не существует, чаще всего его записывают как (r (A)) или rang A, где А — обозначение матрицы. Понятие ранга обычно используют в ситуациях, когда необходима проверка совместимости системы линейных уравнений.
В случае, когда базисный минор матрицы (underset{3times 4}A) имеет порядок r < m, то как минимум одна ее строка будет не базисной. Согласно теореме о базисном миноре, в таком случае строки рассматриваемой матрицы (underset{3times 4}A) линейно зависимы. В случае, когда r = m, все строки являются базисными и линейно независимыми.
Из этого можно сделать следующие выводы:
- Когда ранг матрицы A меньше числа ее строк, они линейно зависимы. В случае, когда он равен числу строк, все они линейно независимы.
- Всякие r + 1 строк матрицы A ранга r линейно зависимы.
- Ранг любой матрицы равняется максимальному числу ее линейно независимых строк.
Теорема 1
Максимальное число линейно независимых столбцов матрицы равно максимальному количеству ее линейно независимых строк и равно ее рангу.
Следствие
Ранг не меняется при транспонировании.
Как определить ранг матрицы, примеры
Нахождение ранга матрицы по определению
Определить ранг можно, перебрав все миноры.
Теорема 2
Если из элементов матрицы можно составить ненулевой минор n-го порядка, то ранг равен n.
С учетом данной теоремы перебор производится по следующему алгоритму:
- Перебрать миноры 1-го порядка. Если наличествует хоть один ненулевой минор 1-го порядка, ранг как минимум равен 1.
- Перебрать миноры 2-го порядка. Если все они нулевые, ранг — единичный. В противном случае переходим к пункту 3.
- Перебрать миноры 3-го порядка. Если все они нулевые, ранг — два. В противном случае переходим к минорам 4-го, 5-го порядков и т. д.
Нахождение ранга матрицы методом окаймляющих миноров
Этот метод дает возможность сократить вычисления.
Окаймляющий минор — минор (n+1)-го порядка матрицы А. Он окаймляет минор n-го порядка, если матрица, соответствующая минору (n+1)-го порядка, содержит матрицу, которая соответствует упомянутому минору n-го порядка. Таким образом, чтобы получить окаймляемый минор, надо взять окаймляющий его и вычеркнуть одну строку и один столбец.
Пример № 1
Вычислить ранг матрицы
(begin{pmatrix}2&3&7&11\1&2&4&7\5&0&10&5end{pmatrix}.)
Решение:
В матрице есть элементы, отличные от нуля, значит, ее ранг больше единицы.
(М_2;=;begin{pmatrix}2&3\1&2end{pmatrix};=;4;-;3;=;1; neq 0. )
Раз ранг больше двух, нужно рассмотреть миноры 3-го порядка, содержащие вышеприведенный минор (М_2.)
(М_3;=;begin{pmatrix}2&3&7\1&2&4\5&0&10end{pmatrix};=;5;times;begin{pmatrix}3&7\2&4end{pmatrix};+;10;times;begin{pmatrix}2&3\1&2end{pmatrix}=;5;times;(12;-;14);+;10;times;(4;-;3);=;-;10;+;10;=;0.)
(М_3;=;begin{pmatrix}2&3&11\1&2&7\5&0&5end{pmatrix};=;5;times;begin{pmatrix}3&11\2&7end{pmatrix};+;5;times;begin{pmatrix}2&3\1&2end{pmatrix}=;5;times;(21;-;22);+;5;times;(4;-;3);=;-;5;+;5;=;0.)
Как мы видим, все миноры 3-го порядка нулевые, значит, наибольший ненулевой минор относится ко 2-му порядку.
Ответ: 2.
Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)
В большинстве случаев нахождение ранга перебором миноров требует долгих вычислений. Более простой способ решения этой задачи базируется на элементарных преобразованиях по методу Гаусса, сохраняющих ранг исходной матрицы A и приводящих ее к ступенчатому виду. К таким преобразованиям относятся:
- Вычеркивание нулевой строки или столбца. Нулевая строка не может быть базисной строкой, ведь в таком случае базисные строки были бы линейно зависимы, а это противоречит теореме о базисном миноре.
- Перестановка двух строк между собой. Другие строки в этом случае не меняются. Это утверждение непосредственно следует из теоремы о базисном миноре, согласно которой ранг равняется максимальному числу линейно независимых строк.
- Умножение любой строки на число( lambda neq 0).
- Вычеркивание строки, которая является линейной комбинацией других строк.
- Прибавление к одной строке другой строки, умноженной на число (lambda neq 0).
- Транспонирование.
Проведем подробный разбор пункта 5. Представим, что к q-й строке прибавлена p-я строка, умноженная на (lambda neq 0). В итоге появится новая матрица A′. Если q-я и p-я строки — базисные, это преобразование не изменит значения базисного минора. В случае, когда только p-я строка — базисная, q-я строка является их линейной комбинацией. Умножение на (lambda) это не изменит, и такую строку допустимо удалить при преобразовании.
Если q-я строка — базисная, а p-я — нет, то после преобразования (r_{q} rightarrow r_{q} + lambda r_{p}) базисный минор (triangle_{r}) перейдет в минор (triangle’_{r}) матрицы A′, который отличается от (triangle_{r}) тем, что вместо элементов строки (r_{q}) содержит элементы строки( r_{q} + lambda r_{p}). Согласно теореме о линейности, (triangle’_r=triangle_r+lambda;triangle_r^{(1)}.)
Определитель r-го порядка (triangle_r^{(1)}) в этом выражении отличается от (triangle_r) тем, что вместо элементов q-й строки содержит соответствующие элементы строки( r_{p}.)
Так как p-я строка — не базисная, она может быть представлена в виде линейной комбинации r базисных строк, то (triangle_r^{(1)} = 0) и (triangle_r^{(1)} = triangle_r.)
Как мы видим, при преобразовании( r_{q} rightarrow r_{q} + lambda r_{p}) базисный минор ни при каких условиях не изменяется. Из этого делаем вывод, что r (A) = r (A′).
Примечание
Матрицы A и B эквивалентны по рангу и обозначаются A ∼ B в том случае, когда B можно получить из A путем элементарных преобразований, перечисленных выше.
Пример № 2
Вычислить ранг матрицы
(В;=;begin{pmatrix}4&0&-1\0&2&4\4&4&1end{pmatrix}.)
Решение:
Прибавим первую строку матрицы B, умноженную на -1, к ее третьей строке. После произведения необходимых расчетов получим:
(В;sim;begin{pmatrix}4&0&-1\0&2&4\0&4&2end{pmatrix}.)
Умножим вторую строку получившейся матрицы на -2 и прибавим результат умножения к третьей строке:
(В;sim;begin{pmatrix}4&0&-1\0&2&4\0&0&-6end{pmatrix}.)
Итак, исходная матрица 3-го порядка является невырожденной, поскольку ее определитель равен
(4 times 2 times (-6) = -48 neq 0.)
Ответ: 3.